
BASIS TOKEN CONSISTENCY
Extending and Evaluating a Novel Web Consistency Algorithm �

Adam D. Bradley and Azer Bestavros
Computer Science Department, Boston University

fartdodge,bestg@cs.bu.edu

June 10, 2002

Abstract

With web caching and cache-related services like CDNs and
edge services playing an increasingly significant role in the
modern internet, the problem of the weak consistency and co-
herence provisions in currently standardized web protocols is
drawing greater attention. Toward this end, we propose defini-
tions of consistency and coherence for web-like caching envi-
ronments, and then present a novel web protocol we call “Ba-
sis Token Consistency” (BTC). This protocol allows compli-
ant caches to guarantee strongly consistent views of content
retrieved from supporting servers. We discuss this protocol
and its extensions, and compare the performance of BTC with
the traditional TTL (Time To Live) algorithm under a range of
synthetic workloads.

1 Introduction

For many years it has been asserted that one of the keys to a
more efficient and performant web is effective reuse of content
stored near web clients. This has taken a number of forms: Ba-
sic caching, varieties of prefetching, and more recently, Con-
tent Distribution Networks (CDNs). What has become in-
creasingly clear as these mechanisms have been explored is
that the principle difficulty for effective content reuse is not
limited cache capacity [6, 25], but managing cache content in
a way that is consistent with the applications the web supports.
Particularly, one goal is providing clients with a recent view of
the state of the application (i.e., information that is not too old);
another is providing clients with a self-consistent view of the
application’s state as it changes (i.e., once the client has been
told something has happened, that client should never be told
anything to the contrary). While current web protocols [12]
address the first using expiry mechanisms, there is only very
limited support for the second.

In this paper we discuss BTC (Basis Token Consistency),
an extension to the HTTP protocol which employs concepts
from prior web cache consistency and coherence research
[7, 15, 26, 17] and from modern content management systems
[14, 9, 8]. When when implemented at the server, BTC al-
lows any supporting agent to maintain a view consistent [13]
cache without requiring any non-trivial cooperation from inter-
mediaries. We discuss the theoretical and practical strengths of
BTC, as well as several useful extensions to it. We then discuss
a set of models and simulations we constructed to examine the
performance and behavior of our algorithm under a wide range
of workloads, and compare it with the conventional TTL algo-
rithm. Our definitions of consistency and coherence, the basic

�This research was supported in part by NSF (awards ANI-9986397 and
ANI-0095988) and U.S. Department of Education (GAANN Fellowship).

overview of BTC’s syntax and algorithm, and portions of our
simulation results will also appear in [4].

1.1 Consistency and Coherence within a Web-
like Framework

The web does not behave like a distributed file system (DFS)
or distributed shared memory (DSM) system; among the dis-
tinctions are: (1) The lack of a “write” semantic in common
use - while the HTTP protocol does include a “PUT” event
which is in some ways comparable to a write, it is rarely used;
the most common write-like operation is “POST” which can
have completely arbitrary semantics and scope. This general-
ity implies, in the general case, an inability to “batch” user-
induced updates. (2) The complexity of addressing partic-
ular content - URIs or “web addresses” do not in fact ad-
dress units of content per se, but rather address generic objects
(“resources”) which produce content using completely opaque
processes. (3) The absence of any protocol-layer persistent
state or notion of “transactions” to identify related, batched,
or macro-operations. These issues are further illuminated by
Mogul in [20].

In a DSM of DFS world, the mapping from write events
to eventual changes in the “canonical” system state is clearly
defined; in the web, non-safe [12, x9.1.1] requests from users
can have arbitrary application-defined semantics with arbitrary
scopes of affect completely unknowable from the parameters
of a request, or even from the properties of a response. For
this reason, the definitions of consistency and coherence used
in the DFS/DSM literature do not fit the needs of systems like
the web; instead, we use definitions more akin to those in the
distributed database literature.

Consistency For our purposes, cache consistency refers to a
property of the responses produced by a single logical cache,
such that no response served from the cache will reflect an
older state of the server than that reflected by previously served
responses. Said another way, a consistent cache provides its
clients with non-decreasing views of the server’s application
state. This is also the definition of consistency used in [14, 8].

This definition is distinct from traditional definitions of web
consistency [7] in that it recognizes that web pages are not
atoms of information; rather, consistency is with respect to the
set of information sources used by the web server’s application
logic to construct the pages. These sources we call origin data.

Coherence In the web, a coherence mechanism is one which
propagates updates to entities through the caching network
such that all clients interested in entities effected by those
updates eventually see their results. Said another way, a co-
herence mechanism deals with the recency of cached content.

1

Note that a cache can be consistent without being recent, and
visa-versa. One model for coherence, immediate coherence (in
which a cache never serves a response older than that which
the origin server would provide itself at that point in time),
provides consistency as a side-effect when it can be guaran-
teed correct.

2 Basis Token Consistency
We have devised a web cache consistency protocol we call
“Basis Token Consistency” (BTC) [3]. When implementing
BTC, an origin server annotates all response with enough in-
formation to allow any cache interested in maintaining con-
sistency to detect if other responses it currently holds are ren-
dered obsolete by information included in that response, or to
identify responses it receives from other caches as having al-
ready been rendered obsolete.

CacheConsistent =
‘‘Cache-Consistent’’ ‘‘:’’
#cctokengeneration

cctokengeneration =
cctoken
‘‘;’’ ccgeneration

cctoken = cctokenid [cctokenscope]
cctokenscope = ‘‘@’’ host
cctokenid = token
ccgeneration = 1*HEX

Figure 1: The Cache-ConsistentHTTP Entity Header

To accomplish this, each response the server generates in-
cludes a Cache-Consistent header with a set of basis to-
kens (opaque identifier strings), each with a generation num-
ber (in hexadecimal); the augmented-BNF for this header is
presented in Figure 1. An example header produced by the
server www.cs.bu.edu could look something like this:

Cache-Consistent: studentdb;4e9,
db2row@bu.edu;7a,
form01@cs.bu.edu;2

Each basis token represents some dynamic source of in-
formation in the underlying application; each such source is
called an origin datum. All responses which depend upon a
particular origin datum will include its basis token (cctoken)
in their Cache-Consistent header, and whenever a datum
is changed, its generation number (ccgeneration) is incre-
mented such that all responses produced using it in the future
will reflect that new generation number. The aggregation of all
such tokens and their generation numbers can be thought of as
a vector clock [11, 18] on the state of the system’s underlying
origin data.

Caches implementing BTC keep an index of cached re-
sponses keyed on basis tokens. Whenever a new response
arrives, each of its tokens’ generation numbers are compared
with the cache’s “current” generation numbers for those same
tokens. If the generation numbers match, no further action is
taken. If the new generation number is greater, all entities de-
pendent upon the older generation of that token are marked as
invalid and the “current” generation number is updated to the
new value. If the new generation number is less than the cur-
rent value, then the new response itself is stale and inconsistent
(most likely produced by an inconsistent upstream cache), so
the request should be repeated using an end-to-end reload.

As with cookies, basis tokens are always scoped to particu-
lar DNS hostnames or domains; this allows some origin data

to be used by multiple servers within some broader adminis-
trative domain. The default token scope if none is specified
is the Host identifier used in the client’s request; this can
be overridden by a cctokenscope value. The scope string
(whether the implicit default value or given explicitly) is con-
sidered part of the token’s identifier for the purpose of iden-
tifying matching tokens. To frustrate certain kinds of denial-
of-service attacks, an entity may only scope tokens to one of
its own fully-qualified domain names or to a superdomain (suf-
fix) thereof. Tokens violating this rule must be discarded by all
downstream clients. The idea is that token scopes correspond
(at least nominally) with administrative domains; attempts to
scope outside of your own administrative hierarchy (e.g., the
server www.cs.unca.edu trying to provide a basis token for
@eng.unca.edu) will be rejected outright, and scoping a
token “above” your administrative control (www.bu.edu set-
ting a token for @edu) would allow other hosts outside of your
administrative control to “hijack” your basis tokens legally,
making such an action inherently undesirable.

2.1 Features

Some of the properties which distinguish BTC from conven-
tional [7], recent [26, 15, 17] and current [22, 23] web consis-
tency proposals include: (1) Strong point-to-point consistency
does not rely on the cooperation of intermediaries; (2) Invali-
dations are automatically aggregated; (3) Aggregation is inde-
pendent of HTTP namespaces; (4) Invalidation is driven by the
application, not by heuristics; (5) All data is lazily delivered;
(6) All transmitted data pertains to the entity it annotates; (7)
No per-client state is required at the server or intermediaries.

Strong point-to-point consistency To a non-BTC inter-
mediary, the Cache-Consistent header is just another
cachable metadata header which it will not remove or alter.
Consider a situation where a BTC origin server and a BTC
cache are communicating via a non-BTC cache which has it-
self acquired inconsistent contents; for any given basis token,
once the downstream BTC cache has seen a particular gener-
ation number it sets a new “low water mark” for that token’s
generation numbers, meaning that any entity bearing a lower
generation number can be immediately identified as the prod-
uct of an inconsistent cache and discarded. Thus, the detection
of inconsistent intermediaries is trivial; remedying the situa-
tion is also straightforward, because HTTP allows a client (the
BTC cache) to initiate a forced end-to-end reload which will
get the most recent version of the response from the origin
server. Consequently, BTC yields correct results even without
any special cooperation from intermediaries.

Invalidations automatically aggregated Aggregation of in-
validations is implied by the fact that single basis tokens are
shared by multiple resources. Thus, the scope of aggregation
precisely corresponds with the granularity of the origin data;
rather than grouping responses using coarse volumes, we are
able to only invalidate those cached response which are in fact
affected by an update to the server’s origin data. This aggrega-
tion is provided automatically by the mechanism itself and the
underlying object model of the server; it does not require the
construction of “classes” or other explicit object groupings as
would [26] or [22].

Aggregation independent of HTTP namespaces The
namespace of BTC tokens is independent of URIs and almost

2

all of the HTTP parameter space1; the one exception is the cou-
pling of the Host request header with token scoping. Thus,
there is no need for artifacts like common URI substrings to
pollute the application namespace in order to identify aggre-
gation classes.

Invalidation driven by application Rather than taking a
predictive approach, BTC is directly coupled with the behav-
ior of the underlying application at the server; thus, all inval-
idations in caches are caused by real events, not heuristics or
adaptive estimations of server actions, and are thus “produc-
tive” in that an already-consistent cached copy will never be
evicted by the BTC algorithm unless the server chooses to
control consistency at a coarse granularity which intrinsically
forces such unproductive invalidations.

Lazy delivery Many consistency protocols are push ori-
ented, in that they require some way for servers to contact their
clients asynchronously and notify them of invalidation events.
While such approaches certainly have their benefits, they must
contend with several problems: First, the internet as it ex-
ists today is not symmetric; firewalls and IP masquerading are
realities that prevent push-like communication channels from
working with caches which live within protected/masqueraded
domains. Second, such a scheme relies upon the entire caching
network supporting it in order to properly disseminate inval-
idation messages; client downstream from a non-supporting
cache are left in the dark with respect to invalidations. Third,
such techniques need to be mindful of potential scalability
problems that arise from the need to have a list of clients to
contact with update notifications. By contrast, BTC communi-
cation all takes place in the context of normal client-initiated
HTTP requests, not unlike the piggyback invalidation mecha-
nism of [15].

Data pertains to entity it annotates Unlike other lazy de-
livery methods, responses are only annotated with enough data
to keep caches consistent with respect to that particular re-
sponse. In a sense this limits BTC in that it is prevented from
affecting any evictions which are not consistency-related with
a user’s page discovery/browsing path; pedantically speaking,
however, that is an issue of coherence (eventual update of unre-
lated pages), not consistency (temporally non-decreasing view
of the state of server resources). At the same time, this spares
us a complication in the presence of non-implementing in-
termediaries: when a mechanism annotates normal responses
with arbitrary cache eviction messages, what is produced are
single “overlaid” responses which contain two completely or-
thogonal message components. Since a non-implementing
cache is unable to separate these two, it caches them together,
thus transmitting a cache invalidation message to all of its
downstream clients whenever it happens to reuse that cached
response.2 This property also greatly simplifies the implemen-
tation of BTC at the server, since the scope of backing infor-
mation that need be examined to produce a response is not
enlarged (as it would, for example, in order to consult a queue
of eviction or update events).

No per-client state at server or cache BTC requires no
notion of leases or subscriptions; no client or proxy needs

1e.g., the Accept header family
2This problem can can also be dealt with by explicitly versioning responses

and invalidation messages, allowing further-downstream caches to correctly
discriminate stale invalidation messages.

to maintain any per-client information for the system to be-
have correctly. While most techniques requiring per-client
state include mechanisms for managing this scalability prob-
lem [16, 23, 15], it is simply a non-issue for ours.

2.2 Requirements and Limitations
Server Application Support Unlike other approaches, BTC
will not work effectively without support from the applications
“behind” the web server. The basis tokens are essentially of-
fering a window into the state of databases, files, and other
resources which those applications normally segregate from
the outside world.

Increased Cache State The tracking of token generation
numbers and token-to-entity relationships places an additional
storage burden upon caches. However, we argue that this bur-
den is reasonably small in space and algorithmic complexity.
While an entity can be affiliated with arbitrarily many tokens,
in practice the number will tend to be fairly small, and reuse of
some tokens will tend to be very high.3 As such, we expect the
number of tokens in the index to grow roughly linearly with the
number of URIs; more precisely, we expect that when a server
is first visited, there will be a spike as the “popular” tokens are
introduced, and from that point on we would expect roughly
linear discovery, perhaps tempered by an asymptotic fall-off
as the user approaches “full coverage” of the site’s complete
set of basis tokens. Since scoped tokens occupy a flat global
namespace, responses can be indexed on their tokens using the
same data structure which indexes URIs4, implying a constant-
factor5 increase in index storage space and update complexity.

Large Stack Distances The BTC algorithm’s ability to
guarantee the self-consistency of an output stream beyond the
cached lifespans of responses derived from a particular token
is bounded by the ability to retain a long-term history of token
generation numbers seen in the past but not presently repre-
sented in-cache. When the span (stack distance) of accesses to
consistency-related resources exceeds the capacity of this his-
tory mechanism, inconsistencies introduced upstream can go
unnoticed. It is hoped that such history mechanisms will have
adequate capacity such that traditional expiration or other co-
herence mechanisms will kick in before this problem can man-
ifest.

Coherence v. Consistency BTC is purely a consistency (as
we have defined it) mechanism; it is completely orthogonal
to the issue of cache coherence (as we have defined it). BTC
will not identify a perfect 1-year-old snapshot of a server as
“inconsistent”, because it is not; that snapshot may be stale,
but it is not inconsistent. This separability is actually a de-
sirable property in several ways; consider the possibilities for
disconnected/poorly-connected operation [13], or the flexibil-
ity this offers us in selecting different coherence mechanisms
based upon the needs of the underlying application and the
available communication infrastructure (symmetric v. asym-
metric reachability, for example).

3It would make intuitive sense for their popularity to follow a Zipf-like
distribution [27]; while we lack evidence from any reasonably large sampling
of “real” sites, the data presented in Figure 11 of [8] lends some credence to
this theory.

4It is true that a single token will usually point to several cached responses;
however, in HTTP/1.1 caches the same can be said of URIs, since a cache may
hold multiple “variants” of a particular resource simultaneously [12].

5That factor is roughly the ratio of unique basis tokens to cached responses.

3

3 Enhancements to BTC
We have defined several extensions to the basic BTC mecha-
nisms and algorithm discussed above.

A BTC-Based Coherence Mechanism We can augment
BTC with a lazy-delivery coherence system that will allow
arbitrary responses sent to a cache to invalidate sets of enti-
ties based upon arbitrary basis tokens. Doing so requires ei-
ther a return to per-client state tracking (the “directory-based
coherence” model - we need a mapping from basis tokens to
clients consistent with their “current” versions) or a more pes-
simistic “broadcast” approach (attach coherence messages to
every outgoing response, leading to tremendous redundancy);
the latter is only reasonable for promoting coherence based
upon a relatively small number of tokens, and the former has
the inherent scalability issues discussed above.

The premise is fundamentally the same as that of the con-
sistency mechanism: responses can be annotated with a set of
basis token/generation number pairs. These are not associated
with the entity carried by the response, but are rather inter-
preted as global and advisory; in principle, they are used just
as the token;generation pairs of the Cache-Consistent
header are used to identify inconsistent cache entries and inval-
idate them, with the exception that they do not force equality
but simply advise of a potential lower bound for a particular
token’s generation number. This means that if a message in-
cludes a coherence token with a “stale” version number, that
particular token;generation pair can be disregarded, while the
rest of the message is evaluated independently. Said another
way, a coherence token being stale does not imply that the
response carrying it is itself inconsistent; this is why we call
coherence tokens advisory, as opposed to consistency tokens
being compulsory (they must match to provide correctness).

As a curiosity, we note that in the extreme a server is able
to force lazy-immediate coherence (a cache is made aware of
all of its currently-stale entities whenever it next contacts their
corresponding server) by including in the next message to that
cache the Cache-Coherent header with all of its current
basis tokens and generation numbers.

The grammar for Cache-Coherent is virtually identical
to that of Cache-Consistent presented in Figure 1.

Strong End-to-end Consistency While BTC in itself guar-
antees that any cache-server pair wishing to participate can
maintain strong consistency, this guarantee does not extend
beyond the furthest downstream BTC cache; we are able to
provisionally extend our guaranteed consistency by extending
HTTP’s Cache-Controlmechanism with a new parameter,
cc-maxage. BTC caches give this value primacy over the
Expires header and the standard max-age and s-maxage
parameters, while non-BTC caches will ignore it; thus, an en-
tity can be pre-expired using max-age, “busting” all non-
BTC caches (including the client’s), with a special provision
allowing only BTC caches to retain and reuse the content.

This feature is provisional in that it will only work correctly
if the caching network topology meets certain conditions; this
mechanism will fail in certain cases if the caching network
is divergent. Upstream path divergence is the property of the
cache network upstream of a client node such that requests di-
rected to a single logical server can take different (diverging)
logical paths through that network. This makes it possible for
the response stream seen at the “split point” to be internally in-
consistent even if all caches along each of the upstream paths
provide internally consistent response streams. To illustrate
this, recall that consistency does not imply recency; imagine
a user routes her requests randomly to one of two upstream

proxy caches (thus, a diverging path). Each of those caches is
internally kept consistent by some mechanism, but the coher-
ence mechanism does not guarantee that they will both reflect
the state of the server at the same point in time.6 One cache
may have captured a self-consistent “snapshot” of the server’s
state that is now five minutes old; the other has similarly cap-
tured a snapshot that is only one minute old. In the intervening
four minutes, a number of changes were made on the server;
the user is now in a situation where she can make one request
and get a representation of the recent state of the server, and
make a subsequent request and get a representation of an older
state. This potentially “decreasing” view of the server’s state
is, by definition, inconsistent, and unless some downstream
node is able to identify and rectify this condition, the client
will see an inconsistent response stream. While BTC is in fact
able to handle this situation properly when the divergence is
upstream of the furthest-downstream BTC implementation, if
a client can reach a divergence before it reaches a BTC cache
then this mechanism is unable to guarantee the consistency of
the response stream seen by the client.

Minimal View Consistency Assuming a non-divergent
caching network, two techniques could be applied to more
aggressively offer view consistency to clients without forc-
ing unnecessary invalidations upon further downstream caches
(as may be desirable in a low-bandwidth or intermittent-
connectivity environment, one of the motivations for [13]).
The first technique, Stateful View-consistent BTC (SVBTC),
introduces per-client state at the proxy; the second, Parame-
terized View-consistent BTC (PVBTC), is per-client stateless
but requires clients to provide additional information in their
requests.

For either of these view-consistent caching techniques, the
shared caches no longer evict stale entities, but rather retain
them (along with the basis token generation numbers used to
construct them) on the possibility they may be useful in an-
swering future requests from clients who wish to avoid inval-
idating their own cache entries whenever possible. The idea
behind both SVBTC and PVBTC is that the cache is informed
of the token generation numbers which are “current” for the
client’s cache and, if possible, selects responses which share
those generation numbers. It is possible for there to be mul-
tiple cached responses for a given resource which match the
known state for a client; this happens when a response includes
a basis token not previously seen by the client. When this oc-
curs, the implementer is free to use whatever selection method
best fits her goals; two useful models could be “lexically great-
est unknown-token values” (to try to maximize recency) and
“token values most widely used in other cached resources” (to
try to maximize the cache’s ability to use an already-held par-
tial snapshot of the server).

In the SVBTC approach, the cache retains a complete list of
the basis token vectors seen by all of its clients, and uses this
data to inform its choice of responses. This is taxing upon the
cache, but it imposes no additional communication demands
downstream, and interacts without problems with stock BTC
clients.

In the PVBTC, we borrow the concept of the A-IM header
from [19]: the client annotates every request it makes to the

6Such situations can be minimized, but not completely eliminated, us-
ing synchronous coherence mechanisms. Even immediate coherence will not
guarantee correctness, since there is no strong relationship between the order
in which requests are made to the proxies and the order in which those proxies
make their requests to the origin server. See the analyses of inherent race con-
ditions in conventional consistency and coherence schemes presented in [3]
for more details.

4

cache with the subset of its complete basis token vector which
may be relevant to that request; every token whose scope
value matches7 the target Host’s name must be reported in
the request. These tokens are provided using the Request-
Consistent header, also with a grammar virtually identical
to Cache-Consistent (presented in Figure 1). PVBTC
allows the upstream cache to operate statelessly, but clearly
the communication burden can become prohibitive in the pre-
sense of a non-trivial number of basis tokens, particularly con-
sidering we may be in a limited-bandwidth environment. The
stateless operation of the cache also introduces a garbage col-
lection problem; where in SVBTC the cache could decide if
none of its clients are interested in a particular version of a re-
sponse anymore (because its basis token vector isn’t a subset of
any client’s current vector), in PVBTC the cache has no such
knowledge and must employ some sort of heuristic approach
to decide when evictions should take place.

Relaxing Consistency Demands The notion of bounded
staleness as a way of relaxing consistency is widely employed
(see �(t) consistency in [23] or staleness bounds in [24] for
two examples). What a mechanism like BTC allows us to do
is bound logical staleness (i.e., staleness with respect to a logi-
cal version-identifying value) as opposed to temporal staleness
(staleness with respect to a clock).

For BTC, we support relaxed consistency by allowing to-
ken;generation pairs in the Cache-Consistent header to
also include an optional pair of margin parameter. This ex-
tends the BNF for cctokengeneration using the rules
shown in Figure 2.

cctokengeneration =
cctoken
‘‘;’’ ccgeneration
[ccdoesnot] [ccwillnot]

ccdoesnot = ‘‘-’’ ccmargin
ccwillnot = ‘‘+’’ ccmargin
ccmargin = 1*HEX

Figure 2: Extended BNF for Relaxed-Consistency BTC

The ccdoesnot parameter carries the semantic of “an en-
tity with this token with a generation number not more than
ccmargin less than this current one is not invalidated by
this response”; the ccwillnot parameter denotes “future re-
sponses with a generation number not more than ccmargin
more than this current one do not invalidate this response.” A
cctokengeneration can include both parameters.

A well-designed versioning system can take advantage of
this fine-grained control over the margins to impose structure
upon the linear generation number space. For example, say a
CVS-like two-dimensional version numbering scheme is used
internally by the application (1.3, 2.7, 5.0, etc), and that we
do not wish for minor-version increments to provoke cache
invalidations. Say version 5.0 of a datum is generation num-
ber 604 (2c0 hex). Responses derived from subsequent re-
leases are numbered in parallel, with the ccdoesnot mar-
gin stretching back to the 5.0 generation number; thus, 5.1
would be presented as 2c1-1, 5.2 2c2-2, and so on, until
version 6.0 is reached and the ccdoesnot parameter is reset
to zero (the implied value if the parameter is absent). Sim-
ilarly, since generations numbers do not need to strictly in-
crement but can increase with any monotonic non-decreasing

7i.e., “is equal to or a suffix of”

process8, the major-version number could be defined to oc-
cupy a high-order position (say, the fourth hexadecimal digit);
thus, 1.0 would be encoded by a ccgeneration of 1000,
2.0 by 2000, and so on. Then, any response could include
a ccwillnot parameter which stops just short of the next
major revision generation number; for example, 10e2+f1d.

Nesting Consistency Issues In the web, users do not ac-
tually interact with resources strictly serially, but rather with
groups of resources which are co-displayed simultaneously by
way of nesting; for example, a single web page may embed
a number of images, frames, and layers, each being fetched
independently at a distinct point in time, each from a differ-
ent resource address. Making sure the set of co-displayed re-
sources are self-consistent is a difficult problem, since it adds
a parallelism requirement to our thus-far very serial definition
of consistency.

While the stock BTC algorithm is capable of recognizing an
inconsistency among co-displayed documents, it is not capa-
ble of ensuring that a self-consistent view can be fetched. One
way to do this correctly is to employ ideas presented in the
“Minimal View Consistency” extension defined above; if we
extend either the stateful or parameterized model all the way
from the client (which determines the display-relations among
resources) to the server (which maintains an adequate resource
revision history), then nested objects can have their served ver-
sions controlled by the basis token vector of the embedding
objects.

A less heavy-handed approach would be to use relaxed log-
ical consistency for embedded objects. If we model a nested
document presentation using a tree, we know that the client’s
fetching strategy will always be some sort of prefix iteration
over that tree (i.e. parent “embedder” nodes will always be
fetched before child “embeddee” nodes); this means that, fol-
lowing a conventional fetch ordering, an embedded element
(if fetched from a consistent cache) will never be stale with
respect to the embedder, but by the time the tree has been
completely fetched some embedder may end up being too old
with respect to some embeddee, or nodes in some branch may
be stale with respect to nodes in some earlier-fetched paral-
lel branch. If these latter conditions are acceptable, then ap-
propriate ccwillnot or ccdoesnot parameters should be
included with some subset of the entities. When the latter
conditions are not permissible (as represented by the change
not falling within the acceptable margins), a browser may at-
tempt to reconcile it by re-iterating over the tree doing a postfix
re-fetches of elements as needed; of course, these re-fetches
could give rise to changes in the structure of the tree, or may
themselves retrieve entities which are “too new” with respect
to the previously newest entities, so some heuristic bound is
needed to prevent this process from looping indefinitely.

Ultimately, however, it is not clear how useful such a mech-
anism is; an even simpler way to deal with this situation where
the internal consistency of a set of co-displayed documents is
important is to define the problem away as follows: “When-
ever an embedder and an embeddee are consistency-related,
the embedder’s reference to the embeddee SHOULD explic-
itly encode the embedder’s current version information as a
parameter to the embeddee’s URI.”

8Timestamps are also a suitable source for generation numbers, and allow
us to approximate �(t) consistency [23].

5

4 Simulation
To illustrate the correctness and performance impacts of BTC,
we implemented a server-and-cache simulation which com-
pares the performance and correctness characteristics of sev-
eral consistency models under a range of workloads.

The BTC algorithm relies upon not just changes of docu-
ments at the server itself (of which some general study has
been done [10, 21]), but upon the “hidden” events within the
server’s application logic that provoke those changes. For our
simulation we therefore needed to model some sort of driv-
ing application; we chose to base this upon the architecture
of a simple Content Management System. Our hypothetical
Content Management System (or CMS) is inspired by IBM’s
DUP-based system [14, 9, 8], primarily because its organiza-
tion and algorithms are representative of current practices in
industry and well-described in the research literature.

The concept of a CMS is quite straightforward. The doc-
uments that make up a modern content-driven web site are
themselves aggregations of a number of components: static
markup text (such as that describing the banner at the top of
the page, copyright information, etc), user-selected markup
(for “skinnable” sites), human-created text content (which is
regularly added and possibly edited), and automatically gen-
erated database-driven content (stock quotes or tennis match
results) are typical components. It is the job of the content
management system to integrate these parts in such a way that
the site’s “authors” can focus upon doing their “part” of mak-
ing it work (writing articles, changing the “look” of the site,
etc) without having to deal with or even be aware of the details
of how the other “parts” are handled.

For any given resource, the CMS must know how to as-
semble pieces (called fragments) to produce complete entities.
This relationship is codified in an object dependence graph
(ODG); an ODG is a directed graph with a set of nodes repre-
senting resources, each with a set of inbound edges from “ob-
jects” it uses to create entities. These objects can themselves
have inbound edges from other “objects” to whatever depth
is needed to represent the site’s organization, complexity, and
data model. Such “nesting” objects will tend to be control files
describing how to combine the fragments provided by other
objects; at the “head” of the graph are the underlying data,
which tend to be things like flat files, individual keyed database
rows, particular keyed sets of database rows, or whole database
tables. A simple example of an ODG is shown in Figure 3.

Table A
Aggregate Stats

Fragment
HTML Fragment

HTML
Fragment
HTML

HTML Object
Compound

Resource 1 Resource 2 Resource 3 Resource 4
(...)

Table A
Row 1

Table A
Row 2

Table A’s
Other Rows...

Figure 3: Sample Object Dependence Graph

This graph fully specifies the consistency relationships be-
tween underlying origin data (nodes with no inbound edges)
and resources, and thus between all entities produced by those
resources. When an origin datum is updated, every resource
reachable from it is affected, and all of those resources will
need to be kept mutually consistent. For our purposes, we re-
quire the graph to be acyclic; the cycle semantic of the DUP
algorithm [14] can be preserved using a simple transform.

As this graph provides us with all the interdependence in-
formation needed to address cache consistency, the decision to
represent nodes of the graph with basis tokens is a fairly obvi-
ous one. It is trivial to add generation numbers to every node
in the graph which are incremented as data are updated. This
leaves the question of which of these nodes actually need to be
represented directly via basis token annotations to entities?

Our first instinct could be to represent all nodes which reach
a resource as basis tokens for its entities. While this approach
would certainly give us correct results, the graphs of highly
involved sites can grow quite large and involve several layers
of indirection, which could make the space requirement for
transmitting the list unreasonable.9

A more attractive solution would be for each resource to
only use the nodes of its parentless origin data; while this
would also produce correct results, it fails to take advantage
of aggregations of clusters of origin data into single “atomic”
compound objects which may be present in the graph.

For any given ODG, there exists at least one minimally-
sized virtual graph which perfectly captures its original ex-
pressive power. As appealing as it may be to find such an
optimal graph, however, it is unreasonable to expect the graph
to remain static at runtime; nodes and edges will constantly be
added, and those patterns which yielded optimal mergings in
earlier versions of the graph may cease to be optimal. Given
the complexity of maintaining a backward-compatibility graph
(and the added cost both in transmission and cache storage
space of sending and storing the accompanying tokens) needed
should such morphological changes to the optimal graph be
necessary, it is far more appealing to use simple heuristic-
based on-line approaches which incur the cost of some redun-
dancy but are resilient to those types of changes.

All that remains then is to create a persistent mapping from
the selected nodes of the ODG to basis token strings and add
persistent version numbering (already present in most man-
aged data sources anyway), and it becomes a trivial program-
ming exercise for the CMS to attach the appropriate Cache-
Consistent headers to every response it sends. Virtually all
of the work is done for us by the CMS’s existing architecture;
BTC simply adds a small “window” at the publishing phase
into the system’s internal state.

4.1 Simulation Design
Lacking any thorough statistical and topological study of
ODGs found in the wild10, our model requires a number of
assumptions. Rather than claim our simulations are represen-
tative, we provided a variety of parameters that would allow us
to explore our protocol’s performance under a wide variety of
potential conditions. The results presented here are illustrative
of the qualitative performance properties we observed under
varied parameterizations.

We modeled our CMS as a bipartite graph of datum nodes
and resource nodes built using two parameters: size (the num-
ber of resource and datum nodes) and saturation (the percent-
age of possible edges in the graph actually present); in our
presentation of results below we focus principally upon the
“small and dense” setup with 40 resources, 200 datum nodes,
and a 50% saturation; we also briefly discuss a broader range
of configurations, including small (40 resource, 200 datum),
medium (200 resource, 1000 datum), and large (400 resource,
2000 datum) setup sizes, with dense (50%), medium (25%),
and light (12:5%) saturations.

9For anecdotal evidence, see Figure 10 in [8].
10The characterization provided in [8] is illustrative but not necessarily

representative.

6

Each datum is assigned an update process. Results pre-
sented here were generated using exponential update pro-
cesses, with the distributional means themselves being expo-
nentially distributed.

Next, the simulator generates an update sequence consisting
of some number of update events (we used 5000 for the small
graph size) timestamped according to their update processes.

Resources are assigned popularities according to a Zipf-like
popularity distribution [27, 1, 5]; the Zipf parameter, �, could
be varied arbitrarily, but all of our experiments use the value
0:7, reflecting approximately the value reported in [1].

A stream of requests with constant inter-arrival times is syn-
thesized, and merged with the stream of update events. The
total number or requests is a multiple of the number of update
events (1, 20, or 400, labeled slow, medium, and fast). We ex-
amine the difference in behaviors for each of these three cases
below.

While this is a very simplistic request model in light of cur-
rent understanding of web workloads [2], given the rather ad
hoc nature of the backend update model, and given the rela-
tionship of many axes of study of request streams (locality of
reference, inter-arrival times) with completely unknown prop-
erties of the server’s backend (locality of data, update process
characterizations) we believed it to be unreasonable to build
too much complexity and detail into the request stream at this
time.

Finally, this combined event stream is fed to the server-
cache simulator. This simulator simultaneously maintains a
model of the server’s state, a number of TTL caches with dif-
ferent fixed time-to-live values, and a set of caches using BTC
and the same TTL values (which we call the “Hybrid” algo-
rithm). Upon completing the stream, the simulator reports
for each of these the number of requests that missed in the
cache for any reason, the number of cached responses which
were stale with respect to the origin server, (for TTL caches)
the number of responses which were not view consistent with
previously served responses, and a normalized “quality” value
which indicates what portion of the origin data reflected in the
final response stream were still fresh when served.11 The cache
models do not include any notion of capacity misses.

4.2 Simulation Results
All graphs present the time-to-live parameter on the X axis,
normalized to the length of the simulation in time12. The Y
axis is normalized to the total number of requests made in a
simulation run.

Figures 4 and 5 show the results for the small-and-dense
simulation with a slow request stream. This could reflect, for
example, a highly dynamic server interacting with a single user
cache or small-population shared cache.

Notice that the TTL algorithm sheds server load (Fig 4
and Fig 5 �) for moderate time-to-live values, but this is ac-
companied by a matching falloff in the proportion of fresh re-
sponses (Fig 4 �) and consistent responses (Fig 5 +�); this is
indicative of the large number of “false hits” as TTLs exceed
true resource freshness lifespans. The accumulation of poor
quality (poor immediacy) is less dramatic; this is not unex-
pected, as each resource is connected with a large number of
origin data, and TTLs tend to expire before too many of these
update events can accumulate to render all of a resource’s parts

11Think of the quality value as the continuous counterpart to the all-or-
nothing “stale/fresh” per-response flag.

12When a resource has a TTL of 1.0 it will never expire within the span of
the simulation; thus, “pure BTC” would have the same results as the Hybrid
algorithm with a TTL of 1:0

0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1

V
al

ue
 (

no
rm

al
iz

ed
)

TTL (normalized)

response quality (Hybrid)
fresh responses (Hybrid)

server load (Hybrid)
response quality (TTL)
fresh responses (TTL)

server load (TTL)

Figure 4: Behavior with Slow Request Stream

0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1

V
al

ue
 (

no
rm

al
iz

ed
)

TTL (normalized)

consistent response (Hybrid)
server load (Hybrid)

consistent responses (TTL)
server load (TTL)

Figure 5: Behavior with Slow Request Stream

out-of-date13. TTL’s quality value seems to follow its load
shedding and fresh response curves at a multiplicative TTL
offset; this makes intuitive sense, as it reflects the ongoing and
continuous (analog v. binary) accumulation of single events
that cause responses to become stale, and the ratio between
the average datum update rate and the request rate is constant
due to our experimental setup.

At the same time, note that the Hybrid algorithm only allows
about 15% of the server’s load (Fig 4 +� and Fig 5 �) to be
shed. However, its response quality and staleness rates (Fig 4
+ and �) remain very favorable. This is not surprising; more
resources are updated in the average unit of time than requests
are made, so it is likely that most request for a resources that
are consistency-related to other already cached resources will
cause those cached entities to be evicted.

Figure 5 shows the tradeoff between consistency and server
load under this experimental configuration. The “consistent
responses” value indicates the number of responses that do no
reflect any older versions of origin data than have already been
seen by the cache; notice how under the TTL algorithm server
load and consistency (�, +�) decline in parallel for non-trivial
TTL values, while the Hybrid algorithm maintains consistency
but at the price of much higher necessary server load (+, �).

The same setup with a medium-rate request stream shows

13Think of this as an instance of the coupon-collector’s problem which
works to our advantage.

7

0

0.2

0.4

0.6

0.8

1

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

V
al

ue
 (

no
rm

al
iz

ed
)

TTL (normalized)

response quality (Hybrid)
fresh responses (Hybrid)

server load (Hybrid)
response quality (TTL)
fresh responses (TTL)

server load (TTL)

Figure 6: Behavior with Medium-Rate Request Stream

0

0.2

0.4

0.6

0.8

1

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

V
al

ue
 (

no
rm

al
iz

ed
)

TTL (normalized)

consistent response (Hybrid)
server load (Hybrid)

consistent responses (TTL)
server load (TTL)

Figure 7: Behavior with Medium-Rate Request Stream

some very interesting behaviors, as illustrated in Figures 6 and
7. Notice particularly how, for smaller TTL values, the Hy-
brid algorithm sheds load almost as quickly as TTL, and lev-
els off at a 60% cache hit rate (40% server load) over several
orders of magnitude, maintaining in parallel a very high fresh
response value (about 90%) while TTL’s fresh response count
quickly declines as load shedding increases. We also see a
multiplicative shift of the quality of TTL responses relative to
the stale/fresh and load metrics similar to that discussed above.

Quality and fresh responses for the Hybrid algorithm both
deteriorate quickly under very large TTLs. This makes intu-
itive sense in light of Figure 7; notice how TTL’s number of
consistent responses actually increases for very large TTL val-
ues. This happens because, when requests arrive fast enough,
the cache can become populated with a long-lived and self-
consistent “snapshot” of the server’s state. Under Hybrid with
long lifetimes, this is exactly what happens; the cache quickly
acquires a snapshot at the beginning of the simulation run, and
because all the resources making up that snapshot are long-
lived, it stops talking with the server and therefore stops re-
ceiving the (lazily delivered) invalidation-provoking new to-
kens.

This effect (and thus, the need for a more aggressive co-
herence mechanism) is controlled principally by the interplay
of four factors: the number of resources, the average resource
update rate, the request rate, and the popularity profile of the
resources (in this case, the Zipf parameter). For example, it

is hard to get a complete snapshot when the number of re-
sources is particularly large relative to the request rate, when
the update rate is high enough with respect to the request rate,
or when the Zipf parameter is particularly high (making un-
popular resources very rarely be viewed); at the same time, a
high Zipf parameter can make partial snapshots longer-lived,
precisely because of the rarely-accessed resources (which may
have been updated and could therefore “break” the snapshot)
are in fact rarely-accessed and therefore seldom have the op-
portunity to act as snapshot-breakers.

0

0.2

0.4

0.6

0.8

1

1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

V
al

ue
 (

no
rm

al
iz

ed
)

TTL (normalized)

response quality (Hybrid)
fresh responses (Hybrid)

server load (Hybrid)
response quality (TTL)
fresh responses (TTL)

server load (TTL)

Figure 8: Behavior with Fast Request Stream

0

0.2

0.4

0.6

0.8

1

1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

V
al

ue
 (

no
rm

al
iz

ed
)

TTL (normalized)

consistent response (Hybrid)
server load (Hybrid)

consistent responses (TTL)
server load (TTL)

Figure 9: Behavior with Fast Request Stream

Next, we turn our attention to the high request rate run, re-
flected in Figures 8 and 9. This case further exaggerates the
snapshotting issue; we see that load shedding, fresh responses,
and response quality are very similar for both algorithms (al-
though the Hybrid algorithm exhibits a significant advantage
over TTL in a narrow middle band of TTL values). Again, we
see TTL’s consistency declining and then recovering for very
large TTL values, although the recovery becomes pronounced
at lower TTL values (reflecting, again, the increased ability at
this much higher request rate to obtain an internally consistent
snapshot). The consistency curves for the three request rates
are shown together for comparison in Figure 10.

Of course, when choosing a cache consistency algorithm
and its parameters (e.g. the TTL value), that choice im-
pacts upon a number of independent performance axes: server
load, response consistency rate, and response quality or fresh-
ness have all been discussed above independently; in Figure

8

0

0.2

0.4

0.6

0.8

1

1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10

V
al

ue
 (

no
rm

al
iz

ed
)

TTL (normalized)

Slow Requests
Medium Requests

Fast Requests

Figure 10: TTL Consistency under Various Request Rates

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

1000

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

C
on

si
st

en
cy

 *
 Q

ua
lit

y
/ S

er
ve

r
Lo

ad

TTL (normalized)

Slow, Hybrid
Slow, TTL

Medium, Hybrid
Medium, TTL
Fast, Hybrid

Fast, TTL

Figure 11: Simple Cost-Benefit Analysis

11 we present the output of a simple cost-benefit equation,
Consistency��Quality��ServerLoad , where � = � =
1:0 and = �1:0; This value is one indicator of the consis-
tency and freshness-quality payoff per unit of incurred server
load.14 This graph illustrates a number of things: the approxi-
mate equivalence of BTC and TTL for very small TTL values,
the relative strength of BTC when cache TTLs exceed object
lifetimes, and the ability of BTC to make better marginal use
of its communication with the server under most conditions.
One surprise in this graph is that TTL slightly outperforms Hy-
brid for a range of large TTL values under the fast workload;
this is largely an artifact of the minuscule server load values
at these TTLs (see Figure 8), where the Hybrid algorithm re-
quires roughly 40% more cache misses.

Finally, to illustrate how the size and saturation of the ODG
influence the load placed on the server, Figures 12 and 13
present the server load values under a medium-rate request
stream for nine ODG configurations (large, medium, and small
size; dense, medium, and light saturation).

For the TTL algorithm (Figure 12), ODG saturation natu-
rally has no effect upon the cache hit rate (and thus, no effect
upon server load); only the number of resources matters, that
having the intuitive effect of making it harder for the cache

14These parameters can be altered to prioritize among the three performance
metrics; many other equations are also perfectly reasonable, depending upon
how one wishes to measure marginal value.

0

0.2

0.4

0.6

0.8

1

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

S
er

ve
r

Lo
ad

TTL (normalized)

large-dense
large-medium

large-light
medium-dense

medium-medium
medium-light
small-dense

small-medium
small-light

Figure 12: TTL Load Effects for All Configurations

0

0.2

0.4

0.6

0.8

1

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

S
er

ve
r

Lo
ad

TTL (normalized)

large-dense
large-medium

large-light
medium-dense

medium-medium
medium-light
small-dense

small-medium
small-light

Figure 13: BTC Load Effects for All Configurations

to shed all of the server’s load as the number of resources in-
creases.

The Hybrid algorithm (Figure 13) is virtually identical to
TTL for the first order of magnitude of TTL values, but from
there differentiates according to ODG saturation with more-
saturated configurations always provoking higher server loads
(since any single update under such configurations is likely to
cause the invalidation of a larger number of cached resources)
within each size class.

5 Conclusions

We have described a novel mechanism, Basis Token Consis-
tency (BTC), which uses a logical vector clock mechanism and
response annotation to provide strong consistency via lazy no-
tification to any participating cache regardless of the presence
and participation of intermediaries; we also briefly discussed
several extensions to this protocol which offer server applica-
tions and caches greater flexibility in satisfying system goals.
We then presented results from a simple simulation of a mod-
ern Content Management System (CMS) driving a set of tra-
ditional (TTL) and BTC caches and compared their behaviors
under a range of parameters, illustrating some of the tradeoffs
and effects of TTL values for traditional and BTC caches in
terms of their ability to shed server load and the freshness,
quality, and consistency of the response streams delivered by

9

each.
While BTC requires the explicit cooperation of server appli-

cations, we believe its low complexity for caches and clients,
its interoperability with the current infrastructure, and its guar-
anteed properties make it a reasonable extension to deploy in
the present-day web infrastructure.

Acknowledgements
The authors wish to thank Assaf J. Kfoury and the anony-
mous reviewers for their helpful comments and feedback on
this work.

SDG.

References
[1] Paul Barford, Azer Bestavros, Adam Bradley, and Mark

Crovella. Changes in web client access patterns : Char-
acteristics and caching implications. World Wide Web,
2:15–28, 1999.

[2] Paul Barford and Mark Crovella. Generating representa-
tive web workloads for network and server performance
evaluation. In ACM SIGMETRICS, 1998.

[3] Adam D. Bradley and Azer Bestavros. Basis token
consistency: A practical mechanism for strong web
cache consistency. Technical Report BUCS-TR-2001-
024, Boston University Computer Science, 2001.

[4] Adam D. Bradley and Azer Bestavros. Basis token con-
sistency: Supporting strong web cache consistency. In
Global Internet Worshop, Taipei, November 2002. (to
appear).

[5] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott
Shenker. On the implications of Zipf’s law for web
caching. In 3rd International WWW Caching Workshop,
Manchester, England, June 1998.

[6] Ramon Caceres, Fred Douglis, Anja Feldman, Gideon
Glass, and Micahel Rabinovich. Web proxy caching:
The devil is in the details. In ACM SIGMETRICS Per-
formance Evaluation Review, December 1998.

[7] Pei Cao and Chengjie Lui. Maintaining strong cache con-
sistency in the world-wide web. In ICDCS, 1997.

[8] Jim Challenger, Arun Iyengar, Karen Witting, Cameron
Ferstat, and Paul Reed. A publishing system for effi-
ciently creating dynamic web content. In INFOCOM (2),
pages 844–853, 2000.

[9] Jim Challenger, Aryun Iyengar, and Paul Dantzig. A
scalable system for consistently caching dynamic web
data. In Proceedings of the 18th Annual Joint Confer-
ence of the IEEE Computer and Communications Soci-
eties, New York, New York, 1999.

[10] Fred Douglis, Anja Feldman, Balachander Krishna-
murthy, and Jeffrey Mogul. Rate of change and other
metrics: a live study of the world wide web. Technical
Report 97.24.2, AT&T Labs-Research, December 1997.

[11] C. Fidge. Logical time in distributed computing systems.
Computer, 24(8):28–33, August 1991.

[12] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext transfer protocol
– HTTP/1.1, 1999. RFC2616.

[13] Ashvin Goel. View consistency for optimistic replica-
tion. Master’s thesis, University of California, Los An-
geles, Febrruary 1996. Available as UCLA Technical Re-
port CSD-960011.

[14] Arun Iyengar and Jim Challenger. Data update propoga-
tion: A method for determining how changes to under-
lying data affect cached objects on the web. Technical
Report RC 21093(94368), IBM T. J. Watson Research
Center, 1998.

[15] Balachander Krishnamurthy and Craig Wills. Piggy-
back server invalidation for proxy cache coherency. In
Proceedings of the WWW-7 Conference, pages 185–194,
Brisbane, Australia, April 1998.

[16] D. Li, P. Cao, and M. Dahlin. WCIP: Web cache inval-
idation protocol, March 2001. Internet Draft (work in
progress) draft-danli-wrec-wcip-01.txt.

[17] Dan Li and Pei Cao. WCIP: Web cache invalidation pro-
tocol. In 5th International Web Caching and Content De-
livery Workshop, Lisbon, Portugal, May 2000.

[18] F. Mattern. Virtual time and global states of distributed
systems. In Proc. Parallel and Distributed Algorithms
Conf., pages 215–226, 1988.

[19] J. C. Mogul, B. Krishnamurthy, F. Douglis, A. Feldmann,
Y. Goland, A. an Hoff, and D. Hellerstein. Delta encod-
ing in HTTP, January 2002. RFC3229.

[20] Jeffrey C. Mogul. Clarifying the fundamentals of HTTP.
In WWW-2002, Honolulu, HI, May 2002.

[21] Mike Reddy and Graham P. Fletcher. Intelligent web
caching using document life histories: A comparison
with existing cache management techniques. In 3rd In-
ternational WWW Caching Workshop, Manchester, Eng-
land, June 1998.

[22] R. Tewari, T. Niranajan, and S. Ramamurthy. WCDP 2.0:
Web content distribution protocol, February 2002. In-
ternet Draft (work in progress) draft-tewardi-webi-wcdp-
00.txt.

[23] Jian Yin, Lorenzo Alvisi, Mike Dahlin, and Arun Iyen-
gar. Engineering server-driven consistency for large scale
dynamic web services. In WWW10, Hong Kong, May
2001.

[24] Haifeng Yu and Amin Vahdat. Design and evaluation of
a continuous consistency model for replicated services.
In Proceedings of Operating Systems Design and Imple-
mentation (OSDI), October 2000.

[25] Xiaohui Zhang. Cachability of web objects. Technical
Report BUCS-2000-019, Boston University Computer
Science, 2000.

[26] Huican Zhu and Tao Yang. Class-based cache manage-
ment for dynamic web content. In IEEE INFOCOM,
2001.

[27] G K Zipf. Psycho-Biology of Languages. Houghton-
Mifflin, 1935.

10

