
Wireless and Physical Security via
Embedded Sensor Networks†∗∗

Michael J. Ocean
mocean@cs.bu.edu

Azer Bestavros
best@cs.bu.edu

Department of Computer Science
Boston University
Boston, MA 02215

ABSTRACT

Wireless Intrusion Detection Systems (WIDS) monitor 802.11 wire-
less frames (Layer-2) in an attempt to detect misuse. What dis-
tinguishes a WIDS from a traditional Network IDS is the ability
to utilize the broadcast nature of the medium to reconstruct the
physical location of the offending party, as opposed to its possi-
bly spoofed (MAC addresses) identity in cyber space. Traditional
Wireless Network Security Systems are still heavily anchored in the
digital plane of “cyber space” and hence cannot be used reliably or
effectively to derive the physical identity of an intruder in order to
prevent further malicious wireless broadcasts, for example by es-
corting an intruder off the premises based on physical evidence. In
this paper, we argue that Embedded Sensor Networks could be used
effectively to bridge the gap between digital and physical security
planes, and thus could be leveraged to provide reciprocal benefit to
surveillance and security tasks on both planes. Toward that end, we
present our recent experience integrating wireless networking secu-
rity services into the SNBENCH (Sensor Network workBench). The
SNBENCH provides an extensible framework that enables the rapid
development and automated deployment of Sensor Network appli-
cations on a shared, embedded sensing and actuation infrastruc-
ture. The SNBENCH’s extensible architecture allows an engineer
to quickly integrate new sensing and response capabilities into the
SNBENCH framework, while high-level languages and compilers
allow novice SN programmers to compose SN service logic, un-
aware of the lower-level implementation details of tools on which
their services rely. In this paper we convey the simplicity of the
service composition through concrete examples that illustrate the
power and potential of Wireless Security Services that span both
the physical and digital plane.

† This research was supported in part by a number of NSF
awards, including CISE/CSR Award #0720604, ENG/EFRI Award
#0735974, CISE/CNS Award #0524477, CNS/NeTS Award
#0520166, CNS/ITR Award #0205294, and CISE/EIA RI Award
#0202067.

∗∗ c©ACM, (2008). This is the author’s version of the work. It is
posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in WiSec’08,
VOL#, ISS#, (DATE) http://doi.acm.org/10.1145/nnnnnn.nnnnnn"

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSec’08, March 31–April 2, 2008, Alexandria, Virginia, USA.
Copyright 2008 ACM 978-1-59593-814-5/08/03 ...$5.00.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information Systems]:
Security and Protection—Unauthorized access

General Terms

Security, Management, Design

Keywords

Sensor Networks, Wireless, Intrusion Detection, Physical Security

1. MOTIVATION
Wireless Network Security is a non-trivial problem and as such a
variety of Wireless Intrusion Detection Systems (WIDS) have been
created. WIDS deploy wireless probes/sensors to passively or ac-
tively monitor the MAC frames transmitted on the wireless medium
and identify misuse by observing either suspicious characteristics
of individual frames (e.g., exhibiting characteristics imprinted by
standard hacking tools) or a particular pattern in a sequence of
frames (e.g., sequences in violation of protocol standards). Wire-
less misuse includes illegitimate users attempting to gain access
to the network (intrusion), man-in-the-middle attacks (e.g., luring
legitimate users into communication with a rogue access point),
and various Denial of Service (DoS) attacks [5] (e.g. spoofing a le-
gitimate wireless Access Point (AP) and sending a disauthenticate
beacon to legitimate users).

While it is generally advantageous to secure a network at the
lowest layer possible, the appropriate layer for incorporating secu-
rity functionalities is highly dependent on the nature of the threat
and whether such threat could be dealt with (i.e., identified and
managed) at that layer. For example, the threat of wireless intru-
sion is often dealt with using Layer-3 mechanisms (e.g., content
based packet filtering, IP address isolation), essentially ignoring
the option of Layer-2 detection and prevention. Layer-3 IDSs are
likely popular because there is far more data available at Layer-3,
making it straightforward to respond to attacks, and because de-
tection and response at Layer-3 is independent of the Layer-2 con-
nection medium. On the other hand, wireless Denial of Service
(DoS) attacks are much more difficult to deal with at Layer-3 as
these attacks occur at Layer-2 and, even if detected, response is
limited given that attackers will likely utilize fictitious or spoofed
MAC addresses and may not have an IP address to retaliate against.
Ultimately the only way to respond to these types of attack is to uti-
lize information derived from the wireless medium (e.g., received
signal strength) to reconstruct physical location toward the goal of
preventing further wireless transmissions from that user [10].

Wireless Intrusion Detection Systems provide mechanisms to
identify, detect and locate DoS attacks, yet these systems are gener-
ally limited to logging or email alert response mechanisms. Many
works ultimately recommend dispatching administration personnel
to further analyze and respond to a detected attack – a costly and
impractical solution in most situations. Instead, once the physi-
cal area of an attack has been derived it is possible to utilize au-
tomated responses from a variety of actuation hardware, if avail-
able; e.g., embedded pan-tilt-zoom video cameras to gather an im-
age, wireless detectors on pan-tilt motors to pin-point a signal, pro-
grammable robots to triangulate signal, a common message display
(virtual bulletin board) in the environment informing users why
their service has been interrupted and who is responsible. Addi-
tionally, there would be a clear benefit from including other, non-
network centric inputs to the Wireless Network Security System
(e.g., driving a MAC whitelist from Bluetooth/RFID tracking, se-
curity camera images, passcard logs).

To achieve such cross-modal interaction within the context of
a Network Intrusion Detection tool would require the generation
of extensive, package and deployment specific software (modules,
scripts, etc) that are, by their very nature, cumbersome to maintain.
Indeed, such an approach is wrong headed. We observe that Wire-
less Network Security Services are specific, narrowly focused in-
stantiations of an Embedded Sensor Network wherein sensory data
includes the output of such monitoring tools. Rather than “hack”
a Wireless Security System to include Sensor Network functional-
ity, we advocate the inclusion of Wireless Security within a Sensor
Network. Thinking differently about Network Security, the inte-
gration of new sensory data (e.g., motion detection, face detection)
and actuation responses expand Network Security beyond the digi-
tal plane and into the physical plane.

In this paper we detail our work to include wireless network
monitoring devices as sensors in our Sensor Network infrastruc-
ture, the SNBENCH (Sensor Network Workbench). The SNBENCH

provides a high-level programmatic interface to the resources of
a Sensor Network (SN) and thus the inclusion of wireless network
sensors enables intrusion detection and response services to be writ-
ten quickly and easily. The SNBENCH has been designed with
extensibility and modularity as a central tenet and therefore the
changes required to include these new sensing modalities are quite
modest. Moreover, the framework’s modular nature allows a user
to swap in any improved emergent wireless surveillance tool or
technology (be it algorithmic or a physical turn-key device) with
nominal effort and such changes would be transparent to their de-
pendent services. We submit that our programmable, adaptable SN
framework is the ideal foundation on which to compose Wireless
Network Security services and physical security services alike, pro-
viding reciprocal benefit to each. The example programs given pro-
vide some insight into the highly customized, cross-modal Wireless
Security behaviors that are possible in this context.

2. RELATED WORK
While many Network Intrusion Detection (Security) Systems ex-
ist (both commercial and open-source), we are presently unaware
of any other work that leverages a programmable Sensor Network
framework toward joint physical and Wireless Network Security,
and thus believe we are unique in this regard. We present works that
are related in three major thrusts; We distinguish between works
that provide detection on a single wireless source (probe) as Wire-

less Intrusion Detectors (WIDs), those works that detect events
across multiple detectors simultaneously as Intrusion Detection Sys-

tems (IDSs) and finally those that determine attack location as Wire-

less Intrusion Detection Systems (WIDSs). Although WIDSs con-

tain a WID component, these works are not necessarily proper sub-
sets of each other, as IDSs may not provide wireless detection.

Wireless Intrusion Detection

Kismet [14] is the de facto open-source Layer-2 Wireless Intru-
sion Detector. Kismet passively scans 802.11 channels for activity
and can be used for a variety of uses including finding hidden ac-
cess points, mapping access points in a geographic region via GPS,
or generating alert events when suspicious frames are detected. A
Kismet deployment may consist of three distinct components, (1)
a light-weight Kismet Drone that passively captures the wireless
frames from its local interface and sends them to (2) a Kismet
Server that processes the frames from one or more drones to de-
tect either fingerprint or trend based suspicious activity and (3) an
optional remote Kismet client that connects to the Server to receive
notifications and render the results. The Kismet server may drive
external wireless event notification by providing custom clients that
communicate using the published Kismet protocol. Kismet may be
configured as an Intrusion Detection System by associating several
drones with a single server process to build a single, central wire-
less event log file. Kismet is not considered a Wireless Intrusion
Detection System by our definition however, as the Kismet server
does not indicate which physical drone is responsible for an alert
which prevents spatial intrusion tracking. Kismet-newcore, a re-
write of the Kismet project, does preserve which drone generated a
wireless alert event yet lacks a stable build at this time. Other tools
have existed in the WID space prior to Kismet (e.g., WIDZ [16]) but
have been largely unmaintained in recent years. Similarly, AirIDS
[17] set out to be the first open-source Intrusion Detection System
aimed at 802.11 attacks, however the project never reached a stable
release, is no longer available for download, and appears to have
been abandoned.

Intrusion Detection Systems

While Kismet is the de facto Layer-2 WID and IDS, Snort [19] is
the de facto standard IDS for Layer-3 (IP traffic analysis). Snort
is a mature IDS with a large user base and comprehensive set of
detection rules for detecting malicious content in IP packets for a
wide range of attacks. Snort also offers very basic response mecha-
nisms (e.g., logging or email alert mechanisms) however the Barn-
yard project not only aims to increase performance of logging out-
put but also claims to enable the creation and use of custom output
plug-ins. As Snort is aimed at Layer-3, it offers no support for wire-
less monitoring, however the Snort-wireless [15] project adapts the
Snort rule engine for Layer-2 wireless use by adding wireless frame
capture and replacing IP addresses with MAC addresses in rule pro-
cessing. Unfortunately the Snort-wireless project has not been up-
dated since late 2005 and plans for integrating Snort-wireless into
Snort appear to have been abandoned.

In many ways, our vision is similar to that of modular IDSs
(e.g., [24], [23]). These modular (or so-called “Hybrid”) systems
are designed to allow various Intrusion Detection Software pack-
ages to be integrated as “Sensors” in the IDS. These works share
the modular approach which is similar in spirit to the cross tool in-
tegration that we hope to provide to the Network Security commu-
nity, yet these works are narrowly focused on issues of traditional
Network Security. Our work enables the composition of sense and
respond programs that manipulate both network data and physical
sensory data (e.g., image processing on embedded video cameras)
in a manner that would be impossible on these IDS platforms with-
out significant changes.

Wireless Intrusion Detection Systems

Tracking MAC addresses alone is insufficient for a WIDS as they
may be easily spoofed by malicious tools [5]. The requirement that
a WIDS must determine attack location is sensible, considering that
Layer-2 DoS attack response generally requires physical interven-
tion [10].

Nominally we expect we know the Cell of Origin (COO) of
a detected wireless transmission (i.e., the user’s distance must be
within the detection range of the physical location of the detection
point), however while this might be useful for short range media
(e.g., Bluetooth, RFID) we’d like to obtain higher accuracy than
the range of 802.11 (ranging from 200 to 25meters, depending on
the physical layout). Many approaches to derive location from Sig-
nal Strength Information (SSI) of RF transmissions have been un-
dertaken, including Microsoft Research’s RADAR [4] which uses
readings from multiple sensors to perform on-line triangulation,
compared against off-line training data. Many works since have
tried to loosen the off-line training needs of this work attempting to
dynamically overcome issues of transmission reflection, diffraction
and interference (e.g., [25]). Work presented in [21] frames these
goals directly in terms of reconstructing wireless entity location
particularly for security purposes and a similarly goaled architec-
ture is described in [12].

The work in [2] offers an architecture for a Wireless Intrusion
Detection System that breaks from the norm slightly, in so far as it
establishes wireless sensors that form a perimeter around an access
point (or area) to be protected and uses directional antennae (op-
posed to the typical, omni-directional antenna found on WAPs) that
would sweep the region to better pin-point the location of a particu-
lar wireless user. This work provides detailed analysis of particular
directional antennas and is able to pinpoint wireless intruders accu-
rately. Our work is compatible with the use of sweeping directional
antenna; and perhaps more so than what is envisioned in [2] as the
SNBENCH can address and direct the servos that control antenna
movement explicitly, enabling on-demand target tracking. In par-
ticular, we envision either making the directionality of the wireless
sensors explicit to be controlled within the service logic, or mount-
ing the wireless antennae to the pan-tilt-zoom camera network that
sweeps the perimeter of our SN testbed. Additionally we note that
requiring a perimeter defense may be useful in some installations,
but perhaps impractical in most. The ability to use modalities other
than directional antennae for identification (e.g., the use of cam-
eras) extends the applicability of our approach.

In the commercial spectrum, the Wireless Intrusion Detection
System AirDefense Enterprise [3] integrates the industry standard
signal strength positioning system, Ekahau [9] to provide location
tracking of wireless intruders1. IBM’s Internet Security Systems’
Wireless Products [11] are also popular, but lack location track-
ing. Both tools attempt to provide complete, turn-key detection
and response systems for corporate wireless networks. Given their
single-solution nature, these tools do not provide integration with
third-party Intrusion Detectors or tools. Responses to wireless at-
tack detection in these systems are more pro-active, for example,
disauthenticating a malicious user to effectively kick him or her off
the network, yet they do not offer an accessible programming in-
terface to adjust the sense and respond behavior. While these solu-
tions represent the upper echelon of commercial sense and respond
WIDSs, their lack of extensibility makes cross-modal monitoring
solutions (e.g., utilizing video frames) unattainable.

1Popular turn-key hardware solutions to wireless device tracking
also exist, e.g., Cisco’s 2700 Series Wireless Location Appliance
[20].

3. SNBENCH OVERVIEW
To orient the reader to the platform to ease further discussion, in
this section we briefly highlight the salient features of SNBENCH.
The vision, goals and high-level overview of the SNBENCH infras-
tructure have been reported elsewhere [6] and implementation de-
tails may be found in [18].

SNBENCH consists of programming support and a runtime in-
frastructure for Sensor Networks comprised of heterogeneous sens-
ing and computing elements that are physically embedded into a
shared environment. We refer to such a physical space with an em-
bedded SN as a Sensorium [7]. The SNBENCH framework allows
Sensorium users to easily program, deploy, and monitor the ser-
vices that run in this space while insulating the user from the com-
plexity of the physical resources therein. We liken the support that
SNBENCH extends to a Sensor Network to the support that higher-
level languages and operating systems provide to traditional, sin-
gle machine environments (language safety, APIs, virtualization
of resources, scheduling, resource management, etc). SNBENCH

is extensible by design such that new hardware and software ca-
pabilities may be painlessly folded into the infrastructure by its
advanced users and those new capabilities easily leveraged by its
novice users.

SNBENCH provides a high-level programming language with
which to specify programs (services) that are submitted to the re-
source management component which in turn disseminates pro-
gram fragments to the run-time infrastructure for execution. At the
lowest level, each sensing and/or computing element hosts a Sensor
eXecution Environment (SXE) that abstracts away specific details
of the host and attached sensory hardware. SXEs are assigned tasks
by the resource management components of SNBENCH the Senso-
rium Service Dispatcher and Sensorium Resource Manager in tan-
dem monitor SN resources, schedule (link) and deploy (bind) tasks
on to available SXEs. A graphical representation of this end-to-end
support is shown in Figure 1.

SNAFU

compiler

SSD/

SRM

bound

STEP

bound

STEP

bound

STEP

SXE

SXE

.

.

.

.

.

.

compilation linking dispatch

SNAFU

program

unbound

STEP

program

Figure 1: The SN program life-cycle as enabled by SNBENCH. Rect-

angles represent data, circles represent tasks/processes, and the dashed

lines represent control communication (dependency).

The Virtual Instruction Set Architecture of SNBENCH is the
Sensorium Task Execution Plan (STEP), a tasking-language used to
describe complete programs and fragments alike. A STEP program
is a graph of a SN programs’s data-flow and computational depen-
dency with the nodes of a STEP graph representing the atomic com-
putation and sensing operations and edges representing data flow.
In execution, demand for evaluation pushed down from the root of
the graph to the leaves and values percolate up from the leaves back
to the root. STEP nodes describe data, control flow (e.g., repetition,
branching) and computation operations that we refer to as STEP
Opcodes and the SXE maintains implementations of the Opcodes
with which it may be tasked.

Opcodes do not directly manipulate sensors, but rather manip-
ulate SNBENCH typed data. Specific details of the sensor hardware
of the SXE are abstracted away by a SensorHandler module that
is capable of communicating with and reformatting the data from
a specific sensor to produce to SNBENCH typed data; Support for

new sensor device types require the addition of new SensorHan-
dler modules2. In SNBENCH there is a distinction between a SN
Service Developer who uses high-level programming languages to
compose Services by gluing together Opcodes and sensors (gener-
ally without regard for how the Opcodes are actually implemented
beyond their type signature) and the SNBENCH “engineers” who
are responsible for expanding the Opcode and SensorHandler li-
braries to enable new functionalities.

4. ENABLING WIRELESS MONITORING
SNBENCH is extensible by design insofar as support for new sens-
ing devices may be added to the Sensor eXecution Environment
(SXE) by providing implementations of two relatively small inter-
faces; a SensorHandler translates SNBENCH requests to interact
with a specific device and a SensorDetector module must provide
facility to detect new devices of this type and inspect their state.
The SensorHandler is akin to a device driver, abstracting away the
specific idiosyncrasies of the particular device’s interface and en-
abling the device to be accessed by higher-level programming con-
structs. As far as the SNBENCH framework is concerned the ab-
stracted device becomes just another managed input device/event
generator only different from a video camera or motion sensor in-
sofar as the datatype of its output.

To enable wireless network security service composition on
SNBENCH, we have added two new sensors and a new actuator; The
WifiAlertSensor reports wireless alert detection events, the WifiAc-
tivitySensor reports MAC addresses and Received Signal Strength
Indication (RSSI) for any passively observed wireless activity, and
the WifiResponder actuator sends a disauthenticate flood to a par-
ticular MAC address. Rather than implement wireless Layer-2 tools
from scratch we opted to leverage several existing open-source soft-
ware packages.

WifiAlertSensor

The WifiAlertSensor is a SensorHandler implementation that lever-
ages the Kismet [14] wireless intrusion detector via a self-contained
customized Kismet client. The Java based WifiAlertSensor class is
hosted by a “non-lightweight” SXE and translates the proprietary
Kismet client-server protocol into structured, typed SNBENCH ob-
jects (tagged XML) that encapsulate notifications from the Kismet
server. The decision to use Kismet stems from its passive scanning
ability, wide range of hardware support, and modular design (de-
scribed in Section 2). While the decision to use this package in par-
ticular may be debated, the inclusion of any another functionally-
equivalent Wireless Intrusion Detector would be equally straight-
forward.

A Kismet client may request to receive several types of Kismet
messages from a Kismet server/drone pair (client traffic, AP de-
tection, suspicious activity alerts, etc.). In the case of the alert
sensor, we request notification of all wireless alerts supported by
the current stable build of Kismet (detailed in Table 1). When-
ever the Kismet server detects an Alert condition from its corre-
sponding drone’s data feed, an alert is sent to the WifiAlertSensor
client which translates and buffers the alert message. In addition
to translating the Kismet protocol, the WifiAlertSensor adds addi-
tional fields to alert message; a local timestamp to measure buffer
service delay, a sensor source to identify the physical sensor (drone)

2SXEs can retrieve Opcode implementations at run-time, however
support for loading new sensing devices at run-time is not currently
supported. Such functionality is not difficult to support, and is anal-
ogous to dynamically loading device drivers to support new hard-
ware.

that produced the message, and a severity field that indicates the rel-
ative threat of the particular attack (this corresponds to the values
we have specified as the “danger” column in Table 1).

The WifiAlertSensor’s message buffer is configurable in length
(where length is measured in either size or time) and alert mes-
sages are retrieved from the buffer by Opcodes requesting data from
this sensor. Implementation of the retrieval Opcode may impose a
blocking or nonblocking semantic, as needed. In our experimenta-
tion we implemented a single Alert-centric Opcode, sxe.core.-
wifi.get, that performs a non-blocking read from the alert sen-
sor’s buffer to populate and return a WifiAlert. The WifiAlert data-
type is a subtype of snStruct, with tagged fields corresponding to
the fields populated by the WifiAlertSensor and thus accessing the
data within a WifiAlert reuses the existing snStruct manipulation
opcodes. A Service Developer retrieves WifiAlerts via the high-
level function DetectWifiAlert() that is compiled into a call to
the Opcode sxe.core.wifi.get with a WifiAlertSensor (or set
of sensors) as a parameter. Complete examples of high-level ser-
vice logic are given in Section 7.

WifiActivitySensor

The Activity sensor provides data regarding wireless transmissions
that have been detected by a passive, promiscuous-mode wireless
sensor. In particular we are interested in the MAC address of a
transmission, the observed signal strength (RSSI) and the mode of
the transmission (i.e., Access Points, Clients, Ad-hoc participants).
While determining physical location from RSSI is imperfect (as
RSSI readings themselves may not be entirely accurate depending
on the driver implementation and other physical factors) the use of
RSSI readings can better pinpoint a MAC address’ physical loca-
tion than the simple cell-of-origin data alone. WifiActivitySensor
maintains a hash-table of the detected wireless activity (keyed by
MAC address), which can be used to either report new/updated
wireless activity similar to the Alert sensor or to query the activity
log to find information about a particular MAC address. Like the
alert sensor the activity sensor also communicates with a remote
sensor “server” process responsible for gathering data.

In practice we actually support two different physical imple-
mentations for the activity sensor server as the Kismet drone/Server
does not retrieve RSSI on our preferred target platform. For Kismet
RSSI supported hardware we use a client derived from the Wifi-
AlertSensor implementation that requests and parses NETWORK
and CLIENT messages from the Kismet server rather than ALERT
messages. For the OpenWRT platform, we use custom code that
sends ioctl’s to the wireless device to put the device in passive,
monitor mode, accept frames, and retrieve data from the frames
and device (including the RSSI). Our program is based on code
from the open source WiViz [22] package for OpenWRT, which
contains the ioctl codes needed to achieve the proper device state
and interaction. Like the Kismet server, this program provides no-
tifications of activity messages which are received and hashed by
the WifiActivitySensor.

The high-level Opcode DetectWifiActivity() is compiled
into sxe.core.wifi.get with a WifiActivitySensor as a param-
eter and blocks until a new activity message is available from that
sensor. Additionally QueryWifiActivity() (compiled into sxe-
.core.wifi.find) searches the WifiActivitySensor’s hash table
for the latest reading associated with the specified MAC address.
Like the WifiAlertSensor, the samples returned from this sensor
are encapsulated in an snStruct derivative type.

Name Danger Type Description

PROBENOJOIN none Trend A user is probing periodically without joining any AP.
Windows XP clients cause this alert as normal behavior.

LUCENTTEST none Fingerprint A site survey package is in use

NETSTUMBLER low Fingerprint An attempt to discover the SSID of a hidden AP

WELLENREITER low Fingerprint Dictionary based attempt to discover hidden AP’s SSID

DISASSOCTRAFFIC medium Trend A user is transmitting data shortly after being disassociated
(likely an indication that this user is victim of an attack)

BSSTIMESTAMP medium Trend An AP’s timestamps are out of sequence and thus may indicate
a spoofing attempt

AIRJACKSSID high Fingerprint An AP is broadcasting an SSID that is the default of the
hijacking too Air-Jack

DEAUTHFLOOD high Trend Disassociate or deauthenticate are being repeatedly sent
(flooded) from a non-AP node

CHANCHANGE high Trend An AP is now advertising a different channel than previously
detected (probably a man-in-the-middle attack)

BCASTDISCON high Fingerprint A disassociate or deauthenticate message has been broadcast.
May be used to disclose a hidden SSID, perform a man-in-the-
middle attack, or denial service.

NOPROBERESP high Fingerprint A response to a probe containing a 0 length SSID, which is
an attempt to exploit a bug in some AP firmware

MSFBCOMSSID high Fingerprint A packet crafted to exploit a particular Windows
MSFDLINKRATE driver fault that allows arbitrary code injection
MSFNETGEARBEACON

DISCONCODEINVALID high Fingerprint A packet crafted to exploit a driver or AP firmware fault
DEAUTHCODEINVALID that might allow arbitrary code injection
LONGSSID

Table 1: Alert events detected by Kismet and reported to SNBENCH

WifiResponder

In addition to the wireless network sensing described above, we
have also implemented a Layer-2 wireless actuator (i.e., output de-
vice) WifiResponder that may be used as a retaliatory action against
a detected attacker. The WifiResponder invokes a script on a trusted
(whitelisted) device running Linux with a compatible 802.11 inter-
face and the airreplay-ng [8] tool. The Opcode APDeauth() takes
as arguments a WifiResponder that will send a flood of deauthenti-
cate messages to a particular MAC address (the second argument)
from a particular MAC address (the third argument).3 An actu-
ator is nearly identical to a Sensor in its implementation within
the SNBENCH. The Handler for WifiResponder invokes the remote
common gateway interface (CGI) script to initiate the deauthenti-
cate “attack” against the specified host.

5. DEPLOYMENT ENVIRONMENT
Our test-bed deployment contains several OpenWRT[1] Linux en-
abled Linksys WRT54GL Access Points, each with the kismet-
drone, airreplay-ng, and signal strength monitor packages installed.
The access points are configured to use their wireless interface in
client mode, and are connected to our gigabit research LAN by its
on board 100Mbit Ethernet port.

To support the WifiAlertSensor, we run a Kismet drone pro-
cess on each of the access points while the Kismet Server process
runs on the same host as the SXE. Although the Kismet Server
process could also be run directly on the AP, the RAM and CPU
limitations of these devices lead to a less responsive system than
if the Kismet Server process is hosted on a separate host. As the

3Readers may readily note that this opcode is a loaded weapon and
may gasp or recoil in horror. In fact, this is not the first Opcode that
requires special user privileges to ensure correct use.

Kismet Server does not presently distinguish the results from dif-
ferent Kismet Drones [13], we run one Kismet server per drone and
each WifiAlertSensor connects to a unique Kismet Server process
thus allowing SNBENCH to distinguish which drone generated a
wireless event. Running one Kismet Server per Drone also carries
the advantage of minimizing the impact of a Kismet server process
hanging, or failing to process updates from its drones (admittedly a
fairly uncommon occurrence).

In our tests of the WifiAlertSensor we were able to simulate
and detect all relevant attacks detected by Kismet (Table 1) and
were unable to measure any significant induced delay on event de-
tection in the SNBENCH infrastructure. Analysis confirmed the ex-
pectation that the amount of time a single Kismet message spent
in the Sensor buffer was directly related to the computation load
on the SXE host and the alert generation rate. In general the ob-
served buffer service delay oscillated between 0 and 15ms per alert
under moderate load with unrealistically high message flooding ar-
rival rates (in practice, Kismet can and will throttle alert notification
rates, however this was disabled for our performance tests). Under
heavy load conditions with alert message flooding we experienced
queuing delay as long as 300ms. This gives us a good indication as
to the maximum acceptable workload for an individual SXE before
it is no longer a viable host for wireless sensing tasks. Ultimately
we believe that any response detection under 1 second is reasonable
as it is unlikely that the attacker would, say, flee the premises (or
video frame) within that amount of time.

6. SERVICE PROGRAMMING PRIMER
To understand the example Wireless Security Services implemented
on SNBENCH it is important to understand the key concepts and

unique constructs of SNBENCH programming.4 The Sensorium
Task Execution Plan (STEP) language has a functional-style, high-
level sibling called SNAFU (Sensor Network Applications as Func-
tions). SNAFU serves as a readable, accessible language that is
compiled into the graph-centric STEP for execution. Broadly speak-
ing, functions in SNAFU correspond to the computational nodes of
a STEP graph while terminals represent nodes that convey sensors,
actuators, and constant values.

SNAFU provides symbolic assignment and function defini-
tion, however it forbids explicit recursion by reference. Instead
SNAFU provides iteration constructs called triggers.5 A trigger
takes two arguments, a predicate and a response clause. The pred-
icate is repeatedly evaluated until it evaluates to true, at which
point the response clause is evaluated and returned as the result
of the trigger expression. For example consider the expression
Trigger(P,Q) in which P is the detection of an AP being compro-
mised and Q is an expression that shuts down the AP. The While-
Trigger(P,Q) is similar to the previous trigger, except that it eval-
uates Q every time P evaluates to true and when P eventually eval-
uates to false returns the last value of Q (or NIL if P was initially
false).

Persistent triggers extend the basic triggers in that they return a
stream of values over their persistent evaluation. A LevelTrigger

evaluates the predicate P indefinitely (or for some specified length
of time or conditional termination) and evaluate and return a value
of Q every time P evaluates to true. In practice P may be the detec-
tion of a particular MAC address being used in the network and Q is
the recording of an image at the detected locale. An EdgeTrigger

continually evaluates the predicate, but will only evaluate and re-
turn the clause Q when ever the predicate P transitions to be true
(i.e., on the edge of the signal P). In use, if the expression P repre-
sents detection of two deauthenticate beacons (indicating the start
of a deauthenticate flood) and Q is an SMS pager alert, we do not
want to generate a separate notification for every consecutive deau-
thenticate beacon during the duration of the flood.

SNAFU also allows a programmer to refer to an expression by
symbolic reference (e.g., let X = Y in Z wherein X stands for
the complete expression Y in the expression Z) or refer to a compu-
tational result by symbolic reference (e.g., let_const X = Y in

Z wherein X stands in for the result of the expression Y in the ex-
pression Z). Finally the trigger construct begs for the creation of a
unique reference that allows the symbol to be recomputed once per
iteration of the trigger. The “let_once” binding (e.g., let_once
X = Y in Z”) provides exactly that facility, ensuring the expres-
sion Y is evaluated once per iteration of the trigger (Z) at the first
occurrence of the symbol X, while all latter instances of the sym-
bol X in the same iteration of Z are evaluated by reference to the
previous evaluation.

7. WIRELESS SECURITY SERVICES

Simple Detection

An example SNAFU program that provides simple logging is given
in Program 1. A level_trigger is used to assign an event handler
to the detection of a high severity wireless alert. The storage.-

append Opcode modifies a named storage entity (i.e., table) spec-

4We refer the reader to [18] for a more thorough treatment of the
SNAFU language and its evaluation.
5Tail-recursion can be emulated with triggers and the token
“LAST_TRIGGER_EVALUATION” that refers to the previous eval-
uation of the trigger within the body of the predicate or response
clause.

ified by the first argument by inserting a data object and its corre-
sponding unique key. The storage table is keyed by timestamp and
includes entries for each detected violation containing the recorded
MAC address, the sensor from which the alert was detected, and the
type of alert. Unlike the logging provided by Kismet as an IDS, this
service records which sensor has detected the event and is backed
by an SQL server. The logged data is available programmatically
via storage access Opcodes or direct SQL queries, or through a
standard web browser via the SXE host’s web service that performs
XSL translations to render the local data storage.

This sample SNAFU program could easily be extended to es-
tablish a log of all observed wireless activity (not just attacks) by
adjusting the predicate of the trigger from DetectWifiAlert to
DetectWifiActivity and removing the severity check. Another
simple example service logic is given in Program 2; This program
will automatically email an administrator when a specific wireless
attack is detected.

Attack Response

The previous examples are essentially the status quo for a response
to the detection of a breach in a Wireless Network – an entry into a
log file or an email alert. The advantage of employing the SNBENCH

in the wireless security domain is the wider range of responses
possible. Nominally, the email operation in Program 2 could be
replaced with any number of response mechanisms including send-
ing an explicit deauthorization to the detected MAC address6 using
the WifiResponder and APDeauth opcode described in Section 4.
Instead we explore the unique cross section of the network plane
(e.g., wireless data frames) with the physical plane (e.g., signal
strength and signal loss of signal over distances). For example,
an embedded, cross-modal Sensor Network such as the Sensorium
can utilize both wireless network sensors (i.e.network plane sen-
sors) and a pan-tilt-zoom video camera network (i.e.physical plane
sensors) to catch an image of the attacker “in the act.”

Logging Physical Evidence

Any user detected engaged in wireless network intrusion is clearly
within a bounded distance from the detecting sensor. This coarse,
cell of origin based physical location of wireless users is available,
imprinted in all wireless data returned from the WifiSensors (de-
termined by which sensor has detected the user). A very simple
wireless cell of origin location example is specified in Program 3.
The program’s content is very similar to the previous examples and
introduces some Pan-Tilt-Zoom sensor (PTZCamera) specific op-
codes, the function of which should be clear from context. This
sample streams images of a region where an attack has been de-
tected. The location logic is explicit in the service logic, select-
ing an image from the camera that best covers the physical space
within the signal coverage of the relevant Wifi sensor, using “hard
coded” location logic that is specific to the sensor configuration of
the particular deployment. The case expression is used for read-
ability as syntactic sugar (shorthand) for nested conditionals and
takes the same syntax as in StandardML. Connecting this program
fragment to either of the previous examples would enable the log-
ging or emailing of images that correspond to the attack location.

Alternatively, the reconstruction of user location could be im-
plemented within an Opcode resulting in intrusion detection service
logic that is agnostic to the particular location resolution mecha-
nism used. Such an approach makes sense if the deployment en-
vironment already contains a wireless location infrastructure (e.g.,

6A MAC address is far from the best way to uniquely identify an
attacker as the attacker will likely use a fictitious MAC address or
worse, clone a legitimate user’s MAC during an attack.

SNAFU Program 1 Adds an entry to a central log on detection of a wireless alert.

let_once ALERT = DetectWifiAlert(sensor(WifiAlert,"ALL")) in

let_once KEY = concat(ALERT.TIMESTAMP,ALERT.SOURCE) in

level_trigger(

equals(ALERT.SEVERITY,"HIGH"),

storage.append("ALERTLOG",KEY,ALERT)

)

SNAFU Program 2 E-mail an administrator whenever a specific wireless alert is detected.

let_once ALERT = DetectWifiAlert(sensor(WifiAlert,"ALL")) in

level_trigger(

equals(ALERT.TYPE,"DEAUTHFLOOD"),

email("mocean@cs.bu.edu",

concat(NOW,

": Deauth flood detected from MAC ", ALERT.MAC,

" at time ", ALERT.TIMESTAMP,

" by sensor ", ALERT.SOURCE

)

)

)

[20], [9], all knowing oracle) that could be accessed from within
an Opcode call. An example of this approach is given in Program
4. WifiLocateMac encapsulates the physical location of MAC
addresses and (PTZLocate) determines the best PTZ Camera (and
corresponding angle) to capture an image of that location. The im-
plementation of WifiLocateMac is functionally similar to Best-

PTZForViewOf in the example in Program 3, yet uses a received
signal strength from multiple sensors to estimate the target’s loca-
tion between the sensors.

Recall the SNBENCH not only eases the composition of such
alert services, it also eases deployment by automated re-use of ex-
isting computation/deployments to improve resource utility. All the
examples given thus far share the same predicate logic and could
share a single instantiation of that portion of the logic.

8. FUTURE WORK
As briefly touched on in the previous Section 7, computational
complexity can either be placed explicitly in the service logic or
pushed into the Opcodes on which the service relies. Naturally,
there is a resource flexibility and performance trade-off in this deci-
sion. In the most degenerate case any program can be implemented
as one giant Opcode that eliminates any performance penalties in-
curred by the STEP interpreter. Such an approach yields a com-
plex Opcode implementation that eliminates SNBENCH’s inherent
resource management benefits (i.e., computation and resource shar-
ing becomes unlikely as there will be few common subgraphs be-
tween STEP programs, individual opcodes can not be split across
multiple SXEs, and there may be few SXEs available to accommo-
date such a large computation). On the other extreme a program
composed entirely of very basic STEP Opcodes may pay a high
overhead for the SXE interpreter, yet has maximum flexibility to be
split across any compatible partitioning of the SXE space. Finding
the optimal balance between STEP and Opcode complexity largely
depends on the particular needs of the given service.

Advanced Location Reconstruction

Program 5 tries to find a balance between the extremes of the last
two examples in the prior section. This program also produces an
image whenever an attack is detected, but specifies much of the lo-
cation logic within the STEP program while still leaving the signif-

icant computation to Opcode implementations (e.g., rssiToDist,
PTZFovCover). The function Fold, commonly referred to as re-
duce in some languages, is a higher-order function that applies a
given function accumulatively across a given list. In this applica-
tion, the function BetterView is applied across the list of all Pan-
Tilt-Zoom sensors to determine which sensor has the best coverage
of the area in which an attack was detected in order to take a snap-
shot from that sensor. In compilation Fold is syntactic sugar that is
expanded by the compiler via substitution; its implementation is an
expression that uses a WhileTrigger, the LAST_TRIGGER_EVAL

token, lists and pairs to provide iterative application over the list of
elements.

Wireless Access Lists from Physical Data

The last example program (Program 6) also leverages the natu-
ral connection between wireless network security and physical site
surveillance, however does so in the other direction, using infor-
mation detected on the physical plane to (re-)configure the wireless
network. An embedded camera network and face detection Op-
codes are used to detect the identities of individuals entering or
leaving a secured space as a trigger to enable the detected user’s
wireless MAC address for service in that physical area. Put sim-
ply, when we see Jane enter the lab we want to allow Jane’s MAC
address to be used in the lab (placed in the whitelist), and we want
to remove her MAC address from the whitelist when she leaves
the lab. The goal is to make it slightly more difficult for a mali-
cious user to find an unused, authorized wireless MAC address to
abuse for great lengths of time. Modification of the WLAN’s access
control list in this example is performed by assuming the presence
of a WifiWhitelist; This implementation would be straightfor-
ward on OpenWRT enabled Access Points, requiring a CGI script
to modify the device’s maclist configuration file. One may easily
imagine other sensors that may be used in tandem with face detec-
tion as the trigger predicate in this expression, e.g., a magnetic ID
card or RFID reader.

SNBENCH as a Turn-Key Network Security Solution

There is no reason to limit SNBENCH’s Network Security to Wire-
less attacks. Other Intrusion Detection Tools and Network inter-
faces could easily be added to further improve the SNBENCH as a

SNAFU Program 3 Whenever a wireless alert is detected, pan a PTZ camera to that region and return its image.

def BestPTZForViewOf(alert) =

case APName(alert.SOURCE) of

‘‘CS Grad Lab West’’ => List(45,0,0,sensor(PTZCamera,"PTZ1"),

| ‘‘CS Grad Lab East’’ => List(15,0,0,sensor(PTZCamera,"PTZ1"),

| ‘‘CS Grad Lab Lounge’’ => List(0,0,0,sensor(PTZCamera,"PTZ3"),

| ‘‘CS UGrad Lab’’ => List(0,0,0,sensor(PTZCamera,"PTZ4")

let_each ALERTSENSORS = sensor(WifiAlert,"ALL") in

let_once ALERT = DetectWifiAlert(ALERTSENSORS) in

level_trigger(not(isNull(ALERT)),

PTZSnapshot(BestPTZForViewOf(ALERT))

)

SNAFU Program 4 Functionally equivalent to Program 3, but uses “black-box” opcodes.

let_each ACTSENSORS = sensor(WifiActivity,"ALL") in

let_each PTZSENSORS = sensor(PTZCamera,"ALL") in

let_once ALERT = DetectWifiAlert(sensor(WifiAlert,"ALL")) in

level_trigger(not(isNull(ALERT)),

PTZSnapshot(PTZLocate(QueryWifiAlert(alert.MAC,ACTSENSORS)),PTZSENSORS))

)

SNAFU Program 5 Whenever a wireless attack is detected return an image from the camera that has the best coverage of the region
containing the attack.

def BetterView(T,X,Y) =

let L = Pair(locate(T.SOURCE),rssiToDist(T.RSSI))

in cond(greater(PTZFovCover(X,L),PTZFovCover(Y,L)), X, Y)

let_once ALERT = DetectWifiAlert(sensor(WifiAlert,"ALL")) in

let_once ALERTINFO = QueryWifiActivity(WifiActivity,ALERT.SOURCE) in

level_trigger(

not(or(isNull(ALERT),isNull(ALERTINFO))),

PTZSnapshot(

Fold(

BetterView(ALERTINFO,-),

sensor(PTZCamera,"ALL")

)

)

)

SNAFU Program 6 Use the detection of a user’s face to enable their associated MAC address for use on the AP.

let_once SNAP = snapshot(sensor(Camera,"Lab door in","Lab door out")) in

let_once WLAN_MAC_ADDR = storage.lookup("MACMAP",FaceDetect(SNAP)) in

level_trigger(not(isNull(WLAN_MAC_ADDR)),

case SNAP.SOURCE of

"Lab door in" => WifiWhitelist(WLAN_MAC_ADDR, sensor(AP,"CS Lab*")),

| "Lab door out" => WifiBlacklist(WLAN_MAC_ADDR, sensor(AP,"CS Lab*"))

)

complete, cross-layer Network Intrusion Detection System. Inte-
grating Layer-3 detection (e.g., Snort) as a sensor would enable the
detection of misuse from IP contents that could be used to drive iso-
lation or removal responses at Layer-2. Additionally including port
scanning and other fingerprinting tools would greatly increase con-
fidence in user identification enabling more confident automated
response.

In our vision of SNBENCH we view the Sensor Task Execution
Plan (STEP) as a thin-waist language that may be a compilation tar-
get from other domain specific languages (e.g., a Structured Query
Language). Ideally we would like to move our own campus IT

department to the use of SNBENCH over their current Network Se-
curity and Intrusion tools. As such we might consider the develop-
ment of a STEP compiler for a declarative/rule-oriented language
that is similar to existing network rule specification languages to
ease the staff’s transition to SNBENCH.

Related to this goal, our work on a lightweight SXE for em-
bedded devices will be used to explore deployment of the Sen-
sor eXecution Environment directly on OpenWRT enabled access
points to provide SNBENCH as a turn-key solution for Wireless Net-
work Security services.

9. CONCLUSIONS
Many excellent Wireless Intrusion Detection tools exist and they
achieve their specialized goals well. These tools should not (and
rarely attempt to) provide complete Network Security Systems as
they are generally focused on detecting a particular kind of attack
(denial-of-service, intrusion, etc) at a particular scope (Layer-2 or
Layer-3). A complete Network Security solution should integrate
multiple tools to cover a superset of possible attacks at all possi-
ble layers and should bridge the divide between cyber and physical
identities. In practice this allows NID tools to focus on what they
do best (i.e., detection) and yet be woven into a comprehensive
Network Security solution. Network Security (specifically, wire-
less security) is not a problem that exists in a vacuum detached
from the physical space in which the network is deployed. We pro-
mote an approach to unify physical site surveillance and network
security security under the umbrella of SNBENCH — a general pur-
pose sensing infrastructure we have developed. In that regard, we
have demonstrated how SNBENCH enables the rapid development
and deployment of cross-modal security services. We have shown
that with SNBENCH (1) detection of wireless anomalies can be cor-
related with other sensory inputs providing reciprocal benefit to
merging security on the physical and cyber planes, (2) detection
and response services may be easily composed and modified with-
out technical knowledge of the specific protocols or implementa-
tions of the underlying sensory tools, and (3) adding additional
intrusion detection tools as input or other devices for response is
straightforward given SNBENCH’s modular architecture. The illus-
trative example programs provided in this paper range from the sta-
tus quo (simple logging and email alerts) to beyond (enabling MAC
addresses based on face detection) in a hope to spark the reader’s
imagination to more elaborate services and responses that are cur-
rently possible with the SNBENCH platform (e.g., locking doors,
turning on a siren, ...).

10. REFERENCES
[1] OpenWRT Project Homepage, http://openwrt.org/.

[2] Frank Adelstein, Prasanth Alla, Rob Joyce, and Golden
G. Richard III, Physically Locating Wireless Intruders, ITCC
’04: Proceedings of the International Conference on
Information Technology: Coding and Computing (ITCC’04)
Volume 2 (Washington, DC, USA), IEEE Computer Society,
2004, p. 482.

[3] AirDefense, Inc., AirDefense Enterprise Product Homepage,
http://www.airdefense.net/products/enterprise.php.

[4] Paramvir Bahl and Venkata N. Padmanabhan, RADAR: An

In-Building RF-Based User Location and Tracking System,
INFOCOM (2), 2000, pp. 775–784.

[5] John Bellardo and Stefan Savage, 802.11 Denial-of-Service

Attacks: Real Vulnerabilities and Practical Solutions,
SSYM’03: Proceedings of the 12th Conference on USENIX
Security Symposium (Berkeley, CA, USA), USENIX
Association, 2003, pp. 2–2.

[6] Azer Bestavros, Adam Bradley, Assaf Kfoury, and Michael
Ocean, SNBENCH: A Development and Run-Time Platform

for Rapid Deployment of Sensor Network Applications, IEEE
International Workshop on Broadband Advanced Sensor
Networks (Basenets), October, 2005.

[7] Boston University, Department of Computer Science,
Sensorium Research Homepage,
http://www.cs.bu.edu/groups/sensorium/.

[8] Christophe Devine, Aircrack-ng Homepage,
http://www.aircrack-ng.org/.

[9] Ekahau, Inc., Ekahau Positioning Engine 4.0 Product

Homepage,
http://www.ekahau.com/products/positioningengine/.

[10] Jamil Farshchi, Wireless Intrusion Detection Systems,
http://www.securityfocus.com/infocus/1742, 2003-11-05.

[11] IBM Internet Security Systems, Wireless Products

Homepage, http://www.iss.net
/documents/whitepapers/wireless_LAN_security.pdf.

[12] James Goddard Joshua Lackey, Andrew Roths, Wireless

Intrusion Detection, http://www-935.ibm.com/services/-
us/bcrs/pdf/wp_wireless-intrusion-detection.pdf,
2003.

[13] Mike Kershaw, Kismet User Forum,
http://www.kismetwireless.net/Forum/General/Messages/-
1142522037.4893529.

[14] , Kismet (version 2007-01-r1b),
http://www.kismetwireless.net/documentation.shtml.

[15] Andrew Lockhart, Snort-wireless Homepage,
http://snort-wireless.org/.

[16] “loud-fat bloke”, WIDZ (Wireless Intrusion Detection

System) Homepage, http://freshmeat.net/projects/widz/.

[17] Michael Lynn, AirIDS Project Homepage,
http://airids.sourceforge.net/.

[18] Michael J. Ocean, Azer Bestavros, and Assaf J. Kfoury,
SNBENCH: Programming and Virtualization Framework for

Distributed Multitasking Sensor Networks, VEE ’06:
Proceedings of the 2nd International Conference on Virtual
Execution Environments (New York, NY, USA), ACM Press,
2006, pp. 89–99.

[19] Martin Roesch, Snort - Lightweight Intrusion Detection for

Networks, LISA ’99: Proceedings of the 13th USENIX
Conference on System Administration (Berkeley, CA, USA),
USENIX Association, 1999, pp. 229–238.

[20] Cisco Systems, Wi-Fi Based Real-Time Location Tracking:

Solutions and Technology,
http://www.cisco.com/application/pdf/en/us/guest/products/-
ps6386/c1244/cdccont_0900aecd80477957.pdf,
2006.

[21] P. Tao, A. Rudys, A. Ladd, and D. Wallach, Wireless LAN

Location Sensing for Security Application, 2003.

[22] Nathan True, Wi-viz: Wireless Network Environment

Visualization, http://devices.natetrue.com/wiviz/.

[23] Giovanni Vigna, Fredrik Valeur, and Richard A. Kemmerer,
Designing and Implementing a Family of Intrusion Detection

Systems, SIGSOFT Softw. Eng. Notes 28 (2003), no. 5,
88–97.

[24] Yoann Vandoorselaere, et. el., Prelude Hybrid IDS,
http://www.prelude-ids.org/.

[25] Moustafa Youssef, Ashok Agrawala, and Udaya Shankar,
WLAN Location Determination via Clustering and

Probability Distributions, March 2003.

