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Abstract

In this paper, we propose a superior technique for distributed time-critical communica-
tion using AIDA, a novel elaboration on Michael O. Rabin’s IDA [19]. We show that
using a small dynamically-controlled amount of redundancy, stringent timing constraints
imposed on periodic as well as sporadic communication requests in a distributed real-
time system can be fulfilled up to any degree of confidence. AIDA is randomized in the
sense that it does not guarantee the fulfillment of hard time constraints. Instead, it
guarantees a lower bound on the probability of fulfilling such constraints. We contrast
AIDA with traditional communication scheduling techniques used in conjunction with
time-critical applications in general, and distributed multimedia systems in particu-
lar. The suitability of AIDA-based bandwidth allocation for a variety of time-critical
applications is established and plans for future research experiments are mentioned.

1 Introduction

The successful execution of a time-critical task running in a distributed environment often requires
that a set of communication transactions (e.g. fetching a number of pages from a set of remote sites)
be successfully completed before a set deadline. In order to guarantee such conditions, an accurate
knowledge of the delays introduced by the communication network is often required. For communi-
cation scheduling purposes (hereinafter referred to as bandwidth allocation), such knowledge can be
acquired either statically or dynamically. Using static techniques, worst-case delays are determined
and accounted for a priori. Alternatively, using dynamic techniques the average (or maximum) delays
experienced through a communication network can be measured and used as an estimate for use with
future communication transactions. Static communication scheduling (using a priori knowledge about
the communication network delays) can be safely and efficiently used in systems with predetermined
communication patterns (e.g. broadcasting) and systems with predetermined computation require-
ments (e.g. periodic tasks). For systems with unpredictable communication patterns or systems with
sporadic computation requirements, dynamic communication scheduling becomes necessary.

Several techniques have been suggested in the literature for dynamic bandwidth allocation. Most
of these techniques rely on the use of feedback from the communication network to establish a per-
formance model that can be used in conjunction with a scheduling algorithm to allocate/reserve the
communication bandwidth needed for the successful execution of time-critical tasks [15, 17].

While bandwidth allocation is an important consideration in the design of distributed time-critical
systems (such as multimedia), it is not the only one. Issues of reliability, availability, and fault-
tolerance are equally (if not more) important. The most common technique used to tackle these issues
is replication. For example, in distributed database applications [2, 7], several copies of a particular data
object might be kept in a number of different sites so that the failure (whether intermittent or permanent
[20]) of any proper subset of these sites would not render the data object unavailable. For distributed
applications operating under strict time constraints, replication alone might not be sufficient. In
particular, failures should not be allowed to increase the retrieval delay for data objects (at least not
considerably). In this respect, techniques that rely on watchdog timers and/or retransmit protocols



may not be adequate. Instead, techniques that use redundant communication (e.g. , requesting the
same data object from a set of failure-independent sites/paths) might be necessary. This, however,
might have an adverse impact on the overall performance of the system due to the added “redundant”
communication traffic.

In this paper we propose AIDA (Adaptive Information Dispersal Algorithm), a novel technique
for dynamic bandwidth allocation, which makes use of minimal, controlled redundancy to guarantee
timeliness and fault-tolerance up to any degree of confidence. Our technique is an elaboration on the
Information Dispersal Algorithm of Michael O. Rabin [19], which we have previously shown to be a
sound mechanism that considerably improves the performance of /O systems and parallel/distributed
storage devices [3, 6].

2 Real-time Bandwidth Allocation: Related work

One way to schedule data transmission is to maintain statistics characterizing each of the communica-
tion resources (channels) in the system. Whenever the channel characteristics of the network change,
the server responsible for delivering the time-critical data can adjust accordingly to maintain pre-
dictable service. This can be achieved by decreasing the demand on the network. For example, when
a network becomes congested and the percentage of late data elements (missed deadlines) increases,
dropping the demand on the network helps clear the congestion [12]. This effectively allows data ele-
ments scheduled for transmission to traverse the communication network and reach their destination
on time rather than be lost due to lateness.

Another mechanism to deal with the adverse effect of network congestion is to distinguish between
the various communication requirements. This was proposed in the Asynchronous Timesharing System
(ATS) [15], in which data traffic is divided into four classes. A control class C' has the highest priority;
it delineates a class of communication where data loss or unpredictable communication delays cannot
be tolerated. Class I is next on the priority scale; it delineates a class of communication where data
loss cannot be tolerated, but a user-specified maximum end-to-end communication delay is allowed.
Class II has a set maximum percent of lost packets and a maximum count of consecutive packets
lost. Finally, class III has zero loss and no maximum end-to-end delay for communication that is not
subject to time constraints. A similar treatment of the different communication requirements imposed
on a distributed system is under investigation at the University of California at Berkeley, where an
experimental RAID-II network file server is being implemented [16].

The network protocol presented in [9, 8] handles performance requirements in a different manner.
When a connection is requested, the user provides the network manager with maximum end-to-end
delay, maximum packet size, maximum packet loss rate, minimum packet inter-arrival time, and maxi-
mum jitter, where jitter is defined as the difference in the delays experienced between two packets on the
same connection. Three types of channels can be requested: deterministic, statistical, and best-effort.
For deterministic channels, the communication delay is guaranteed to fall below a given time bound.
For statistical channels, the probability that the delay is less than a given time D is kept greater than
or equal to a requested factor ¢. This can be thought of as establishing a confidence interval about
the expected delay rather than a deterministic bound on that delay. Best-effort channels provide no
guarantees for the percentage of messages reaching their destination on-time; they merely attempt to
make the best use of the available bandwidth.!

Statistical approaches to overcoming delay and bandwidth limitations are attractive because they
provide application programs with a flexible framework, in which a continuum of communication pri-
orities can be easily expressed as confidence intervals. In particular, we argue that the distinction
between deterministic, statistical, and best-effort channels in the protocol proposed in [9, 8] is artifi-
cial. Deterministic and best-effort channels can be thought of as special statistical channels, for which

!Deterministic channels are necessary for computations with hard time constraints, whereas statistical channels are
appropriate for computations with soft time constraints. Best-effort channels are adequate for computations with no time
constraints.



the confidence interval (determined by ¢) describing the communication delay is taken to its limits.>
Therefore, in this paper (without loss of generality), we consider only statistical channels.

Current techniques for statistical bandwidth allocation [18] rely on choosing an end-to-end time
delay T per packet that is larger than the delay expected to be experienced by a percentage P of the
retrieved packets. This time T is used as an estimate for the time it will take to retrieve packets from
a given source. While such a delay function can accurately represent delay characteristics over a given
period of time, network loading does change with time, possibly making the delay distribution (and
thus the delay function) outdated. One way to accommodate this dynamic behavior is to monitor the
delays experienced by retrieved packets and adjust the delay function accordingly. In [10], a mechanism
called Limited A Priori (LAP) scheduling is proposed, in which adjustments to the delay function are
made either periodically or whenever sudden changes in network traffic are detected. Using second and
higher order moments, linear and quadratic extrapolation of the network delay characteristics can be
more accurately predicted.

All of the bandwidth allocation mechanisms described so far (with the exception of RAID-II)
assume a single source of data for a given transaction. In a truly distributed environment, this is not
likely to be the case. The storage of a single object might span a number of nodes, either because
of fault-tolerance requirements® or else to accommodate data placement constraints. Although it is
possible to extend the aforementioned bandwidth allocation mechanisms to deal with data distributed
over a number of nodes, the performance of these protocols deteriorates significantly. The mechanism
we are proposing in this paper is inherently distributed and, in that respect, is far more superior.

3 Information Dispersal and Retrieval Using IDA

In this section we overview the original Information Dispersal Algorithm (IDA). We refer the reader to
the original paper on IDA [19] for a more thorough presentation.

Let I represent the original data object (hereinafter referred to as the file) in question. Further-
more, let’s assume that the storage of file £ is to be distributed over N sites. Using the IDA algorithm,
the file F' will be processed to obtain N distinct pieces in such a way that recombining any m of these
pieces, m < N, is sufficient to retrieve F. The process of processing F and distributing it over N sites
is called the dispersal of I, whereas the process of retrieving F by collecting m of its pieces is called
the reconstruction of F.

Figure 1 illustrates the dispersal and reconstruction of an object using IDA. The dispersal and
reconstruction operations are simple linear transformations using irreducible polynomial arithmetic.*
Both the dispersal and reconstruction of information using IDA can be performed in real-time. This
was demonstrated in [4], where we presented an architecture and a CMOS implementation of a VLSI
chip® that implements IDA.

Let |F| be the size of the file F. The IDA approach inflates F' by a factor of % In particular, the

size of each one of the dispersed pieces of ' would be |m£| This added redundancy makes the system

capable of tolerating up to N —m faults without any effect on timeliness. More importantly (as we will
demonstrate shortly), this added redundancy will boost the performance of the information retrieval
process significantly.

Several redundancy-injecting protocols have been suggested in the literature to deal with fault-
tolerance issues. In most of these protocols, redundancy is injected in the form of parity blocks, which

2For deterministic channels, ¢ = 1. For best-effort channels, ¢ = 0.

®For example, striping data for a video presentation over N nodes would increase the availability of the system by
allowing a graceful degradation of the quality of the presentation by 1/N%, should any of the N nodes fail.

*For a concrete implementation and for examples, the reader is referred to our previous work on SETH [4] and IDA-
based RAID 1/O systems [5].

®The chip (called SETH) has been fabricated by MOSIS and tested in the VLSI lab of Harvard University, Cambridge,
MA. The performance of the chip was measured to be about 1 megabyte per second. By using proper pipelining and
more elaborate designs, this figure can be boosted significantly.
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Figure 1: Dispersal and reconstruction of information using IDA.

are only used for error detection and/or correction purposes [11]. The IDA approach is radically
different in that redundancy is added wuniformly; there is simply no distinction between data and
parity. It is this feature that makes it possible for IDA to be used not only to boost communication
fault-tolerance, but also to improve bandwidth allocation and utilization.

An important aspect of IDA, unlike other redundancy-injecting protocols [21, 16], is that the
amount of redundancy to be used with a given object, or in a given communication session, does not
have to be constant. In particular, our AIDA-based bandwidth allocation strategy controls the amount
of redundancy to be used with a particular object in a particular communication session so as to reflect
the priority and/or the urgency of the transaction at hand. By increasing the redundancy allocated
for a given communication session, the expected retrieval delay can be reduced, thus increasing the
chances of meeting the possibly tight time constraint imposed on the transaction.

4 Performance Characteristics

Let X be a data object dispersed using IDA into N pieces, each residing in a different site. Let m be
the minimum number of pieces needed to reconstruct X. Obviously, in order to retrieve X, at least m
of the NV sites must be consulted. It is possible, however, to consult more than m of these sites. Let n
(where m < n < N) denote the total number of sites consulted for the retrieval of X. In this section,
we derive an expression for the expected communication delay for accessing such an object. Later, we
will use this result to establish the merits of our proposed AIDA-based bandwidth allocation protocol.

Prob(t > 2) Prob(Response time of at least (n — m) of the sites > z)

n

> () ra-pr (1

r=n—m-1

where P is the probability that the response time of a single site will be z or more. P can be estimated
using delay characteristic functions or approximation thereof.

4.1 Approximation using a uniform distribution delay model

As a first and safe approximation, we will assume that the delays experienced through the commu-
nication network are uniformly distributed random variables with lower and upper bounds ( Dy, and
Diax) as illustrated in figure 2. Let P, be the value of P (in equation 1) under this assumption.

1 if 0 < 2 < Dmin
Pu = 1_@% ifDminSZSDmax
0 if Dipax < 2 < 00



The random variable ¢ (in equation 1) is simply the (n—m+1)™ largest of these n uniformly distributed
independent random variables. It can be shown that ¢ follows the beta probability law and that the
mean and standard deviation for ¢ are given by:®

m

Ty = Dmin + n—_l_l(DmaX - Dmin) (2)
_ m(n —m+ 1) .
Oy = \/(n n 1)2(n n 2) (Dmax - Dmln) (3)

4.2 Approximation using an exponential distribution delay model

We denote by P. the value of P (in equation 1) under the exponential distribution delay model.

0<Z<Dmin

P 1 if
c ¢~ Mz = Din) i Din < 2 < 0

Let 7. denote the average delay experienced using an IDA-based strategy under an exponential distri-
bution delay model with parameter A (see figure 3). To compute 7., we need to compute the mean
value of the random variable ¢. This can be done as follows:

T = Expected delay under an exponential distribution assumption
= Dmin—l—/ Prob(t > z)-dz
Dmin
- n o T n—r
= Dmint (T)/D.P(l—P) Sdz
r=n—m-1 min
= Duin+ zn: (")/lpm Py ap
Te = min e r o AP
1 ~ r 1 (r)I'(n — 1
= Dty Y iy T
2 TG+ DIn—r+D)  T(t1)
1 - 1
e — Dmin 3 - 4
7 + A Z r (4)

r=n—m-1

Unless stated otherwise, the remainder of this paper assumes an exponential delay model.
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Figure 2: Uniform delay assumption
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Figure 3: Exponential delay assumption

®Derivation is omitted for space limitations. For a reference, refer to [14].



4.3 Effect of distribution and redundancy on delay characteristics

There are a number of interesting observations to be made from the delay analysis of the previous
section. By varying the values of n and m, the negative effect of data distribution and the positive
effect of data redundancy on the delay characteristics can be demonstrated. The following cases can
be readily examined:

a. n=m = 1: This is the case when the object X is not distributed. The expected delay reduces to

%(Dmin + Dmayx) under the uniform delay model and reduces to Dy, + % under the exponential

delay model. This corresponds to the average delay for one transmission.

b. n > m = 1: This is the case when the object X is replicated over n sites. For n > 1, the expected
delay approaches Dyj,, which is the minimum delay for one transmission under both the uniform
and exponential delay models.

c. n=m > 1: This is the case when the object X is distributed with no added redundancy. For
n > 1, the expected delay approaches Dy .y, which is the maximum delay for one transmission
under the uniform delay model. Under the exponential delay model, it approaches Dy, + %111(71),
making the communication delay logarithmically proportional to the distribution level.

IDA-based communication attempts at striking a balance between the above three extreme setups.
Figure 4 illustrates the improvement (speedup) in communication delay that can be achieved through
the use of even remarkably small levels of redundancy.” For example, at a 20% redundancy level (% of
the communicated data is redundant), IDA cuts the expected delay through a communication network
by almost 50% (a 2-fold speedup) for an object distributed over 8 sites. This gain is even larger for
objects distributed over a larger number of sites. If the level of redundancy is increased further, the gain
is substantial. For example, IDA can deliver a 5-fold speedup in communication with the redundancy
level set at 50% for an object that is distributed over 32 sites.

For the same amount of redundancy, other protocols (such as replication) yield minuscule speedups
compared to IDA. For example, if an object is replicated once (% of the communicated data is redun-
dant) and each of the two replica is distributed over 16 sites (for a total of 32-site distribution), then it
can be shown that under the exponential delay model, the achievable speedup will be less than 1.1-fold.
Under the same conditions, IDA delivers over 5-fold speedups.

5 AIDA-based Bandwidth Allocation

In this section, we highlight the features of AIDA that enable it to deal effectively with deadline and
priority issues in time-critical systems.

5.1 Using redundancy to control communication delays

Let the retrieval of an object X be subject to a soft time-constraint that requires X to be fetched within

TX _ units of time. According to equation 4 the expected delay in retrieving X decreases predictably

as n — m increases. Incorporating the time constraint in equation 4, we can solve for n as follows.

Tril(ax Z Te
1 L 1
> Dmin kY -
> +3 _Z
r=n—m-+1
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A(/‘Tr{n{ax - Dmin) > Z -

-

r=n—m-1

"These results were obtained under an exponential delay model, but can be easily reproduced for any other model.
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Using the lower bound [In(n) —In(n — m)] to approximate the value of 37 _ ., (%) and solving the

resulting inequality for n, we get:
m

1 — o~ MT2 = Dinin)

max

n >

(5)

In order to compute the appropriate value of n using equation 5, it is necessary to evaluate
dynamically the values of Dy, and A. This can be done using statistical techniques similar to the
those described in [10].

5.2 Priority-based rationing of redundant bandwidth

Equation 5 establishes a lower bound on n that guarantees an ezpected communication delay, not an
actual communication delay. In other words, while it is very possible for the actual communication
delay to be less than the desired expected delay (thus satisfying the imposed time constraint), it is
very possible as well for the actual communication delay to exceed the desired expected delay (thus
resulting in a violation of the imposed time constraint). This randomness factor can be accounted
for and controlled by using second order moments (e.g. , Standard Deviation) to build a confidence
interval about the actual communication delay. One way of building such a confidence interval is to
set the value of n so as to make TX . the available slack for completing the communication session,

max’
greater than or equal to 7. + ao. (rather than simply 7.).

m
1— e—/\(TX — Duin — ao)

max

n >

(6)

The value of n in the above equation defines a confidence interval that corresponds to a specific
probability of meeting the time constraint imposed on the communication session. This probability
can be made arbitrarily high by increasing the value of a. This, however, is not without cost. In a
distributed real-time system, the total communication bandwidth is finite, and increasing the amount of
redundant information flowing in the system might adversely affect the end-to-end delay characteristics
that we were aiming to improve in the first place!

One way of solving the aforementioned problem is to set the value of a in such a way that the
total available bandwidth in the system is rationed among the different communication sessions in a
way that reflects the priority assigned to these sessions. In other words, the value of a for a particular
task is related to its priority and the priority of all the other tasks sharing the available bandwidth in
the system.

It is important to notice that using AIDA, the priority of the transaction (how critical it is to the
mission of the system) and the urgency of the transaction (how tight its time constraint is) are both
taken into account when the value of n is determined. This stands in sharp contrast with protocols that
deal only with either the priority of the transaction or its urgency, making it necessary for applications
to express (artificially) one of these attributes using the other.

5.3 Fault-tolerance and Security Characteristics

The usual technique employed to deal with communication failures is to retransmit on errors (or time-
outs). For time-critical applications, this detect-then-recover approach might not be feasible due to
the time constraints imposed on the system. Instead, masking techniques are employed. In partic-
ular, error-correcting codes are used to tolerate communication failures, whereas replication and/or
n-modular redundancy (NMR) techniques are used to protect against site failures [20]. The main
drawback of these techniques is their excessive use of redundancy, which might adversely affect per-
formance. For example, to mask one site failure an approach relying on replication will require that a
particular object be retrieved from two different sites, thus doubling the network traffic. The blowup
is even larger when error-correction for a relatively small number of communication-induced errors is
taken into account.
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The AIDA-based protocol we are proposing in this paper is a failure-masking protocol that is
provably optimal in its use of redundancy. The main reason for AIDA’s superiority is that it does
not distinguish between communication failures and site failures, thus making the best use of allotted
redundancy in the system. To tolerate up to r simultaneous failures, AIDA requires that the total
number of sites from which the dispersed object X will be requested exceeds the minimum number
of data pieces needed to reconstruct X by r. Thus, a total of n = m + r sites is needed for every m
pieces of data, a redundancy of 100(n — m)/m percent. For example, if an object X is to be dispersed
over n = 12 sites and coverage for up to 3 failures is required, then using AIDA, the total redundancy
would be 25% (a blowup of 33%). To provide the same coverage using replication, the total redundancy
would soar to 75% (a blowup of 300%).

A common technique to insure communication security is to store and communicate information
using some form of encryption, where only authorized users are enabled to decrypt the information
through the use of appropriate secret keys [22]. The proven difficulty of decrypting the information
without knowing the secret key guarantees a high level of security. The main disadvantage of this
technique is that the information (although encrypted) is available in one site — whether stored in or
communicated through that site — for long periods of time. This might make it possible for adversaries
to break the secret key of the encryption.

The AIDA-based protocol we are proposing in this paper guarantees the security of the communi-
cated information by making it unavailable as a whole in any one particular site. As a matter of fact,
it is hard to get any clue about the original information unless at least m pieces from the dispersed file
are collected. This makes the task of the adversaries more difficult, since they have to control m of the
sites and not only one. Even if this happens, it is provably very difficult to reconstruct the original file
unless the secret key is known.

6 Conclusion

AIDA is a novel bandwidth allocation strategy suitable for distributed fault-tolerant time-critical sys-
tems. In AIDA redundancy is used to tolerate failures, to increase the likelihood of meeting tight
time-constraints, and to ration (based on task priorities) the limited bandwidth in the system. In this
paper we have presented AIDA’s potentials and established its superiority with respect to existing
protocols. The implementation of an AIDA-based network file-server that would act as an interface
between the application programs and the communication network is our next goal.

Several variants of the basic ideas presented in this paper are under investigation. For example,
we are evaluating a number of possible mechanisms to be used for the selection of the n out of N sites
to be consulted for an object retrieval. While the correctness and efficacy of AIDA are not dependent
on such mechanisms, its performance might benefit greatly. Similar performance gains can be achieved
by classifying communication requests as was done in [15, 16]. Such a treatment is likely to reduce
the uncertainty associated with communication delays, thus providing for a more efficient allocation of

bandwidth.

Another area of particular interest is the susceptibility of AIDA to sudden changes in the com-
munication delay characteristics, whether as a result of an influx of sporadic communication requests,
or as a result of a sudden decrease in bandwidth due to failures. Simulations that would relate such
susceptibilities to system design parameters (for example frequency and sample size to be used for
estimating the actual delay characteristics), are underway.

In this paper we focussed on information retrieval. Issues pertaining to information update were
not tackled. These issues are particularly important in distributed time-critical systems to ensure data
consistency and recency. In particular, it is of utmost importance to investigate the interaction between
AIDA and other consistency-preserving protocols such as distributed shared memory protocols [23],
caching protocols [1], and non-coherent memory protocols [13].
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