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Abstract. Routing protocols for ad-hoc networks assume that the nodes
forming the network are either under a single authority, or else that they
would be altruistically forwarding data for other nodes with no expec-
tation of a return. These assumptions are unrealistic since in ad-hoc
networks, nodes are likely to be autonomous and rational (selfish), and
thus unwilling to help unless they have an incentive to do so. Providing
such incentives is an important aspect that should be considered when
designing ad-hoc routing protocols. In this paper, we propose a dynamic,
decentralized routing protocol for ad-hoc networks that provides incen-
tives in the form of payments to intermediate nodes used to forward data
for others. In our Constrained Selfish Routing (CSR) protocol, game-
theoretic approaches are used to calculate payments (incentives) that
ensure both the truthfulness of participating nodes and the fairness of
the CSR protocol. We show through simulations that CSR is an energy
efficient protocol and that it provides lower communication overhead in
the best and average cases compared to existing approaches.

1 Introduction
Motivation: The design and implementation of practical routing protocols for
ad-hoc networks is still an open and challenging problem, whose solution is
critical for the widespread deployment of the many distributed applications en-
visioned for ad-hoc networks.

Most of the ad-hoc routing protocols proposed in the current literature pre-
sume that nodes are cooperative and are always willing to contribute their own
resources (e.g., power, bandwidth, storage) in support of routing processes. In
such settings, nodes are assumed to be truthful in the sense that intermediate
nodes do not alter the content of forwarded packets and do not mischaracterize
routing parameters so as to gain an advantage with respect to routing. However,
in real settings, nodes of an ad-hoc network are under the control of individuals,
who may not necessarily be cooperative. Indeed, such individuals are likely to be
rational, selfish, or even malicious. Malicious nodes are those bent on disrupting
the network functionality, whereas rational, selfish nodes are those that do not
aim to disrupt the network, but are simply interested in maximizing the utility
they beget from the network, even if doing so requires them to be untruthful.

Besides cooperative routing protocols, there have been several proposed rout-
ing protocols that provide incentives for nodes to help out in carrying the network
load. Such incentives can be in the form of payment for cooperation [1–5] or in
the form of punishment for non-cooperation [6, 7]. In this paper, we focus on
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payment-based models, where nodes are rewarded for their help. In these mod-
els as well as in ours, a node would be willing to inform other nodes of its private
(secret) costs for providing help in order to get paid, and a node would be willing
to lie about its (or others’) costs if this might lead to a higher payment.
Related Work: Routing protocols for ad-hoc networks vary greatly in design
and in the assumptions they make about the network. Several protocols assume
that the nodes in the network are selfless (altruistic) and are willing to help
other nodes when such help is needed [8–11].

The Ad-hoc On-demand Distance Vector (AODV) protocol [8] and the Dy-
namic Source Routing protocol [9] are both reactive protocols, wherein routes
are established on demand, thus reducing the communication overhead. In DSR,
all the route information is kept in the control packets. This means that con-
trol packets grow larger as the route grows longer. This is in contrast to AODV
where all route information is stored locally at the nodes and the control packet
sizes remain constant. Therefore, AODV is largely considered a faster and less
power-consuming protocol than DSR [10, 11].

As we alluded earlier, in realistic settings, nodes are expected to be selfish,
and thus would not help unless incentivised to do so. Example mechanisms that
punish non-cooperative nodes through the use of reputation-based protocols in-
clude the works described in [6, 7]. Example mechanisms that reward cooperative
nodes include the works described in [1–5]. In [2] the intermediate nodes are paid
with a virtual currency called NUGLETS. In [5], Sprite is proposed which pro-
vides incentive – in a game theoretic sense – for mobile nodes to cooperate and
report actions honestly.

In Ad-hoc VCG [1], the route discovery process is based on the DSR [9]
protocol where the source node floods a request packet to all of its neighbors
looking for a path to the destination. Each intermediate node appends to the
request packet its own costs to send data. This information is forwarded to its
neighbors and so on until the request reaches the destination node. The desti-
nation node collects all the requests flooded through the network and integrates
them to build a complete logical view of the network. Using this information, the
destination chooses the most cost-efficient path and uses a variation of the VCG
model (named after Vickrey [12], Clarke [13] and Groves [14]) to calculate the
payments to be given to each intermediate node in that path. Using the VCG
payment model, the destination node calculates for each intermediate node (i) in
the most cost efficient path (SP ) the cost of the second most-cost-efficient path
without that node (SP−i). As the intermediate node cooperates in delivering
data from the source to the destination, it receives a payment to cover its costs
plus a premium to ensure that the nodes would not lie about their secret costs.
This premium is the difference between the costs of SP and SP−i.
Paper Contributions and Organization: As mentioned above, the main
disadvantage of DSR when compared to AODV is the increased communication
overhead. In contrast, the Constrained Selfish Routing (CSR) protocol that we
propose in this paper uses the Ad-hoc On demand Distance Vector (AODV)
protocol [8] to decrease the communication overhead thus decreasing the power
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consumption at the nodes. In that respect, we design a mechanism that provides
the most cost efficient path between a pair nodes in the network. It is a power
efficient protocol that ensures the truthfulness of the nodes participating in it.
We describe the system model in section 2, followed by a detailed description
of the proposed Constrained Selfish Routing protocol in section 3. In section 4,
we analyze the protocol’s truthfulness properties and its overhead. In section 5,
we evaluate the protocol’s performance through simulations and provide results
that support in an empirical setting the analytical results presented in section 4.
Finally in section 6, we conclude the paper with a summary of our contributions.

2 System Model and Assumptions

We augment the model used by Anderegg and Eidenberz in [1] where the network
is represented as a graph G = (V,E, w) with the set of vertices V that represent
the mobile nodes in the network and the set of directed edges E which represents
the unidirectional links between the nodes in the network. The weight function
w : E− > R for each edge (i, j) represents the weight of the link between the
node i and the node j, which is the cost of transmitting a packet from i to j.

Each node has a unique identifier i and has an individual cost of energy
parameter ci. The cost of energy ci of a node i is its private type, i.e., only i
knows its true value, which is a measure of the level of inconvenience the node
faces when asked to forward a packet. One of the factors affecting this measure is
the level of difficulty the node faces in order to recharge its power. The payment
that a node receives for helping others is proportional to its cost of energy ci;
therefore, a node might lie about its true value of ci if such a lie would increase
its payment.

All nodes use omni-directional antennas for communication, i.e., when a node
sends a signal carrying a packet, all neighboring nodes in its transmission range
receive that packet. We assume that nodes can control their signal emission
power; as the node increases its emission power, its transmission range increases,
and as a result more neighboring nodes receive the packets sent and vice versa.
When a node i uses an emission power P emit

i to send a packet, the node j at
distance d from i receives the signal with power given by

P rec
i,j = K × P emit

i

dα
(1)

where K is a constant and α is the distance power gradient, another constant
that ranges between 2 and 6 depending on the network conditions. A node
successfully receives a signal if the power of the received signal is above a certain
acceptance threshold. While the acceptance threshold might differ from one node
to another in the network, for simplicity, we assume that all nodes in the network
agree on the same value for the acceptance threshold P rec

min. If the power of the
signal received exceeds P rec

min, then j successfully receives the packet carried by
the signal. However, the original emission power used by node i (P emit

i ) might
be overvalued and less emission power could have been used to successfully send
a packet to j. Node j can calculate the minimum emission power that the node i
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would need to use to send a packet successfully to j using the following formula,

Pmin
i,j =

P emit
i .P rec

min

P rec
i,j

(2)

Once calculated, this value is sent back to i and later, i uses this value as its
default emission power – if it needs to transmit a packet to j in the future.

The total weight of a link (i, j) is the product of the cost of energy ci and
the minimum emission power that i uses to send a packet to j.

w(i, j) = ci × Pmin
i,j (3)

As previously mentioned, in the proposed protocol nodes will be paid to for-
ward data for others. In [1], the authors propose two payment models; either
the source node is responsible for paying all intermediate nodes or some central
authority – a “bank” – holds accounts for all nodes in the network and is re-
sponsible for all transactions performed on them. Any node can communicate
with the bank if it is in its communication range. If the bank is inaccessible, a
node is allowed to store the transaction information locally. This information is
relayed to the bank as soon as the bank becomes accessible again in the future.
In Ad-Hoc VCG, the authors assume that the bank will deduct the payments
given to cooperating nodes from the accounts of all the nodes in the network. In
this paper, we assume that the destination node is responsible for calculating the
payments for each of the helping nodes and it sends the payment information
to the bank. The bank credits the accounts of all the intermediate nodes and
debits the accounts of the source and/or destination nodes.

3 Constrained Selfish Routing Protocol

The Constrained Selfish Routing protocol is an on-demand routing protocol for
ad-hoc networks. The VCG payment model is used to provide incentives for
nodes to help out other nodes in the network as used in [1].

3.1 Overview

CSR consists of three components: route discovery, data transmission and route
recovery. When a node S needs to sends data to D but D is not in the transmis-
sion range of S, route discovery begins. In route discovery, S floods the network
with a request to find a path to D and payments for the intermediate nodes are
calculated. The route discovery phase will be explained in more details later in
this section.

During data transmission, after the path from S to D is known, the data
is sent between them and intermediate nodes get paid for forwarding the data.
Whenever the destination node successfully receives a data packet, it keeps track
of how much it should pay each intermediate node and when possible it notifies
the bank of the payments.

Route recovery is activated when links between nodes are broken during data
transmission. If the next hop node is not available for any reason (such as node
failures, link failures, or node mobility), the node that detects the failure sends
an ERROR packet back to the source node. Upon receipt of such an error report,
the source node starts the route discovery all over again.
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3.2 Route Discovery

The route discovery in CSR is adapted from the AODV routing protocol, which
is an on demand ad-hoc routing protocol proposed by Perkins and Royer in [8].
AODV provides several advantages in ad-hoc networks such as low communica-
tion overhead and less power consumption. In CSR, the route discovery phase
is divided into two separate phases: the first phase is the actual discovery phase
when the most cost-efficient path between the source and destination is found.
The second phase is when the payment calculation occurs. Nodes do not have to
wait for the termination of this phase to start data transmission as it can start
on the completion of the first phase. The second phase can be performed offline
and at any time after the first phase is completed or during data transmission.

Phase 1: Finding a route. The first phase is similar to the route discovery
phase in AODV [8] where a source node S floods the network with its request
to a destination node D. Then S has to wait for D to send out a reply with the
most cost efficient path between them to start data transmission.
Packets Used: Two types of packets are used in this phase; the REQUEST
and the REPLY packets.

The REQUEST packet is the packet that floods the network. In addition to
the typical ID and addressing fields that constitute the Packet header, this packet
contains a Cost of Energy field and an Emission Power field which indicates the
cost of energy and emission power of the inner source when sending the current
instance of the packet and a Total Weight field which represents the total weight
of the path from the source node to the inner source node.

The REPLY packet is sent out by D and it contains information about the
most cost-efficient path between S and D. It is only forwarded by the nodes
in the best path between S and D. It contains the Packet Header, the original
Request ID and the List of Costs, a list that includes the ID, cost of energy and
the minimum power of each intermediate node along the chosen path.
Data Structures Used: During route discovery, each node maintains two data
structures to help out in the route discovery phase. The Best Route Cache is
used to store the best REQUEST packet received for a specific request between
a pair of nodes and the Neighbor Cache is used to keep track of which of the
nodes neighbors can provide a path to the source node.
Details of Phase 1: When a source node S wishes to find a path to a destination
D, it prepares the initial REQUEST packet with its cost of energy and emission
power and floods it to its neighbors.

When a node j receives a REQUEST packet from neighbor i it follows Al-
gorithm 1 to decide whether to drop the packet or forward it. The weight in
the packet is updated and forwarded if the packet carries a better weight than
the best weight stored in the Best Route Cache. When the destination node
receives the first REQUEST from the source node, it follows the same algorithm
but without forwarding the packet with the best weight, and keeps listening for
other route REQUEST packets in case a better REQUEST is received from the
same source node. If a better REQUEST is received, the corresponding entry in
the best route cache is updated. After a timeout period expires, the destination
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extracts the best REQUEST it received from neighbor i from the Best Route
Cache and sends out a REPLY packet with {c(i), Pmin(i, D)} to the source
node through i.

Algorithm 1 Actions performed by a node j upon receiving a REQUEST packet
from node i.
if REQUEST has no new information then

drop REQUEST
else

Add neighbor i to the Neighbor Cache
Calculate Pmin(i,j) = Pemit(i) * Prec(min) / Prec(i,j)
Calculate w = total weight of path from S to j through i
best = total weight of the best REQUEST stored in the Best Route Cache
if best is null then

Replace Pemit(i) with Pmin(i,j) in REQUEST
Add REQUEST to the Best Route Cache
Forward REQUEST packet with c(j) and Pemit(j)

else
if w < best then

Replace Pemit(i) with Pmin(i,j) in REQUEST
Replace entry in the Best Route Cache with the current REQUEST
Forward REQUEST packet with c(j) and Pemit(j)

end
end

end

Each intermediate node i receiving the REPLY packet from node j will
extract the corresponding best REQUEST packet from the the Best Route
Cache and extract the inner source node k from that packet. Then j will add
{c(k), Pmin(k, i)} to the list of costs in the original REPLY packet and forward
it to k.

Once the source node receives the REPLY packet, it can enter the data
transmission phase and does not have to wait for the second phase to end.

Phase 2: Payments Calculation. While route discovery allows the destina-
tion D to identify the best (most cost-effective) path, D is unable to calculate
the payments to the intermediate nodes along that path. As we indicated earlier,
in CSR these payments are based on a VCG model, requiring the calculation of
the second-best path when each node on the best path is excluded. This process
is carried out in Phase 2 of the CSR protocol. This phase is similar to the route
discovery performed in phase 1, except that it is done in the opposite direction
(from D to S) and the request packets have constraints to not include certain
nodes in the discovery.
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To start phase 2, S sends to D information about the intermediate nodes in
the best path between them. This is done by piggy-backing a CONFIRM packet
to the first DATA packet send to D.1

Packets Used: We introduce 3 types of packets in this phase, namely, the
CONFIRM, FIND and FOUND packets. The CONFIRM packet is piggy-backed
with the first DATA packet sent by the source node S. It is used to inform the
destination node D about the details of the intermediate nodes in the chosen
shortest path (SP ) between S and D. There is only one field in the CONFIRM
packet; the list of costs that were obtained from the REPLY packet in phase 1.
When sending a DATA packet, the source node S signs and appends this list to
the packet.

The FIND packet is used to discover whether a path between two nodes
without a certain intermediate node. Its fields are the Packet Header with mul-
tiple inner destinations, the Excluded Node, the original Request ID and the Hop
Count which is used to calculate the time out period the node will spend before
sending the FOUND packet.

The reply to the FIND packet is the FOUND packet which is used by nodes
in the second phase to notify the originator of the FIND packet that a path is
indeed found excluding a specific node and it also carries the total weight of that
found path. Its fields are the Packet Header with multiple inner destinations,
the Excluded Node, original Request ID, Total Weight of the path and the Cost
of Energy and Emission Power of the node sending the FOUND packet.
Data Structures Used: During phase 2, each node maintains similar data
structures as those kept in phase 1 but for the FIND and FOUND packets.

The first data structure is the Find Neighbor Cache which is used to track
which neighbors sent similar FIND packets to the node. It is used to keep track
of which neighbors have previously sent a FIND packet, to guarantee that only
one FIND and one FOUND packets are sent for each request. The second data
structure is the Best Found Cache which is used to store the best FOUND packet
received so far for each corresponding FIND packet.
Details of Phase: Once the destination node D receives the CONFIRM packet,
it extracts the list of intermediate nodes in the shortest path between the source
and the destination (SP ). For each intermediate node i, D will search for a best
path from S to D without that intermediate node (SP−i).

The destination extracts from its Neighbor Cache the set of neighbors N
that have paths to the source node and for each intermediate node i obtained
from the CONFIRM packet, D will send a FIND packet with Hop Count of 1
excluding i to be sent to all the nodes in the set N − i. Then D starts a timer
to indicate the end of phase 2.

When an intermediate node i receives a FIND packet from j, it drops the
packet if it had been received before. Otherwise, it forwards the packet with an
incremented Hop Count to all the nodes in the set of neighbors obtained from

1 As mentioned above, this phase can be performed offline and data transmission does
not depend on it.
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the Neighbor Cache except the excluded node. Then,node i starts a timer with
a value inversely proportional to the Hop Count in the FIND packet.

When the source node receives a FIND packet with itself in the Destination
field, it will send a FOUND packet to the Inner source of the FIND packet.

During the timeout period, when a node j (including the destination node D)
receives a FOUND packet from node i, it updates the total weight of the packet
and then decides to store the packet in the Best Found Cache if it’s the first
FOUND packet received for a corresponding FIND or it’s the FOUND packet
with the better total weight received so far.

When the timer at node i stops, i will extract the best FOUND packet
received from the Best Found Cache and extract the set of neighbors from the
Find Neighbor Cache. Then the node updates the fields in the FOUND packet
and sends it to all the neighbors in list extracted from the Find Neighbor Cache
and clears its caches.

When the D finishes its timeout period, it takes the information in the Best
Found Cache and calculates the payments that should be made to each interme-
diate node using the following formula:

M(i) = |SP−i| − |SP |+ ci ∗ Pmin
i,j (4)

The value |SP−i| is obtained from the FOUND packets in the Best Found
Cache and the values |SP |, ci and Pmin

i,j are obtained from the CONFIRM packet
received at the beginning of the phase.

4 Analysis

In CSR, since nodes only forward requests with better total weights, we guar-
antee that the most cost efficient route is always chosen in phase 1 in the route
discovery. As for the incentives provided to the nodes in the network, our VCG-
based payment model guarantees the truthfulness of all the nodes in the network.
Theorem 1. CSR guarantees the truthfulness of all the nodes in the network.
Proof. The payment of each node i is M(i) = |SP−i| − |SP | + ci ∗ Pmin

i,j which
is its utility. As mentioned before, node i may be untruthful (i.e., lie about its
type) in order to increase its utility. Let us consider the various possible ways
that an intermediate node may be untruthful.
1. The node may lie about the true value of ci or P emit

i in phases 1 or 2.
2. The node may lie about the computed value Pmin

i,j in phases 1 or 2.
3. The node may change any entry in any packet when forwarding it in phases

1 or 2.
We prove that in CSR, intermediate nodes will be truthful in all of the

previously mentioned cases. The complete proof can be found in [15].

A very important aspect of an ad-hoc routing protocol is its communication
overhead because it affects the performance of the network and the power con-
sumption at the nodes. We prove that CSR has a linear lower bound on the
number packets sent and that the (worst-case) upper bound on the number of
overhead packets is equal to that of the Ad-Hoc VCG protocol [1]. The detailed
proofs of the theorems below can be found in [15].
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Theorem 2. The lower bound on the overhead of CSR in terms of the number
of packets sent is O(n).

Theorem 3. An upper bound on the overhead of CSR in terms of the number
of packets sent is O(n4).

5 Simulation Results

An event-based simulator was designed to simulate ad-hoc networks and to test
the performance of various routing protocols. Using this simulator, the perfor-
mance of CSR is compared to Ad-Hoc VCG [1]. The simulations were run in a
closed environment in which any number of simulated nodes move freely.

The mobility model used in the simulator is adopted from the Random Walk
model [16]. Initially, each node picks a random direction (Θ) taken from a uni-
form distribution on the interval [0, 2Π]. The node moves in the chosen direction
for a fixed period (default is 4 seconds) and then pauses for another fixed period
of time (a control variable). Next, the node picks a new random direction (Θ′)
taken from a uniform distribution on the interval [Θ − 20, Θ + 20] and repeats
the same process. The reason for choosing the interval [Θ − 20, Θ + 20] when
deciding Θ′ is to simulate a realistic motion.

Applications on the simulated wireless nodes are designed to send data to
random destinations (picked uniformly at random) at random times, with inter-
messaging time picked from an exponential distribution with a mean of 10. Once
a destination is chosen, the route discovery of the simulated protocol starts.

Four sets of simulations were performed to measure the efficiency of CSR in
various conditions. In all simulations, the environment is 500m × 500m in size,
the nodes’ transmission range is 100m and the total simulation time is 100sec.
The measured performance parameters are the Communication overhead which
is represented in two forms: the total number of packets sent out during the route
discovery phase, the total number of bytes sent out during the route discovery
phase, and the Power consumption rate which measures the average rate of
power consumed by the nodes during the whole simulation.

In the first set of simulations, the number of nodes in the network is varied
from 8 to 12 devices, the pause time of each node is 6 sec and the total number of
requests made in each simulations is 5 requests. The performance evaluation of
the protocols is shown in Figure 1, Figure 2 . Each value in the graph represent
an average of 5 simulation runs with different seeds within a 90th-percentile
confidence interval.

The results show that as the network size grows larger, the communication
overhead in CSR exhibits a nearly linear growth while Ad-Hoc VCG shows a
super-linear growth. This is anticipated from the analytical results (see Theo-
rem 2): CSR has a nearly linear communication overhead in the average case.
Moreover, the results prove that CSR is more power efficient than Ad-Hoc VCG
because of the less communication overhead of CSR.

The results of the other sets of simulations could be found in [15].
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((a)) Packets overhead ((b)) Bytes overhead

Fig. 1: Communication overhead as the network size increases. CSR shows an
improved performance over Ad-Hoc VCG.

Fig. 2: Power consumption rate as the network size grows larger. CSR is more
power efficient that Ad-Hoc VCG.

6 Conclusion
The CSR protocol is an incentive-based routing protocol which provides in-
centives for selfish nodes in the network in a game theoretic setting. In this
paper, we have shown CSR to induce thruthful node behavior through the use
of a VCG-based model for calculation of payments to intermediate nodes. With
truthfulness guaranteed, CSR provides the most cost efficient path between any
pair of nodes in an ad-hoc network with a linear lower bound of O(n) on the
communication overhead, where n is the number of nodes in the network. The
lower communication overhead also guarantees lower power consumption.
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