
In Proceedings of VLDB’95: The International Conference on Very Large Databases, Zurich, Switzerland, September 1995.

Value�cognizant Speculative Concurrency Control

Azer Bestavros

Computer Science Department

Boston University� MA �����

best�cs�bu�edu

Spyridon Braoudakis

Computer Science Department

Boston University� MA �����

sb�cs�bu�edu

Abstract

We describe SCC�kS� a Speculative Concurrency
Control �SCC� algorithm that allows a DBMS to
use e�ciently the extra computing resources avail�
able in the system to increase the likelihood of
timely commitment of transactions� Using SCC�kS�
up to k shadow transactions execute speculatively
on behalf of a given uncommitted transaction so
as to protect against the hazards of blockages and
restarts� SCC�kS allows the system to scale the
level of speculation that each transaction is allowed
to perform� thus providing a straightforward mech�
anism of trading resources for timeliness� Also� we
describe SCC�DC� a value�cognizant SCC protocol
that utilizes deadline and criticalness information
to improve timeliness through the controlled defer�
ment of transaction commitments� We present sim�
ulation results that quantify the performance gains
of our protocols compared to other widely used con�
currency control protocols for real�time databases�

� Introduction

For DataBase Management Systems �DBMS� with
limited resources� performance studies of concur�
rency control methods �e�g� �ACL��	� have concluded
that Pessimistic Concurrency Control �PCC� protocols
�EGLT�
� GLPT�
	 perform better than Optimistic
Concurrency Control �OCC� techniques �BCFF���
KR��	� The main reason for this good performance is
that PCC�s blocking�based con
ict resolution policies re�
sult in resource conservation� While abundant resources
are usually not to be expected in conventional DBMS�
they are more common in Real�Time DataBase Systems

Permission to copy without fee all or part of this material is
granted by the VLDB Endowment for purposes other than direct
commercial advantage� To copy otherwise� or to republish� re�
quires a fee and�or special permission from the Endowment�

�Proc� of the ��st VLDB Conference� Zurich� Swizerland� ����

�RTDBS�� which are designed to cope with rare high�
load conditions� rather than normal average�load condi�
tions� RTDBS are engineered not to guarantee a par�
ticular throughput� but to ensure that in the rare event
of a highly�loaded system� transactions complete before
their set deadlines �BMHD��	� These design goals often
lead to a computing environment with far more resources
than what would be necessary to sustain average loads�
thus vanishing the advantage of PCC over OCC algo�
rithms� In particular� OCC algorithms become attrac�
tive since computing resources wasted due to restarts do
not adversely a�ect performance �HCL��b� HCL��a	�

Real�time concurrency control schemes considered in
the literature could be viewed as extensions of either
PCC�based or OCC�based protocols� whereby transac�
tions are assigned priorities that re
ect the urgency
of their timing constraints� These priorities are used
with PCC�based techniques �AGM��� ACL��� SZ���
HSTR��� Sin��� SRL��� SRSC��	 to make it possible for
urgent transactions to abort con
icting� less urgent ones
�thus avoiding the hazards of blockages�� and are used
with OCC�based techniques �Kor��� HCL��b� HCL��a�
HSRT��� KS��� LS��� SPL��	 to favor urgent transac�
tions when con
icting� less urgent ones attempt to vali�
date and commit �thus avoiding the hazards of restarts��

In a recent study �Bes��	� we proposed an approach
to concurrency control that combines the advantages of
both OCC and PCC protocols while avoiding their dis�
advantages� Our approach relies on the use of redun�
dant computations to start on alternative schedules� as
soon as con
icts that threaten the consistency of the
database are detected� These alternative schedules are
adopted only if the suspected inconsistencies material�
ize� otherwise� they are abandoned� Due to its nature�
this approach has been termed Speculative Concurrency
Control �SCC�� SCC protocols are particularly suitable
for RTDBS because they reduce the negative impact
of blockages and rollbacks� which are characteristics of
PCC and OCC techniques� In our previous SCC stud�
ies� we did not make any use of transaction deadline
or criticalness information� Nevertheless� our perfor�
mance studies �BB��	 demonstrated the superiority of

SCC�based protocols to real�time OCC�based and PCC�
based protocols� which use such information�
In this paper� we argue that SCC protocols provide for

a very natural �and elegant� way of incorporating trans�
action deadline and criticalness information into concur�
rency control for RTDBS� They introduce a new dimen�
sion �namely redundancy� that can be used for that pur�
pose� By allowing a transaction to use more �redundant�
resources� it can achieve better speculation and hence im�
prove its chances for a timely commitment� Thus� the
problem of incorporating transaction deadline and crit�
icalness information into concurrency control is reduced
to the problem of rationing system resources amongst
competing transactions� each with a di�erent payo� to
the overall system� In section �� we introduce the ba�
sic idea behind speculation� Next� the SCC�kS protocol�
a practical speculative technique that operates under a
limited speculation �resources� assumption� is presented�
In section �� we present the SCC�DC protocol� which ex�
tends SCC�kS to allow the use of deadline and critical�
ness information to improve timeliness� Also� SCC�VW�
a simpli�ed� e�cient version of the SCC�DC protocol is
presented� In section �� we present simulation results
that show the improvements achievable by SCC�based
algorithms over other widely used protocols�

� Speculative Concurrency Control

Amajor disadvantage of basic OCC �KR��	 when used in
RTDBS is that transaction con
icts are not detected un�
til the validation phase� at which time it may be too late
to restart� The Broadcast Commit �OCC�BC� variant
of classical OCC �MN��� Rob��	 attempts to solve this
problem by a noti�cation process� whereby a committing
transaction noti�es all concurrently running� con
icting
transactions about its commitment� All such con
icting
transactions are immediately restarted� OCC�BC de�
tects con
icts earlier than the basic OCC algorithm re�
sulting in less wasted resources and earlier restarts� The
SCC approach proposed in �Bes��	 goes one step further
in utilizing information about con
icts� Instead of wait�
ing for a potential consistency threat to materialize and
then taking a corrective measure� an SCC algorithm uses
additional �redundant� resources to start on speculative

corrective measures as soon as the con
ict in question
develops� By starting on such measures as early as pos�
sible� the likelihood of meeting set timing constraints is
greatly enhanced�
To elucidate this point� consider two transactions T�

and T�� which �among others� perform some con
icting
actions� In particular� T� reads item x after T� has up�
dated it� Adopting a SCC algorithm allows T� to have
two shadows to account for the con
ict with T�� whereby
one of these is committed depending on the time needed
for transaction T� to reach its validation phase� In �gure
�� T� reaches its validation phase before T�� resulting in

the validation and commitment of T� without any need
to disturb T�� Obviously� once T� commits� the shadow
transaction T �� has to be aborted� In �gure �� T� reaches
its validation phase before T�� With OCC�BC� T� is
restarted when T� validates and commits as illustrated
in �gure �� The SCC protocol instead of restarting T��
simply aborts T� and adopts its shadow transaction T ���
thus improving the chances of meeting T��s deadline�

S Rx

T1
S Wx V/C

S Rx AT2

Time

V/C

Deadline

T2

Figure �� OCC�BC� Illustrative scenario

T2
S Rx V/C

Time

Deadline

T1
S Wx

S AT2’
T2

Figure �� SCC� Illustrative scenario ��

T2
S Rx

Time

Deadline

T1
S Wx

S

A

T2’
T2

V/C

Rx V/C

Figure �� SCC� Illustrative scenario ��

The above notion of �speculation� could be general�
ized� whereby we associate with each transaction Tr as
many shadows as there are Speculated Orders of Serial�

ization �SOS�� This leads to what we have termed the
Order�Based SCC �SCC�OB�� A SCC�OB algorithm re�
quires a large amount of redundancy� If transaction Tr
is one of n pairwise con
icting transactions� then SCC�
OB may require Tr to fork an exponential number of

shadows �Bra��	� namely�
Pn

i��
�n����
�n�i��

� O ��n� �����

The SCC�OB algorithm can be optimized so as to
reduce signi�cantly the number of shadows that may be
required per transaction� In particular� if we allow a
shadow to account for multiple serialization orders �i�e�
the relationship between shadows and SOS is one�to�
many�� then it can be shown that only a linear number
of shadows is su�cient to yield all the power of SCC�OB�
Such an optimized algorithm� called Con
ict�Based SCC
�SCC�CB�� is detailed in �Bra��	� At any point in time�
SCC�CB needs no more than n shadows per transaction�
and over the course of a transaction execution� no more

than
Pn

i���n� i�� or n�n���
� shadows are created�

��� The K�Shadow SCC �SCC�kS� Algorithm

SCC�kS is a class of SCC algorithms that operate under
a limited resources assumption� allowing no more than k
shadows to execute on behalf of any given uncommitted
transaction in the system� A shadow can be in one of
two modes� optimistic or speculative� Each transaction
Tr has� at any point in its execution� exactly one opti�
mistic shadow T o

r � In addition� Tr may have i speculative
shadows T i

r � for i � �� � � � � k � ��

For a transaction Tr� the optimistic shadow T o
r exe�

cutes with the optimistic assumption that it will com�
mit before all the other uncommitted transactions in the
system with which it con
icts� T o

r records any con
icts
found during its execution� and proceeds uninterrupted
until one of these con
icts materializes �due to the com�
mitment of a competing transaction�� in which case T o

r

is aborted � or else until its validation phase is reached�
in which case T o

r is committed�

Each speculative shadow T s
r executes with the as�

sumption that it will �nish before any con
icts with
other uncommitted transactions materialize� except for
one con
ict which is speculated to materialize before the
commitment of Tr � Thus� T s

r remains blocked on a
shared object �say X�� on which this con
ict has de�
veloped� waiting to read the value that the con
icting
transaction� Tu will assign to X when it commits� If
this speculated assumption becomes true� �i�e� Tu com�
mits before Tr enters its validation phase�� T s

r will be un�
blocked and promoted to become Tr �s optimistic shadow�
replacing the old optimistic shadow which will have to
be aborted� since it followed a wrong SOS�

The value of k �the upper limit on the number of
shadows allowed per transaction� does not have to be the
same for all transactions� Foe a particular transaction� k
re
ects the amount of speculation that this transaction
is allowed to perform �and thus the amount of resources
it is allowed to consume�� Thus� k is set to a value that
re
ects the transaction�s urgency �how tight is the dead�
line� and criticalness� The value of k may change within
the course of a transaction execution to re
ect changes
in the relative importance of that transaction compared
to all other transactions in the system� For simplicity of
presentation� and without loss of generality� we assume
that k is constant and identical for all transactions�

Let T � T�� T�� T�� � � � � Tm be the set of uncommit�
ted transactions in the system� Let T O� and T S be
the sets of optimistic� and speculative shadows exe�
cuting on behalf of the transactions in the set T � re�
spectively� We use the notation T Sr to denote the set
of speculative shadows executing on behalf of transac�
tion Tr � and SpecNumber �Tr� to denote the number of
these shadows� With each shadow T i

r of a transaction
Tr � whether optimistic� or speculative � we maintain
two sets� ReadSet�T i

r � and WriteSet�T i
r �� ReadSet�T i

r �
records pairs �X� tx�� where X is an object read by T i

r �

and tx represents the order in which this operation was
performed� We use the notation� �X� � � ReadSet �T i

r �
to mean that shadow T i

r read object X� WriteSet�T i
r �

contains a list of all objects X written by shadow T i
r �

For each speculative shadow T i
r � we maintain a set

WaitFor�T i
r �� which contains pairs of the form �Tu� X��

where Tu is an uncommitted transaction and X is an
object of the shared database� �Tu� X� � WaitFor�T i

r �
implies that T i

r must wait for Tu before being allowed
to read object X� We use �Tu� � � WaitFor�T i

r � to
denote the existence of at least one tuple �Tu� X� in
WaitFor�T i

r �� for some object X� The SCC�kS algorithm
is described by the following set of �ve rules�

Start Rule� When a transaction Tr is started� an op�
timistic shadow T o

r is created and the SpecNumber �Tr��
ReadSet�T o

r �� and WriteSet�T o
r � are initialized�

Read Rule� When a read�after�write con
ict is de�
tected� if the maximum number of speculative shadows
for the transaction� Tr � is not exhausted� a new spec�
ulative shadow T s

r is started �by forking it o� T o
r � to

account for this new con
ict� Otherwise� this con
ict is
ignored� The Commit Rule below insures that corrective
measures are taken� should this con
ict materialize�

Write Rule� When a write�after�read con
ict is de�
tected� speculative shadows cannot be forked o�� as be�
fore� from the reader transaction�s optimistic shadow�
This is because the con
ict is detected on another trans�
action�s write operation� Therefore� since its optimistic
shadow already read that database object� we must ei�
ther create a new copy of the reader transaction or choose
another point during its execution from which we can
fork� Figure � illustrates this point� When the new con�

ict �T�� X� is detected� the speculative shadow T �

� is
forked o� T �

� to accommodate it� Notice that if a copy
of T� was instead created� all the operations before Ry

�reading the database object Y � would have had to be
repeated� T �

� is not an appropriate shadow to fork o�
because� like the optimistic shadow� it already read X�

S RzRy Rx

Time

S Wx
o

T2

T1
o

2T1

T
1

1 Blocked

3T1 Ry Blocked

Blocked

Figure �� T �
� is forked o� T �

� �

When a new con
ict implicates transactions that al�
ready con
ict with each other� some adjustments may
be necessary� In �gure �� the speculative shadow T j

� of
transaction T�� accounting for the con
ict �T�� Z�� must
be aborted as soon as the new con
ict� �T�� X�� involv�
ing the same two transactions is detected� Since T� read

object X before object Z� �T�� X� is the �rst con
ict be�
tween those two transactions� Therefore� the speculative
shadow accounting for the possibility that transaction T�
will commit before transaction T� must block before the
read operation on X is performed� Speculative shadow
T k
� is forked o� T �

� for that purpose�

S RzRy RxT1
o

Blocked

Time

o
T2 S WxWz

jT1 Blocked A

kT1 BlockedRy

T1
i

Figure �� Example of multiply con
icting transactions�

The limit of at most k � � speculative shadows per
transaction does not preclude a transaction Tr from de�
veloping more than k � � con
icts at any point dur�
ing its lifetime� Rather� this limit is on the number
of con
icts that SCC�kS will be ready to deal with in
a timely manner� Choosing Which con
icts should be
accounted for by speculative shadows is an interesting
problem� In �BB��	 we have adopted a Latest�Blocked�
First�Out �LBFO� shadow replacement policy that re�
quires the speculative shadows of SCC�kS to account for
the �rst l � k � � con
icts �whether read�after�write or
write�after�read� encountered by a transaction� LBFO is
one of several policies that could be adopted� In �Bra��	
some alternative policies that account for the most prob�
able serialization orders based on deadline and priority
information are described and evaluated�

Blocking Rule� This rule is used to control when a
speculative shadow T i

r must be blocked� This rule as�
sures that T i

r is blocked the �rst time it wishes to read
an object X in con
ict with any transaction that T i

r must
wait for according to its SOS�

Commit Rule� This rule is used when it is decided to
commit an optimistic shadow T o

r on behalf of a trans�
action Tr � First� all shadows in T

S
r are aborted� Next�

each transaction Tu that con
icts with Tr is considered�
Two cases exists� either there is a speculative shadow�
T i
u� waiting for Tr�s commitment� or not� The �rst case
is illustrated in �gure
� where T �

��having anticipated
the correct SOS�is promoted to become the new opti�
mistic shadow of T�� replacing the old optimistic shadow
which had to be aborted� Speculative shadow T �

��which
like the optimistic shadow made an incorrect SOS�is
aborted as well� The second case is illustrated in �gure
�� where the commitment of T o

� on behalf of transaction
T� was not accounted for by any speculative shadow of

T��� In this case� the shadow with the latest possible
blocking point �before the �T�� Z� con
ict� is chosen to
become the new optimistic shadow of transaction T��
This is the best we can do in the absence of a specula�
tive shadow accounting for the �T�� Z� con
ict�

S RzRy Rx

T1
o

T
1

1 Blocked

Time

o
T2 S V/CWx

3T1 Blocked A

2T1 Blocked

Rx

P

A

Figure
� Applying the Commit Rule �case ���

S Rx Ry
T1
o

Rz

T
1

1 Blocked

2T1 Blocked

Time

o
T2 S V/CWz

Ry Rz

A

Figure �� Applying the Commit Rule �case ���

��� Two�Shadow SCC �SCC��S�

SCC��S allows a maximum of two shadows per uncom�
mitted transaction to exist at any point in time� an opti�
mistic shadow and a pessimistic shadow� The optimistic
shadow runs under the assumption that it will be the
�rst �among all other con
icting transactions� to com�
mit� thus executing without incurring any blocking de�
lays� The pessimistic shadow� on the contrary� is subject
to blocking and restarts� It is kept ready to replace the
optimistic shadow� should such a replacement be neces�
sary� The pessimistic shadow runs under the assumption
that it will be the last �among all other con
icting trans�
actions� to commit�
SCC��S resembles OCC�BC in that optimistic shad�

ows of transactions continue to execute either until they
validate and commit or until they are aborted �by a val�
idating transaction�� The di�erence� however� is that
SCC��S keeps a backup shadow for each executing trans�
action to be used if that transaction must abort� The
pessimistic shadow is basically a replica of the opti�
mistic shadow� except that it is blocked at the earliest
point where a Read�Write con
ict is detected between
the transaction it represents and any other uncommit�
ted transaction in the system�

�Figure � makes the implicit assumption that transaction T� is

limited to having at most two speculative shadows at any point

during its execution�

� Value Cognizant SCC

SCC�kS incorporates deadline and criticalness informa�
tion into SCC by relating the relative worth of transac�
tions to the amount of speculation �and thus resources�
they are allotted� Nevertheless� SCC�kS is not value�
cognizant because it does not make use of deadline and
priority information in resolving data con
icts� or in
making other scheduling decisions�
Previous concurrency control studies considered RT�

DBSs where all transactions are of equal worth� The ma�
jor performance objectives were to minimize the number
of missed �rm deadlines or to minimize tardiness�the
time by which late transactions miss their soft deadlines�
Under this approach all system transactions are assigned
the same value� However� there exist real�time applica�
tions where di�erent transactions may be assigned di�er�
ent values �SZ��� HSTR��	 to re
ect their relative worth
to the system upon successful completion� For such sys�
tems the attention shifts to maximizing the value�added
to the system by the transactions� commitment� mini�
mizing tardiness or the number of missed deadlines be�
comes of secondary importance� Notice that a transac�
tion�s value and its deadline are two orthogonal proper�
ties �BSR��� HSTR��	� The fact that a transaction has
a tight deadline does not in any way imply that it has a
high value� nor does the fact that it has a loose deadline
imply that it has a low value� Transactions with simi�
lar values may have di�erent deadlines� while those with
similar deadlines may have di�erent values�

��� Transaction Value

The relationship between a transaction�s value and the
value�added to the system can be captured by the no�
tion of value functions introduced by Jensen� Locke� and
Tokuda �JLT��� Loc�
	� Each transaction Tu is associ�
ated with a value function Vu�t�� which represents the
value of Tu as a function of its completion �commit�
time� A real�time application cashes on the full value
of a transaction if it is committed on time� Otherwise�
a penalty is assessed� We de�ne the penalty gradient� to
be the rate at which a transaction loses its value when
it commits past its deadline�

De�nition � The penalty gradient of a transaction Tu
with a value function of Vu�t� and a deadline Du is�

d

dt
Vu�t�� for t � Du�

The penalty gradient is an important factor in RT�
DBS performance studies because it indicates how soft

deadlines are relative to each other� In this paper� we
consider the case where the penalty gradients of trans�
actions follow the formula� Penalty Gradient of Tu �
tan�u� for t � Du� The penalty gradient of Tu may
vary from in�nity for a very critical transaction ��u �

����� to zero for a non�critical transaction ��u � ���
Figure � depicts a typical value function� Transaction
Tu has an arrival time of Au and a soft deadline of Du�
If Tu completes its execution before its set deadline Du

its value�added to the system is vu� On the other hand�
if Tu misses its deadline the value�added to the system
diminishes according to its penalty gradient tan�u�

Time

vu

D
uAu

V (t)
u

α
u

Figure �� A typical value function for a transaction Tu

De�nition � The value function Vu�t� of transaction
Tu with arrival time Au and soft deadline Du is�

Vu�t� �

�
vu if Au � t � Du

vu � ��t�Du� tan�u	 if t � Du

where vu is the value�added to system if Tu completes its

execution before its set deadline Du� and tan�u is its

penalty gradient�

��� SCC with Deferred Commit �SCC�DC�

Committing a transaction as soon as it validates may
result in a value loss to the system� In �gure �� commit�
ting T� as soon as it is validated causes T� to miss its
deadline and a value penalty to be assessed to the sys�
tem� In �HCL��b	� Haritsa showed that by delaying the
commitment of a lower priority transaction� the num�
ber of transactions meeting their deadlines is increased�
SCC�based protocols can bene�t from the introduction
of such delays by giving optimistic shadows more time
to execute and commit instead of being aborted in favor
of other validating transactions of lesser worth� Figure
�� shows the increased value�added to the system that
results from delaying the commitment of T�� thus allow�
ing T o

� to commit before its deadline and contribute a
higher value to the system�
Our approach for introducing delays is similar to those

proposed in �AAJ��� HCL��a� SPL��	� Whenever a
shadow T o

u �nishes its execution� we evaluate if it is
advantageous to defer T o

u �s commitment� Finding the
best point in time to commit a �nished shadow T o

u is
a very hard optimization problem� since it requires the
consideration of all possible serialization orders of ac�
tive transactions� To avoid the exponential nature of
this problem� we propose a protocol� SCC with Deferred
Commit �SCC�DC�� which estimates the value�added to
the system at discrete points in time �e�g� periodically��
SCC�DC compares the estimated value�added to the sys�
tem if the �nished shadow T o

u is committed at time t� to

Time

T2
S Rx

Time

T1
S Wx

A

T2

V/C

Rx V/CBlocked

0

0

1

Value

D
1

A
1

D
2

A
2

t
1

t
2

v
1

v
2

α
1

α
2

o

o

Figure �� Value�added to the system without deferment

Time

T2
S Rx

Time

T1
S Wx

AT2

V/C

Blocked

0

0

1

Value

D
1

A
1

D
2

A
2

t
1

t
2

v
1

v
2

α
1

α
2

Delayed C

o

o

F

Figure ��� Value�added to the system with deferment�

the estimated value�added to the system if T o
u is com�

mitted at time t � �� where � is some constant delay�
Because of its discrete nature� this algorithm does not
always provide us with the best point in time to com�
mit a shadow� This optimal point in time may well lie
anywhere inside those time intervals�

Basic De�nitions and Assumptions

Each transaction in the system Tu has an arrival timeAu

and a deadline Du� We classify transactions according
to their run�time characteristics� We denote with Cu

the class of transaction Tu� We assume that for each
such class the pro�le of the execution time�how long
it takes to �nish a transaction of that class�is known�
Such a pro�le ��gure ��� can be obtained from collected
statistics of the previous history of the system�

De�nition � The �nish probability density function
Fu�x� denotes the probability that the execution time for

a transaction in class Cu will not exceed x� We use ECu

to denote the expected execution time for class Cu�

time
x

Fu(x)

y

1

Figure ��� Typical �nish probability density for Cu

��� Transaction Committment Protocol

We assume that a special clock exists to signal the points
in time� when transactions may be committed� At each
tick� we decide for each transaction shadow T o

u that �n�
ished its execution whether to proceed and commit T o

u �
or defer its commitment for an additional clock tick �� If
the clock ticks at time t and T o

u is a transaction shadow
which has �nished its execution� then�

� If T o
u does not con
ict with any other uncommitted

transaction� then we commit it on behalf of Tu�

� Otherwise� if Tu con
icts with uncommitted trans�
actions T�� � � � � Tm� then we compute the expected
value�added� Vnow� should we commit T o

u at the
current clock tick t� and the expected value�added�
Vlater� should we defer T o

u �s commitment to a later
clock tick t� k�� for k � N �� If Vnow � Vlater then
we commit T o

u � otherwise we defer it�

Since more than one shadow may exist on behalf of
an uncommitted transaction� the computation of the ex�
pected value�added to the system by that transaction
depends on which shadow is committing and at what
time� We de�ne two measures� the shadow �nish proba�

bility and the shadow adoption probability� which we use
to assist in these computations�

De�nition 	 The shadow �nish probability function

F i
u�x� of shadow T i

u denotes the probability of T i
u �n�

ishing its execution by time x�

F i
u�x� � Prob�T

i
u will �nish by time x	�

Assuming that shadow T i
u has already executed for �

time units� then using the probability density function
Fu�x�� the �nish probability can be computed at time
tnow by applying Baye�s Theorem as follows�

F i
u�x� �

Prob�T i
u will �nish before x and after � 	

Prob�T i
u will �nish after � 	

�
Fu�x� � Fu�� �

�� Fu�� �
� for x � ��

In our model we favor transactions that have a high
value�added to the system by using the transaction value
functions in resolving data con
icts and making other
scheduling decisions� This implies that a transaction
shadow created to account for a con
ict with a higher

valued transaction is more likely to be adopted in the
future than a shadow which is created to account for a
con
ict with a lesser valued transaction�

De�nition
 The shadow adoption probability function

P i
u�t� of shadow T i

u of transaction Tu denotes� at time

t� the probability that shadow T i
u will be adopted in the

future�i�e� the probability that the con�ict that called

for the creation of T i
u will materialize�

The shadow adoption probability functions capture the
relative importance of the shadows of a transaction as a
function of time� At time t� for a transaction Tu� they
are computed as follows�

a� If Tu has no speculative shadows then P o
u�t� � ��

b� If Tu con
icts with Tr� � Tr� � � � � � Trm then�

P o
u�t� �

Vu�t�

Vu�t� �
Pm

j�� Vri �t�P
o
ri
�t�

P i
u�t� �

Vi�t�P o
i �t�

Vu�t� �
Pm

j�� Vri �t�P
o
ri
�t�

� r� � i � rm

where T i
u is the shadow of Tu that accounts for the con�

ict between Tu and Ti�

Description of the SCC�DC Algorithm

We add to the SCC�kS protocol an additional rule which
controls the commitment of transactions� The Termina�
tion Rule is invoked periodically by the system with a
period of � time units�
Let the Termination Rule be invoked at time t� For

each transaction shadow T o
u that has �nished its execu�

tion there are two cases to be examined� If Tu does not
con
ict with any other uncommitted transaction� then
T o
u is committed on behalf of transaction Tu� Otherwise�
if Tu con
icts with transactions T�� T�� � � � � Tm� then
Vnow �the expected value�added to the system should Tu
be committed at time t� is compared to Vlater �the ex�
pected value�added to the system should Tu be commit�
ted at a later time t� k�� for k � N ��� If Vnow � Vlater
then T o

u is committed on behalf of Tu� otherwise its com�
mitment is deferred� We use two functions to compute
Vnow and Vlater� the Expected Finish probability and the
Expected Value�added�

De�nition � The Expected Finish probability function�

EFu�x�� of transaction Tu at time t� is de�ned as the

probability that some shadow of Tu will be able to �n�

ish its execution by time x� EFu�x� is computed as the

summation below over all j shadows of Tu�

EFu�x� �
X
j

F j
u�x�P

j
u�t�

De�nition � We denote by EVu�x� the Expected Value�
added to the system if transaction Tu commits at time x�

EVu�x� � Vu�x�EFu�x�

Vnow is the expected value�added from the commit�
ment of shadow T o

u at time t plus the expected value
added from the commitment of T�� T�� � � � � and Tm at
a later time t � k�� for k � � to in�nity� Vlater is the
expected value added from the commitment of Tu� T��
T�� � � � � and Tm at some later time t � k�� for k � � to
in�nity�

Vnow � Vu�t� �
mX
i��

�X
k��

EV i�t � k��

Vlater �
�X
k��

EV u�t � k�� �
mX
i��

�X
k��

EV i�t� k��

The in�nite summations above can be bounded by
observing that for each transaction Ti there exist a time
t� k�� for some k � li� where the expected �nish prob�
ability of Ti� EF i�li�� � � � �� where � is an arbitrarily
small number� We� therefore� bound these summations
with appropriate k � li values� introducing arbitrarily
small errors� We are now ready to augment SCC�kS with
a Termination Rule to be invoked periodically� every �
units of time�

Termination Rule� For each shadow T o
u that �nished

executing�
� If Tu con
icts with no other uncommitted transac�
tions� then invoke the Commit Rule to commit T o

u �
� If Tu con
icts with T�� T�� � � � � Tm� then�

Vnow � Vu�t� �
mX
i��

liX
k��

EV i�t� k��

Vlater �

luX
k��

EV u�t� k�� �
mX
i��

liX
k��

EV i�t� k��

� If Vnow � Vlater then invoke the Commit Rule for Tu�

Two modi�cations to the rules of the SCC�kS algo�
rithm are necessary� The �rst a�ects the Commit Rule�
Under SCC�DC� transactions do not commit as soon as
they �nish execution� Rather� they wait �at least� until
the next periodical invocation of the Termination Rule�
Thus� the Commit Rule is invoked only when the Ter�
mination Rule decides to commit a shadow� The second
modi�cation a�ects the Read and Write Rules� Under
SCC�DC� an optimistic shadow� T o

r � can �nish execut�
ing� yet its commitment may be deferred� While T o

r is
awaiting commitment� a con
ict may develop with an�
other shadow T o

u � If T
o
u � also� �nishes its execution� then

it is possible under SCC�DC �depending on their rela�
tive worth�� that T o

u be committed� thus resulting in the
abortion of the �nished T o

r shadow� To accomodate for
this possibility� the Read Rule �write Rule� is extended�
so as to be invoked when an optimistic shadow T o

r wishes
to read �write� an object X� which is written �read� by
another shadow T o

u � whether T
o
u is currently executing or

has already �nished its execution and is awaiting com�
mitment�

��	 SCC with Voted Waiting �SCC�VW�

SCC�DC requires a substantial computing overhead to
determine whether or not to defer a transaction�s com�
mitment� SCC with Voted Waiting �SCC�VW� is an
approximation heuristic that reduces that overhead of
SCC�DC signi�cantly� The main idea of the VW mech�
anism is to allow uncommitted transactions to vote for
or against the commitment of a �nished transaction �say
T o
u� based on the expected value�added to the system as
a result of such a commitment� The votes are weighed
based on the relative values of the participating transac�
tions� The resulting measure is called the commit indi�
cator� CIu� for T o

u � If CI u � � �in this paper � � ����
then T o

u is committed� otherwise it waits�
Two measures are used in the computation of the

commit indicator for a �nished transaction shadow� the
commit vote� cvui � of a transaction Ti regarding the com�
mitment of a �nished con
icting transaction shadow T o

u �
and the relative weight function� wi�t�� of Ti at time t�

De�nition
 We de�ne the commit vote� cviu� of an ex�

ecuting transaction Ti with respect to a �nished con�ict�

ing transaction shadow T o
u to be�

cviu �

�
� if Ti votes to commit T o

u

� if Ti votes not to commit T o
u

De�nition � The weight function� wi�t�� of a transac�

tion Ti � T
u� is a function of time given by the formula�

wi�t� �
Vi�t�P

Tk�T u
Vk�t�

�

where T u is the set of transactions that con�ict with T o
u �

and Vk�t� is the value function of Tk�

De�nition �� The commit indicator� CIu� for a

shadow T o
u at time t� is the weighed summation of the

commit votes of all con�icting transactions Ti � T
u�

CIu�t� �
X

Ti�T u

wi�t�� cv
i
u�

Description of the SCC�VW Algorithm

Let Tu
i be the shadow of Ti that accounts for the con
ict

with Tu and ECi be the average execution time of a
transaction from class Ci� Assuming that T

u
i has already

executed for �ui time units� the expected value�added to
the system if Ti votes to commit T

o
u at the current time

t is given by the addition of the expected value�added
from the commitment of T o

u at time t plus the expected
value�added from the commitment of the Tu

i shadow of
Ti at time t� �ECi � �ui ��

Vnow � Vu�t� � Vi�t �ECi � �ui �

For the computation of the expected value�added to
the system if Tu�s commitment is to be delayed� we dis�
tinguish between two cases�

The �rst case occurs if Tu has no read�after�write
con
ict with Ti� In this case� the �nished �optimistic�
shadow of Tu can be committed as soon as the opti�
mistic shadow of Ti completes its execution� This event
is estimated to happen at time t � ECi � � oi � Assum�
ing that� at time t� T o

i has already executed for �
o
i time

units� we get�

Vlater � Vi�t �ECi � � oi � � Vu�t� ECi � � oi ��

The second case occurs if there exists a speculative
shadow T i

u of Tu accounting for a read�after�write con�

ict with Ti� In this case� the commitment of T

o
i at

time t � ECi � � oi will result in the abortion of T
o
u and

its replacement by T i
u� Assuming that T

i
u has already

executed for � iu time units� we get�

Vlater � Vi�t�ECi � � oi � � Vu�t�ECi � � oi �ECu � � iu�

TerminationRule� When an optimistic shadow T o
u �n�

ishes its execution� evaluate whether it is advantageous�
to delay T o

u �s commitment�

� If Tu con
icts with no other uncommitted transac�
tions� then invoke the Commit Rule to commit T o

u �

� If T o
u con
icts with the set T

u� then�
�� For every transaction Ti � T u

a� Compute Vnow and Vlater� and
b� Determine the commit vote� cv iu� of Ti�

cv iu �

�
� if Vnow � Vlater
� otherwise

�� Compute the commit indicator for T o
u �

CIu�t� �
X

Ti�T u

wi�t� � cv iu

�� If CIu�t� � �� then delay T o
u �s commitment�

otherwise invoke the Commit Rule on T o
u �

� Performance Evaluation

In this section� we present a comparative evaluation of
the following protocols� �PL with Priority Abort ��PL�
PA� �AGM��	 as a representative of PCC�based proto�
cols� OCC�BC �HCL��b	 and WAIT��� �HCL��a	 as rep�
resentatives of OCC�based protocols� and SCC��S and
SCC�VW as representatives of SCC�based protocols�
The RTDBS model that we used in our experiments

consists of a multiprocessor DBMS operating on disk res�
ident data� We assume an environment with abundant
resources�� We consider that the time spent on per�
forming concurrency control tasks is negligible and that
dedicated processors are assigned for these tasks� The
system model consists of �ve main modules as depicted

�This assumption allows us to phase out resource contention

and measure the most concurrency achievable by each algorithm�

in Figure ��� Transactions which are ready to execute
are maintained in a Transaction Pool� The Transac�

tion Manager �TM� is responsible for making resource
and concurrency control requests �e�g� read page� write
page� request cpu� � � � etc�� on behalf of active transac�
tions� The Resource Manager �RM� allocates and deallo�
cates system resources �e�g� CPU� disk� database pages�
to requesting transactions� The Concurrency Control

Manager �CCM� processes read and write requests from
the TM� Once a transaction has either committed or
aborted� it is removed from the system and sent at a
Transaction Sink�

Re
qu
es
t

Gr
an
t

Re
le
as
e

Enter

Respond

Respond

Leave

Consult

Consult

Trans
Pool TM

CCMRM

Trans
Sink

Figure ��� The Logical System Model

The primary performance measures that we employ
are the percentage of transactions that miss their dead�
lines� Missed Ratio� and the average time by which late
transactions miss their deadlines� Average Tardiness� A
transaction that commits at or before its deadline has
a tardiness of zero� A transaction that completes after
its deadline has a tardiness of T �Deadline� where T is
the transaction�s completion time� The simulations also
generated a host of other statistical information� includ�
ing number of transaction restarts� average wasted com�
putation� � � �etc� These secondary measures were quite
helpful in explaining the behavior of the algorithms un�
der investigation�

	�� Simulation Results

We consider a �� ����page database from which each
transaction accesses �
 randomly selected pages� The
probability of a page being updated is set at �� � The
slack factor for the computation of transaction dead�
lines is set up at �� and the EDF policy to assign trans�
action priorities �for �PL�PA and Wait���� is adopted�
These parameter settings are comparable to those used
in similar studies �HCL��	� Our experiments assumed
that transaction deadlines are soft� This entails that
late transactions �those missing their deadlines� must
complete�nevertheless�with the minimumpossible de�
lay� Each simulation runs until at least ����� transac�
tions are committed� Enough runs were performed to
guarantee a �� con�dence interval� Unless otherwise
stated� our �gures depict the average over all experi�
ments� Simulations were performed under a wide range

of workloads to enable us to characterize the behavior of
the protocols under the various conditions that may arise
in a real�world RTDBS� For a comprehensive analysis of
these simulations� we refer the reader to �Bra��	�
Figures �� and �� depict the average number of trans�

actions that missed their deadlines� and the extra time
needed by late transactions to complete their operations�
respectively� All protocols perform well when the num�
ber of transactions in the system is small� However� as
the arrival rate of transactions in the system increases�
their performance degrades at di�erent rates� SCC��S
provides the most stable performance among the stud�
ied protocols� Its Missed Ratio is the lowest under all
system loads� On the other hand� although Wait��� per�
forms well at low loads� its performance degrades fast�
becoming even worse than OCC�BC at the higher system
loads� It is remarkable that while at an arrival rate of ��
transactions per second� SCC��S� Wait���� and OCC�BC
miss � � ��� � and ��� of their deadlines� respectively�
at ��� transactions per second their respective Missed

Ratios become �� � �� � and �� � �PL�PA showed con�
sistently the worst performance among the tested proto�
cols� Its performance degrades at much lower system
loads and with a much higher slope� This is to be ex�
pected because the environment at which we performed
our simulations �high data contention� tight deadlines�
was particularly unfriendly to locking�based protocols�

� � SCC-2S
� � OCC-BC
� � Wait-50
� � 2PL-PA

|
0

|
50

|
100

|
150

|
200

|0

|20

|40

|60

|80

|100 Missed Ratio

 Arrival Rate

� � �
�

�

�

�

�

� �
�

�

�

�

�

�

� �
�

�

�

�
�

�

� �

�

� � � � �

Figure ��� Missed Ratio under baseline Model

The superiority of SCC��S becomes evident by ob�
serving that not only do transactions running under the
SCC��S algorithm make more of their deadlines� but
also the amount of time by which late transactions miss
their deadlines is considerably smaller� It is worthwhile
to point out here that� although SCC��S outperforms

� � SCC-2S
� � OCC-BC
� � Wait-50
� � 2PL-PA

|
0

|
50

|
100

|
150

|
200

|0

|6

|12

|18

|24

|30

|36

|42

|48 Average Tardiness (in sec.)

 Arrival Rate

�
�

� � � �

�

�

�

�
� � �

�

�

�

�

� � �

�

�

�

�

� �

�

�

�

�

�

�

Figure ��� Average tardiness under baseline Model

OCC�BC with respect to Average Tardiness under all
system loads �as �gure �� suggests�� this is not the case
when we consider Wait���� On the contrary� Wait���
has a relatively better Average Tardiness performance
for the lower system loads� which it loses only when the
system load becomes considerably high �at arrival rates
above ��� transactions per second�� This result can be
attributed to the fact that SCC��S is not a deadline�
cognizant protocol� unlike Wait��� which utilizes this
information to make better decisions regarding �when
to commit transactions�� However� at high loads Wait�
���because of its higher Missed Ratio �relative to SCC�
�S��loses this advantage�

	�� SCC�VW and System Value

Our previous experiments considered a RTDBS which
was operating under the assumption that all transactions
in the system were equally important� The two major
performance objectives were to minimize the Missed Ra�

tio and minimize the Average Tardiness of the system�
In this section� we lift this assumption� allowing trans�
actions to have di�erent values� to re
ect their relative
worth to the system upon commitment� The major per�
formance objective for such a system is to maximize the
expected value�added to the system by the completed
transactions� Minimizing tardiness and the number of
missed deadlines becomes of secondary importance� We
call the new performance measure the System Value�
In the following experiments� we report on the per�

formance of SCC�VW �as an SCC�based protocol which
incorporates transaction values in its decision making��
Our results suggest only minor improvement over the
original SCC��S protocol� In particular� �gure �� depicts

the System Value for the protocols in question� where
all transactions are assigned the same value function��

The insigni�cance of the improvement can be explained
by noticing that� thanks to speculation� the penalty in�
curred by a transaction as result of another transaction�s
commit is smaller� This results in a smaller payo� if de�
layed commitment �like the one employed by SCC�VW�
is adopted� An interesting observation of our experi�
ments is that although SCC�VW improved the value�
added to the system� it misses more deadlines relative to
SCC��S as �gure �
 suggests� This is because� as we ex�
plained above� SCC�VW�s objective is to maximize the
expected System Value� and not necessarily the number
of satis�ed timing constraints� This observation is rein�
forced by viewing the Average Tardiness results shown
in �gure ��� There� SCC�VW provides a smallerAverage
Tardiness result compared with SCC��S� In other words�
although SCC�VW misses more deadlines than SCC��S�
it misses them by a smaller margin�

� � SCC-VW
� � SCC-2S
� � OCC-BC
� � Wait-50

|
0

|
50

|
100

|
150

|
200

|-100

|-75

|-50

|-25

|0

|25

|50

|75

|100

 System Value

 Arrival Rate

� � �
�

�

�

� � � �
�

�

�

� � �
�

�

�

� � � �

�

Figure ��� System Value under baseline model �� class�

We have performed more experiments to evaluate
the relative performance of the algorithms in a RTDBS
where transactions belong to di�erent classes� each with
di�erent value functions and di�erent execution pro�les�
Our results show that SCC�VW performs better under
such conditions� Figure �� shows a sample simulation for
a RTDBS with two classes of transactions� The �rst class
is characterized by long execution times� tight deadlines�
high value�added �when committed on time�� and large
penalty gradients� Alternately� the second class is char�
acterized by short execution times� lower value�added�

�The value added is constant if the deadline is met� otherwise

a penalty gradient of �� is assessed� All other parameters are set

to those of the baseline model�

� � SCC-VW
� � SCC-2S
� � OCC-BC
� � Wait-50

|
0

|
50

|
100

|
150

|
200

|0

|20

|40

|60

|80

|100 Missed Ratio

 Arrival Rate

� �
�

�

�

�

�

� � �
�

�

�

�

�

� �
�

�

�

�

�

�

� �
�

�

�

�
�

�

Figure �
� SCC�VW� Missed ratio under baseline model

� � SCC-VW
� � SCC-2S
� � OCC-BC
� � Wait-50

|
0

|
50

|
100

|
150

|
200

|0

|2
|4

|6

|8

|10

|12

|14

|16 Average Tardiness

 Arrival Rate

�

�

�
� �

�

�

�

�

� �
�

�

�

�

�

�

�
� �

�

�

�

�

�
� �

�

�

�

�

Figure ��� SCC�VW� Tardiness under baseline model

and smaller penalty gradients� The transaction mix was
such that only �� of the transactions in the system
were from the �rst class� This transaction mix� along
with the value functions chosen for the two classes were
set so as to make the average value function identical to
the value function when only one class was simulated �see
�gure ���� The results in �gure �� highlight the superi�
ority of SCC�VW� which can be attributed to its novel
incorporation of deadline and criticalness information in
concurrency control decisions�

� � SCC-VW
� � SCC-2S
� � OCC-BC
� � Wait-50

|
0

|
50

|
100

|
150

|
200

|-100

|-75

|-50

|-25

|0

|25

|50

|75

|100

 System Value

 Arrival Rate

� � � �

�

�

�

� � � �
�

�

�

� �
�

�

�

�

� � �

�

�

Figure ��� System Value for baseline model �� classes�

� Conclusion

SCC protocols introduce a new dimension �namely re�
dundancy� that can be used to improve the timeliness of
transaction processing in RTDBS� In particular� by al�
lowing a transaction to use extra resources� it can achieve
better speculation and hence improve its chances for a
timely commitment� In addition� SCC protocols o�er a
straightforwardmechanism for rationing available redun�
dancy amongst competing transactions based on trans�
action deadline and criticalness information� Thus� the
problem of incorporating transaction deadline and crit�
icalness information into concurrency control is reduced
to the problem of rationing the available redundant re�
sources amongst competing transactions� Those with
higher payo� are allotted more resources so as to achieve
better speculation� and hence better timeliness�

Acknowledgments

Benjamin Mandler and Sue Nagy developed the simu�
lation testbed for our experiments� This work has been
partially supported by NSF �grant � CCR��������� and
by GTE�

References

�AAJ��� D� Agrawal� A� El Abbadi� and R� Je�ers� Using
delayed commitment in locking protocols for real�
time databases� In Proceedings of the ���� ACM

SIGMOD International Conference on Manage�

ment of Data� San Diego� Ca� �����

�ACL	
� R� Agrawal� M� Carey� and M� Linvy� Concurency
control performance modeling� Alternatives and

implications� ACM Transaction on Database Sys�

tems� ���
�� December ��	
�

�AGM		� Robert Abbott and Hector Garcia�Molina�
Scheduling real�time transactions� A perfor�
mance evaluation� In Prooceedings of the ��th

International Conference on Very Large Data

Bases� Los Angeles� Ca� ��		�

�BB�
� Azer Bestavros and Spyridon Braoudakis� Time�
liness via speculation for real�time databases� In
Proceedings of RTSS���� The ��th IEEE Real�

Time System Symposium� San Juan� Puerto Rico�
December ���
�

�BCFF	
� C� Boksenbaum� M� Cart� J� Ferri�e� and J� Fran�
cois� Concurrent certi�cations by intervals
of timestamps in distributed database systems�
IEEE Transactions on Software Engineering�
pages
���
��� April ��	
�

�Bes��� Azer Bestavros� Speculative Concurrency Con�
trol� A position statement� Technical Report TR�
������� Computer Science Department� Boston
University� Boston� MA� July �����

�BMHD	�� A� P� Buchmann� D� C� McCarthy� M� Hsu� and
U� Dayal� Time�critical database scheduling� A
framework for integrating real�time scheduling
and concurrency controls� In Proceedings of the

�th International Conference on Data Engineer�

ing� Los Angeles� California� February ��	��

�Bra�
� Spyridon Braoudakis� Concurrency Control Pro�
tocols for Real�Time Databases� PhD thesis�
Computer Science Department� Boston Univer�
sity� Boston� MA ������ expected June ���
�

�BSR		� Sara Biyabani� John Stankovic� and Krithi Ra�
mamritham� The integration of deadline and crit�
icalness in hard real�time scheduling� In Prooceed�
ings of the �th Real�Time Systems Symposium�
December ��		�

�EGLT
�� K� P� Eswaran� J� N� Gray� R� A� Lorie� and I� L�
Traiger� The notions of consistency and predicate
locks in a database system� Communications of

the ACM� ���������
����� November ��
��

�GLPT
�� J� N� Gray� R� A� Lorie� G� R� Putzolu� and I� L�
Traiger� Granularity of locks and degrees of con�
sistensy in a shared data base� In G� M� Ni�
jssen� editor� Modeling in Data Base Management

Systems� pages �������� North�Holland� Amster�
dam� The Netherlands� ��
��

�HCL��a� Jayant R� Haritsa� Michael J� Carey� and Miron
Linvy� Dynamic real�time optimistic concurrency
control� In Prooceedings of the ��th Real�Time

Systems Symposium� December �����

�HCL��b� Jayant R� Haritsa� Michael J� Carey� and Miron
Linvy� On being optimistic about real�time con�
straints� In Prooceedings of the ���� ACM PODS

Symposium� April �����

�HCL��� Jayant R� Haritsa� Michael J� Carey� and Miron
Linvy� Data access scehduling in �rm real�time
database systems� The Journal of Real�Time Sys�
tems�
������
�� �����

�HSRT��� Jiandong Huang� John A� Stankovic� Krithi Ra�
mamritham� and Don Towslwy� Experimental
evaluation of real�time optimistic concurrency
control schemes� In Prooceedings of the �	th

International Conference on Very Large Data

Bases� Barcelona� Spain� September �����

�HSTR	�� J� Huang� J� A� Stankovic� D� Towsley� and K� Ra�
mamritham� Experimental evaluation of real�
time transaction processing� In Proceedings of the
��th Real�Time Systems Symposium� December
��	��

�JLT	�� E� Jensen� C� Locke� and H� Tokuda� A time�
driven scheduling model for real�time operating
systems� In Proceedings of the
th Real�Time Sys�
tems Symbosium� December ��	��

�Kor��� Henry Korth� Triggered real�time databases
with consistency constraints� In Proceedings of

the �
th International Conference on Very Large

Data Bases� Brisbane� Australia� �����

�KR	�� H� Kung and John Robinson� On optimistic
methods for concurrency control� ACM Trans�

actions on Database Systems� ����� June ��	��

�KS��� Woosaeng Kim and Jaideep Srivastava� Enhanc�
ing real�time dbms performance with multiver�
sion data and priority based disk scheduling� In
Prooceedings of the ��th Real�Time Systems Sym�

posium� December �����

�Loc	�� C� Locke� Best E�ort Decision Making for Real�

Time Scheduling� PhD thesis� Carnegie�Mellon
University� Department of Computer Science�
May ��	��

�LS��� Yi Lin and Sang Son� Concurrency control in
real�time databases by dynamic adjustment of se�
rialization order� In Proceedings of the ��th Real�

Time Systems Symposium� December �����

�MN	�� D� Menasce and T� Nakanishi� Optimistic ver�
sus pessimistic concurrency control mechanisms
in database management systems� Information

Systems�
���� ��	��

�Rob	�� John Robinson� Design of Concurrency Controls

for Transaction Processing Systems� PhD the�
sis� Carnegie Mellon University� Pittsburgh� PA�
��	��

�Sin		� Mukesh Singhal� Issues and approaches to de�
sign real�time database systems� ACM� SIGMOD

Record� �
���������� ��		�

�SPL��� S� Son� S� Park� and Y� Lin� An integrated real�
time locking protocol� In Prooceedings of the

IEEE International Conference on Data Engi�

neering� Tempe� AZ� February �����

�SRL		� Lui Sha� R� Rajkumar� and J� Lehoczky� Concur�
rency control for distributed real�time databases�
ACM� SIGMOD Record� �
����	���	� ��		�

�SRSC��� Lui Sha� R� Rajkumar� Sang Son� and Chun�
Hyon Chang� A real�time locking protocol� IEEE
Transactions on Computers�
��
��
���	��� �����

�SZ		� John Stankovic and Wei Zhao� On real�time
transactions� ACM� SIGMOD Record� �
����
�
�	� ��		�

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

