
Performance Evaluation of Distributed

Prefetching for Asynchronous Multicast in

P2P Networks⋆

Abhishek Sharma1, Azer Bestavros2, and Ibrahim Matta2

1 abhishek@bu.edu, Elec. & Comp. Eng., Boston University, Boston, MA 02215, USA
2 {best,matta}@cs.bu.edu, Comp. Sc., Boston University, Boston, MA 02215, USA

Abstract. We consider the problem of delivering real-time, near real-
time and stored streaming media to a large number of asynchronous
clients. This problem has been studied in the context of asynchronous
multicast and peer-to-peer content distribution. In this paper we eval-
uate through extensive simulations the performance of the distributed
prefetching protocol, dPAM [20], proposed for scalable, asynchronous
multicast in P2P systems. We show that the prefetch-and-relay strategy
of dPAM can reduce the server bandwidth requirement quite signifi-
cantly, compared to the previously proposed cache-and-relay strategy,
even when the group of clients downloading a stream changes quite fre-
quently due to client departures.

1 Introduction

On-demand media distribution is fast becoming an ubiquitous service deployed
over the Internet. The long duration and high bandwidth requirements of stream-
ing media delivery present a formidable strain on server and network capacity.
Hence, scalable delivery techniques, both in terms of network link cost as well as
server bandwidth requirement, are critical for the distribution for highly popular
media objects.

For the delivery of real-time media to synchronous requests, multicast solu-
tions (whether using network support in case of IP multicast or using end-system
support through peer-to-peer networks) are attractive as they reduce both net-
work link costs and server bandwidth requirements for serving a large number of
clients [22, 5, 13, 11]. However, a number of scenarios can be envisioned in which
the client requests for streaming media objects are likely to be asynchronous.
This is true for requests to stored streaming media objects (e.g., on-demand
delivery of popular movie clips or news briefs to clients), as well as for requests
to buffered live streams (e.g., playout of a webcast to a large number of clients
requesting that webcast asynchronously but within a short interval).

To enable asynchronous access to streaming media objects, various IP mul-
ticast based periodic broadcasting and stream merging techniques [22, 13, 11,
⋆ This work was supported in part by NSF grants ANI-9986397, ANI-0095988, EIA-

0202067 and ITR ANI-0205294.



17] have been proposed. These techniques are scalable in terms of network link
cost by virtue of multicast messaging. To achieve scalability in terms of server
bandwidth requirement, they try to ensure that a relatively small number of mul-
ticast sessions (possibly coupled with short unicast sessions) are enough to cater
to a large number of asynchronous client requests. The assumption about the
availability of a network infrastructure supporting IP multicast may be practical
within the boundary of a multicast-enabled intranet, but it is yet to become an
ubiquitous alternative in today’s Internet. This realization has led to an alternate
approach of using application-layer (or end-system) multucast.

Application-layer multicast, or overlay multicast, can facilitate the deploy-
ment of multicast-based applications in the absence of IP multicast [5]. Multicast
can be achieved in overlay networks through data relay among overlay members
via unicast. Apart from elevating the multicast functionality to the application
layer, this approach also provides a substantial degree of flexibility due to the fact
that each node in an overlay network can perform more complicated application-
specific tasks which might be too expensive to perform at the routers in case of
IP multicast.

1.1 Paper Contribution

In this paper, we evaluate, through extensive simulations, the impact of stream-
ing rate and the departure of nodes on the scalability of the prefetch-and-

relay strategy employed in the dPAM protocol [20], proposed for scalable asyn-
chronous overlay multicast. We highlight the importance of “prefetching” content
in achieving a better playout quality in a scenario where client nodes participat-
ing in the overlay network depart from the network (or stop downloading the
stream). We refer the reader to [20] for a detailed description of dPAM and its
analysis.

Fig. 1. Overlay-based asynchronous streaming

2



Fig. 2. Overlay-based aynchronous streaming

2 Prefetch-and-relay

In this section, we review the prefetch-and-relay strategy employed in the dis-
tributed prefetching protocol, dPAM [20], proposed for scalable, asynchronous
multicast in P2P networks. We illustrate the asynchronous delivery of streams
through overlay networks using Figures 1 and 2. Assume that each client is able
to buffer the streamed content for a certain amount of time after playback by
overwriting its buffer in a circular manner. As shown in Figure 1, R1 has enough
buffer to store content for time length W1; i.e. the data cached in the buffer is
replaced by fresh data after an interval of W1 time units. When the request R2

arrives at time t = t2, the content that R2 wants to download is available in R1’s
buffer and, hence, R2 starts streaming from R1 instead of going to the server.
Similarly, R3 streams from R2 instead of the server. Thus, in Figure 1, leveraging
the caches at end-hosts helps to serve three clients using just one stream from
the server.

In Figure 2, by the time R2 arrives, part of the content that it wants to
download is missing from R1’s buffer. This missing content is shown as H in
Figure 2. If the download rate is the same as the playout rate, then R2 has no
option but to download from the server. However, if the network (total) down-
load rate is greater than the playback rate, then R2 can open two simultaneous
streams—one from R1 and the other from the server. It can start downloading
from R1 at the playback rate (assuming that R1’s buffer is being overwritten
at the playback rate) and obtain the content H from the server. After it has
finished downloading H from the server, it can terminate its stream from the
server and continue downloading from R1. This stream patching technique to
reduce server bandwidth was proposed in [12]. Assuming a total download rate
of α bytes/second and a playback rate of 1 byte/second, the download rate of the

3



stream from the server should be α − 1 bytes/second. Hence, for this technique
to work α − 1 ≥ 1 ⇒ α ≥ 2. Thus, we need the total download rate to be at
least twice the playback rate for stream patching to work for a new arrival.

Fig. 3. Switching streams on a departure: streaming from another client

Fig. 4. Switching streams on a departure: streaming from the server

A request may have to switch its streaming session under certain situations.
As shown in Figure 3, R3 initially streams from R2 until R2 leaves the overlay
network. Since the content R3 needs is still availabe in R1’s buffer, R3 starts
streaming from R1 after R2 departs. If the content needed by R3 was missing
from R1’s buffer, then R3 could start streaming from the server after R2’s depar-

4



tute. In Figure 4, upon R2 departure, the content that R3 needs is not available
in R1’s buffer and, hence R3 is forced to stream from the server. The content
missing from R1’s buffer is denoted as H in Figure 4. Similar to the case for a
new arrival, if the total download rate is strictly greater than the playback rate,
R3 can open two simultaneous streams—one from R1 and the other from the
server. Once it has obtained the missing content H from the server it can termi-
nate its stream from the server and continue to download from R1. Unlike the
case for a new arrival, as discussed in Section 2.3, the stream patching technique
may work in this situation even when the total download rate is less than twice
the playout rate.

Fig. 5. Delay in finding a new download source

When the download rate is greater than the playout rate, a client can prefetch

content to its buffer before it is time to playout that content. Prefetching con-
tent can help achieve a better playout quality in overlay multicast. In a realistic
setting, there would be a certain delay involved in searching for a peer to down-
load from; for example, consider the situation depicted in Figure 5. R3 starts
streaming from R2 on arrival. After R2 departs, it takes R3 D seconds (time
units) to discover the new source of download R1. If the prefetched “future”
content in R3’s buffer, at the time of R2’s departure, requires more than D sec-
onds (time units) to playout (i.e. the size of the future content is greater than
D bytes, assuming a playout rate of 1 byte/second) then the playout at R3 does
not suffer any disruption on R2’s departure. If the size of the “future” content
is smaller than D bytes, then R3 will have to open a stream from the server,
after it has finished playing out its prefetched content, until it discovers R1. In
a cache-and-relay strategy, clients do not prefetch content3. Thus, in the case

3 It can be due to the fact that the playout rate is equal to the download rate or clients
may choose not to prefetch content.

5



of cache-and-relay, R3 will have to open a stream from the server as soon as it
realizes that R2 has departed and continue downloading from the server for D

seconds (until it discovers that it can download from R1.) R3 cannot know a pri-

ori when R2 is going to depart. Due to the delays involved in opening a stream
from the server, it is quite likely that the playout at R3 would be disrupted
on R2’s departure in the case of cache-and-relay. In case of prefetch-and-relay,
if the time required to playout the prefetched content is larger than the delay
involved in finding a new source to download from, the playout at R3 would not
be disrupted upon R2’s departure from the peer-to-peer network. Prefetching
content is also advantageous when the download rate is variable. A client can
absorb a temporary degradation in download rate without affecting the playout
quality if it has sufficient prefetched content in its buffer.

2.1 Control Parameters

In this paper, we use simulations to highlight the effect of the following three
parameters in achieving scalable (in terms of server bandwidth), asynchronous
delivery of streams in a peer-to-peer environment.

1. α = Download rate
Playout rate

Without loss of generality, we take the Playout rate to be equal to 1 byte/second
and, hence the Download rate becomes α bytes/second. We assume α > 1.

2. Tb : The time it takes to fill the buffer available at a client at the download
rate.
The actual buffer size at a client is, hence, α×Tb bytes. The available buffer
size at a client limits the time for which a client can download the stream at
a rate higher than the playout rate.

3. β = Future Content
Past Content

β represents the ratio of the content yet to be played out, “future content”,
to the content already played out, “past content”, in the buffer. Given a
particular α and Tb, it is easy to calculate that a client needs to download

at the (total) rate α for
(

βαTb

(1+β)(α−1)

)

seconds to achieve the desired ratio β

of “future” to “past” content in its buffer.

Next, we discuss the constraints, in terms of α, β and Tb, that must be
satisfied for a client to be able to download the stream from the buffer of another
client available in the peer-to-peer network.

2.2 Constraints in the case of an arrival

The following theorem is stated from [20]:
Theorem: A newly arrived client R2 can download from the buffer of R1 if the
following conditions are satisfied:

– The inter-arrival time between R1 and R2 is less than Tb, or

6



– If the inter-arrival time between R1 and R2 is greater than Tb, then α should
be greater than or equal to 2, R1 must be over-writing the content in its
buffer at the playout rate and the size of the content missing from R1’s
buffer should be less than or equal to α × Tb.

The first condition ensures that the content needed by R2 is present in R1’s
buffer. The second condition defines the scenario in which the stream patching
technique can be used by R2 to “catch-up” with R1.

Fig. 6. Buffers of R2 and R3

2.3 Constraints in the event of a departure

Let us assume that R2 was streaming from R1’s buffer. R1 leaves the peer-to-
peer network at time t = td. If the available buffer size at R2 is α×Tb bytes and
at t = td, the ratio of “future” content to “past” content in R2’s buffer is β, then

R2 has
(

βαTb

1+β

)

bytes of “future” content and
(

αTb

1+β

)

bytes of “past” content

in its buffer. At a Playout rate of 1 byte/time unit, R2 has
(

βαTb

1+β

)

time units

to find a new source to download from after R1 departs. Figure 6 presents the
state of R2’s buffer after R1 departs. The time axis represents the progression of

7



the playout of the stream. The shaded portion labelled as “Past” refers to the
(

αTb

1+β

)

bytes of “past” content and the portion labelled “Future” refers to the
(

βαTb

1+β

)

bytes of “future” content in R2’s buffer. The arrow marking “Present”

refers to the position in the media content that has been played out at R2.

If α = 1, then after R1’s departure, R2 can download from another client
R3’s buffer if and only if the contents in their buffers (partially) overlap. Figure
6(a) shows the situation when the buffers of R2 and R3 are contiguous. Any
client that is ahead of R3, in terms of playing out the stream, would have some
content that R2 needs to download missing from its buffer and hence, unsuitable
for R2 to download from. Figure 6(b) depicts such a situation.

Consider the situation depicted in Figure 6(b). Let us assume that the ratio
of “future” content to “past” content in R2’s buffer is β and hence, it currently

has
(

βαTb

1+β

)

bytes of prefetched data. Assume that the “missing” content is TH

bytes and that the playout rate is 1 byte/second. If α > 1, then as discussed
earlier, R2 can open two simultaneous streams, one from the server and the other
from R3, and terminate its stream from the server after it has downloaded the
“missing” content and continue to download from R3 thereafter. Note that for
this stream patching technique to work, R3 should be over-writing contents in
its buffer at a rate less than α; in our model we assume that clients over-write
the content in their buffer either at the download rate (α) or at the playout
rate. Hence, in this case, R3 should be over-writing its buffer at the rate of 1
byte/second. If this is the case, then R2 can download from R3 at the playout
rate of 1 byte/second and download the “missing” content from the server at
the rate of (α − 1) bytes/second.

The following constraints, stated from [20], must be satisfied by the size of
the “missing” content, TH bytes, for R2 to able to stream from R3’s buffer:

1. Constraint imposed due to α:

(α × Tb)

(

β

1 + β

)

+ TH ≥
TH

α − 1
(1)

The above inequality demands that the time taken to playout the prefetched
and the “missing” content should be no less than the time taken to download
the “missing” content. Note that if α ≥ 2, then condition (1) is always sat-
isfied. The stream patching technique can be used in the case of a departure
even when 1 < α < 2 if a client has sufficient prefetched content.

2. Constraint imposed by the size of the buffer:

TH ≤
αTb

1 + β
(2)

The above constraint demands that the size of the missing content, TH ,
cannot be greater than the size of the “past” content in R2’s buffer.

8



3 Performance Evaluation

In this section, we compare the performance of the prefetch-and-relay based pro-
tocol, dPAM [20], and cache-and-relay with respect to savings in server band-
width. We refer to the protocols oStream [6] and OSMOSIS [15] by the generic
term cache-and-relay because they correspond to the situation where α = 1
(hence, a client cannot prefetch any content.)

3.1 Simulation Model

We consider the case of a single CBR media distribution. The playback rate is
assumed to be 1 byte/time unit. The client requests are generated according
to a Poisson process. The time spent by a client downloading the stream is
exponentially distributed with mean 1000 time units (for Figures 7, 8 and 9), or
100 time units (for Figure 10.) The total number of client arrivals during each
simulation run is 1500. The parameter β is set to 100,000—so that almost all the
content in a client’s buffer is “future” content after it has been downloading the
stream long enough. For the simulation results presented in Figures 7, 8, 9 and
10, we assume that a client is able to determine whether it should stream from
the server or from the buffer of some other client without any delays both in the
case of arrivals as well as in the event of a departure; i.e. we do not take delays
like propagation delays and the delay involved in searching for a suitable client
to download from into consideration. Results in the presence of such delays can
be found in [20]. In calculating the server load, we do not consider the small-
duration streams that a client opens from the server to obtain the “missing”
content.

3.2 Summary of Observations

If the download rate is sufficiently high, α ≥ 2, the prefetch-and-relay scheme
of dPAM has an advantage over the cache-and-relay scheme in reducing the
server bandwidth when the resources available for overlay stream multicast are
constrained, for example when the buffer size is small or when the request ar-
rival rate is low. This advantage stems from the fact that a higher download
rate enables a client to open two simultaneous connections for a short duration
to “catch-up” with the buffer of another client using the technique of stream
patching. This advantage is more pronounced for higher client departure rate. If
clients depart frequently from the peer-to-peer network, it reduces the caching
capacity of the peer-to-peer network, thus patching content from the server be-
comes more beneficial. As the buffer size and the request arrival rate increase, the
advantage of prefetch-and-relay over cache-and-relay is mitigated and for a given
buffer size, at a sufficiently high request arrival rate, cache-and-relay matches
the performance of prefetch-and-relay in terms of server bandwidth even when
the download rate is very high.

9



10 20 30 40 50 60 70 80 90
1

2

3

4

5

6

7

8

9

10

11
Buffer size = 5 time units

request arrival rate (req./ 60 time units)

se
rv

er
 c

os
t(p

er
 6

0 
tim

e 
un

its
)

CR
alpha = 1.2
alpha = 1.5
alpha = 1.8
alpha = 2
alpha = 5
alpha = 10

Fig. 7. Mean download time = 1000 time units, buffer size = 5 bytes

3.3 Simulation Results

For a fixed buffer size, we vary the download rate and measure the server load
for different client arrival rates. Figures 7, 8 and 9 present the simulation results
for different buffer sizes. For a fixed buffer size, cache-and-relay (CR) is able to
match the performance of prefetch-and-relay, for all values of α considered in
the simulation, once the client arrival rate increases beyond a certain threshold.
This threshold depends on the size of the buffer — 80/(60 time units) in Figure
8 and 50/(60 time units) in Figure 9. The reason for this is two-fold. In these
simulations, on average, a client downloads the stream for a duration (1000 time
units) which is much longer than the time it needs to achieve the desired ratio β
between its “future” and “past” content (approximately 5 time units for α = 5
and buffer size of 20 bytes when β = 100,000.) Thus, most of the clients have
achieved the ratio β by the time the client they were downloading from departs
the peer-to-peer network. Since the value of β is set very high (β = 100, 000),
almost the entire buffer of a client is full of “future” content when the client it was
downloading from leaves the overlay network. Hence, in the event of a departure,
since condition (2) of Section 2.3 is often violated, clients are not able to take
advantage of the higher download rate (by opening two simultaneous streams
and doing stream patching.) Thus, on a departure, a client that needs a new
source for download, can start downloading from another client only if their
buffers (partially) overlap. This situation is similar to cache-and-relay (α = 1)
(refer to the discussion in Section 2) and hence, the stream patching technique
employed in the dPAM protocol does not provide any advantage over cache-and-

relay. If we set β to be small, say 2 or 3, then a client would be able to take
advantage of the stream patching technique in the event of a departure.

The second reason for cache-and-relay being able to achieve the same server
load as prefetch-and-relay beyond a certain request arrival rate threshold is as
follows. A new arrival can take advantage of higher download rate and stream

10



10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

request arrival rate (req./60 time units)

se
rv

er
 c

os
t (

pe
r 6

0 
tim

e 
un

its
)

Buffer size = 10 time units

CR
alpha = 1.2
alpha = 1.5
alpha = 1.8
alpha = 2
alpha = 5
alpha = 10

Fig. 8. Mean download time = 1000 time units, buffer size = 10 bytes

patching under dPAM but as the client arrival rate gets higher, a client rarely
needs to resort to such capability. Hence, for a sufficiently high client arrival rate,
the advantage that prefetch-and-relay has over cache-and-relay, due to clients
being able to patch streams from the server (using a higher total download rate),
is mitigated by the presence of a large number of clients in the peer-to-peer
network enabling cache-and-relay to match the performance of prefetch-and-

relay.

When 1 < α < 2, prefetch-and-relay leads to a greater server load than
cache-and-relay for low arrival rates. As α increases, the time taken to fill the
buffer at download speed, Tb, decreases. For example, for a buffer size of 5 bytes,
for cache-and-relay (α = 1), Tb = 5; whereas when α=1.8, Tb=2.78. Thus, in the
former case, a new arrival can reuse the stream from someone who arrived at
most 5 time units earlier whereas in the latter case a new arrival can download
from someone who arrived at most 2.78 time units earlier4. Hence, in the latter
case, more new arrivals have to download from the server. This effect can be
mitigated by increasing the buffer size and also for higher arrival rate.

When the download rate at least twice as fast as the playback rate (α ≥

2) prefetch-and-relay achieves a much lower server load than cache-and-relay

even for small buffer sizes and low request arrival rate. When 1 < α < 2,
prefetch-and-relay does not have any advantage over cache-and-relay. Since in
these simulations, we ignore the delay involved in searching for a suitable client to
download from, the only advantage that prefetch-and-relay has over cache-and-

relay comes from the fact that it enables a client to “catch-up” with another
client by downloading the “missing” data from the server in the event of a
departure. But for small α (1 < α < 2), condition (1) of Section 2.3 is often
violated. For example, with α = 1.2 bytes/second, it will take 5 seconds to

4 Since 1 < α < 2, a new arrival cannot take advantage of the stream-patching tech-
nique.

11



10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

request arrival rate (req./60 time units)

se
rv

er
 c

os
t (

pe
r 6

0 
tim

e 
un

its
)

Buffer size = 20 time units

CR
alpha = 1.2
alpha = 1.5
alpha = 1.8
alpha = 2
alpha = 5
alpha = 10

Fig. 9. Mean download time = 1000 time units, buffer size = 20 bytes

acquire a “missing” data of size 1 byte from the server. Hence, when the available
buffer size is 5 bytes, a client never opens two simultaneous streams to do stream
patching, because if it contains the required 5 bytes of “future” content to satisfy
condition (1) of Section 2.3, then its buffer is already full of “future” content
and it has no available buffer space to download the “missing” content from the
server, which violates condition (2) of Section 2.3. On the other hand, if the
client has less than 5 bytes of “future” content then condition (1) of Section
2.3 is violated. Combined with our observation in the preceeding paragraph, it
becomes clear why prefetch-and-relay has a much higher server load compared
to cache-and-relay for 1 < α < 2 when the client arrival rate is low.

The results in Figures 7, 8 and 9 show that as the available buffer at the
client increases, the required server bandwidth to support a particular request
arrival rate decreases, under both cache-and-relay as well as prefetch-and-relay

(for all values of α.) This observation is in agreement with the results obtained
in [6].

The amount of time that clients spend downloading a stream is an important
factor in determining server bandwidth requirements. Peer-to-peer asynchronous
media content distribution is suited for situations in which the content being dis-
tributed is large; so that the end-hosts participating in the peer-to-peer network
are available for a long time. In a scenario where end-hosts keep departing after
a short interval, the server load can be considerably high due to the fact that a
lot of requests may have to start downloading from the server due to the depar-
ture of clients they were downloading from. Figure 10 presents the simulation
results when the mean time spent by a client downloading the stream (1/µ) is
100 time units. Compared to the case when 1/µ = 1000, the server bandwidth
requirement is considerably higher even for very high client arrival rates. Figure
10 illustrates the fact that the prefetch-and-relay scheme with α ≥ 2 performs
better than the cache-and-relay scheme, in terms of the server bandwidth re-

12



0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

request arrival rate (req./60 time units)

se
rv

er
 c

os
t (

pe
r 6

0 
tim

e 
un

its
)

Buffer size = 10 time units

CR
alpha = 1.2
alpha = 1.5
alpha = 1.8
alpha = 2
alpha = 5
alpha = 10

Fig. 10. Mean download time = 100 time units, buffer size = 10 bytes

quirement, even for very high client arrival rates (compare with Figures 7, 8 and
9.) Due to the shorter content download time of the clients, in a significant num-
ber of situations, clients are able to take advantage of the higher download rate
through stream patching [12] in the event of a departure and hence, the server
load is less under the prefetch-and-relay scheme compared to the cache-and-

relay scheme. Figure 10 also shows that if the client request arrival rate keeps
on increasing, eventually the cache-and-relay scheme will be able to match the
performance of the prefetch-and-relay scheme.

4 Related Work

Delivery of streams to asynchronous clients has been the focus of many stud-
ies, including periodic broadcasting [22, 13, 11, 17] and stream patching/merging
techniques [4, 10, 7, 8]. In periodic broadcasting, segments of the media object
(with increasing sizes) are periodically broadcasted on dedicated channels, and
asynchronous clients join one or more broadcasting channels to download the
content. The approach of patching [12] allows asynchronous client requests to
“catch up” with an ongoing multicast session by downloading the missing por-
tion through server unicast. In merging techniques [9], clients merge into larger
and larger multicast session repeatedly, thus reducing both the server bandwidth
and the network link cost. These techniques rely on the availability of a multicast
delivery infrastructure at the lower level.

The idea of utilizing client-side caching has been proposed in several previous
work [21, 19, 14, 16]. The authors of [6] propose an overlay, multicast strategy,
oStream, that leverages client-side caching to reduce the server bandwidth as well
as the network link cost. Assuming the client arrivals to be Poisson distributed,
they derive analytical bounds on the server bandwidth and network link cost.
However, this work does not consider the effect of the departure of the end-

13



systems from the overlay network on the efficiency of overlay multicast. oStream

does not consider the effect of streaming rate—it is a cache-and-relay strategy—
and hence, does not incorporate patching techniques to reduce server bandwidth
when the download rate is high. The main objective of the protocol, OSMOSIS,
proposed in [15] is to reduce the network link cost. The effect of patching on
server load has not been studied.

A different approach to content delivery is the use of periodic broadcasting of
encoded content as was done over broadcast disks [1] using IDA [18], and more
recently using the Digital Fountain approach which relies on Tornado encoding
[3, 2]. These techniques enable end-hosts to reconstruct the original content of
size n using a subset of any n symbols from a large set of encoded symbols. Re-
liability and a substantial degree of application-layer flexibility can be achieved
using such techniques. But these techniques are not able to efficiently deal with
real-time (live or near-live) streaming media content due to the necessity of
encoding/decoding rather large stored data segments.

5 Conclusion

Through extensive simulations, we evaluated the performance of the distributed
prefetching protocol, dPAM [20], proposed for scalable, asynchronous multicast
in P2P systems. Our results show that when the download rate is at least twice
as fast as the playout rate, a significant reduction in server bandwidth can be
achieved, compared to a cache-and-relay strategy, when the resources available
for overlay multicast are constrained, i.e. small client buffers and low client
arrival rate. We evaluated the impact of departure of client nodes on the server
bandwidth requirement, and highlighted the fact that the time spent by the
clients downloading the stream is a crucial factor affecting the scalability of end-
system multicast built upon client-side caching. We also discussed the advantage
of prefetching content in improving the playout quality at the client nodes in the
presence of various delays. We refer the reader to [20] for an extended analysis
of dPAM in the presence of delays as well as its implementation.

References

1. A. Bestavros. AIDA-based Real-time Fault-tolerant Broadcast Disks. In Proceed-
ings of IEEE RTAS’96, May 1996.

2. J. Byers, J. Considine, M. Mitzenmacher, and S. Rost. Informed content delivery
across adaptive overlay networks. In Proceedings of ACM SIGCOMM, 2002.

3. J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A Digital Fountain Approach
to Reliable Distribution of Bulk Data. In Proceedings of ACM SIGCOMM, 1998.

4. S. W. Carter and D. D. E. Long. Improving Video On-demand Server Efficiency
through Stream Tapping. In Proceedings of IEEE International Conference on
Computer Communication and Networks (ICCN), 1997.

5. Y. Chu, S. Rao, S. Seshan, and H. Zhang. Enabling Conferencing Applications
on the Internet using an Overlay Multicast Architecture. In Proceedings of ACM
SIGCOMM, 2001.

14



6. Y. Cui, B. Li, and K. Nahrstedt. oStream: Asynchronous Streaming Multicast in
Application-Layer Overlay Networks. IEEE Journal on Selected Areas in Commu-
nications, 22(1), January 2004.

7. D. Eager, M. Vernon, and J. Zahorjan. Minimizing Bandwidth Requirements for
On-demand Data Delivery. In Proceedings of Workshop on Multimedia and Infor-
mation Systems(MIS), 1998.

8. D. Eager, M. Vernon, and J. Zahorjan. Bandwidth Skimming: A Technique for
Cost-efficient Video On-demand. In Proceedings of ST/SPIE Conference on Mul-
timedia Computing and Networking (MMCN), 2000.

9. D. Eager, M. Vernon, and J. Zahorjan. Minimizing Bandwidth Requirements for
On-Demand Data Delivery. IEEE Transactions on Knowledge and Data Engineer-
ing, 13(5), 2001.

10. L. Gao and D. Towsley. Supplying Instantaneous Video On-demand Services us-
ing Controlled Multicast. In Proceedings of IEEE International Conference on
Multimedia Computing and Systems (ICMCS), 1999.

11. A. Hu. Video-on-demand Broadcasting Protocols: A Comprehensive Study. In
Proceedings of IEEE INFOCOM, April 2001.

12. K. Hua and Y. Cai amd S.Sheu. Patching: A Multicast Technique for True On-
demand Services. In Proceedings of ACM Multimedia, 1998.

13. K. A. Hua and S. Sheu. Skyscraper Broadcasting: A New Broadcasting Scheme
for Metropolitan Video-on-demand Systems. In Proceedings of ACM SIGCOMM,
September 1997.

14. K. A. Hua, D. A. Tran, and R. Villafane. Caching Multicast Protocol for On-
demand Video Delivery. In Proceedings of ST/SPIE Conference on Multimedia
Computing and Networking (MMCN), 2000.

15. S. Jin and A. Bestavros. OSMOSIS: Scalable Delivery of Real-Time Streaming
Media in Ad-Hoc Overlay Networks. In Proceedings of IEEE ICDCS’03 Workshop
on Data Distribution in Real-Time Systems, 2003.

16. D. Ma and G. Alonso. Distributed Client Caching for Multimedia Data. In
Proceedings of the 3rd International Workshop on Multimedia Information Sys-
tems(MIS97), 1997.

17. A. Mahanti, D. Eager, M. Vernon, and D. Sundaram-Stukel. Scalable On-demand
Media Streaming with Packet Loss Recovery. In Proceedings of ACM SIGCOMM,
2001.

18. M. O. Rabin. Efficient Dispersal of Information for Security, Load Balancing and
Fault Tolerance. In Journal of the Association for Computing Machinery, vol-
ume 36, pages 335–348, April 1997.

19. S. Ramesh, I. Rhee, and K. Guo. Multicast with Cache (mcache): An Adaptive
Zero-delay Video-on-demand. In Proceedings of IEEE INFOCOM, 2001.

20. A. Sharma, A. Bestavros, and I. Matta. dPAM: A Distributed Prefetching Protocol
for Scalable, Asynchronous Multicast in P2P Systems. In Technical Report BUCS-
TR-2004-026, 2004.

21. S. Sheu, K. Hua, and W. Tavanapong. Chaining: A Generalized Batching Tech-
nique for Video On-demand. In Proceedings of IEEE International Conference on
Multimedia Computing and Systems (ICMCS), 1997.

22. S. Viswanathan and T. Imielinski. Pyramid Broadcasting for Video On Demand
Service. In Proceedings of ST/SPIE Conference on Multimedia Computing and
Networking (MMCN), 1995.

15


