
Scalable Secure Multi-Party Network Vulnerability Analysis
via Symbolic Optimization

Kinan Dak Albab∗, Rawane Issa†, Andrei Lapets‡, Azer Bestavros§, Nikolaj Volgushev¶

Department of Computer Science, Boston University
111 Cummington Mall, Boston, MA, 02215

Email: ∗babman@bu.edu, †ra1issa@bu.edu, ‡lapets@bu.edu, §best@bu.edu, ¶nikolaj@bu.edu

Abstract—Threat propagation analysis is a valuable tool in
improving the cyber resilience of enterprise networks. As
these networks are interconnected and threats can propagate
not only within but also across networks, a holistic view
of the entire network can reveal threat propagation trajec-
tories unobservable from within a single enterprise. How-
ever, companies are reluctant to share internal vulnerability
measurement data as it is highly sensitive and (if leaked)
possibly damaging. Secure Multi-Party Computation (MPC)
addresses this concern. MPC is a cryptographic technique
that allows distrusting parties to compute analytics over their
joint data while protecting its confidentiality. In this work we
apply MPC to threat propagation analysis on large, federated
networks. To address the prohibitively high performance cost
of general-purpose MPC we develop two novel applications of
optimizations that can be leveraged to execute many relevant
graph algorithms under MPC more efficiently: (1) dividing
the computation into separate stages such that the first stage
is executed privately by each party without MPC and the
second stage is an MPC computation dealing with a much
smaller shared network, and (2) optimizing the second stage by
treating the execution of the analysis algorithm as a symbolic
expression that can be optimized to reduce the number of costly
operations and subsequently executed under MPC. We evaluate
the scalability of this technique by analyzing the potential for
threat propagation on examples of network graphs and propose
several directions along which this work can be expanded.

Index Terms—Secure multi-party computation, Network dis-
tance, Symbolic expressions.

1. Introduction

Risk assessment entails the evaluation of a metric that
quantifies the separation between an entity of interest and
other interconnected similar entities with known vulnerabili-
ties. For example, in communications networks such as those
operated by Internet Service Providers (ISPs), the closer
a router is to a server that is likely to be the target of a
distributed denial of service attack (DDoS), the higher the
risk that this router will itself be victimized by DDoS traffic.
Similarly, interconnected members of a coalition/consortium

of firms [1] may consider the distance from each of their
local network nodes to the closest “potentially compro-
mised” nodes (e.g., running a yet-to-patch kernel) within a
risk analysis of inter/intra-network threat propagation [2]. In
social networks such as those defined by instant messaging,
the closer a user is to accounts with a known history of illicit
activities, the higher the risk that this user will be victimized.
In financial contagion networks (e.g., those resulting from
the use of derivatives) the closer a financial instrument is
to a highly leveraged asset, the higher the risk of cascaded
failures affecting that instrument.

In the above and many other examples, risk assessment
boils down to proper modeling of an underlying network
as a graph of (possibly weighted) vertices and edges, and
to evaluation of network metrics using one of many well-
known graph algorithms. Such metrics (e.g., shortest path,
network flow, or betweenness centrality) are often network-
wide, requiring full knowledge of the underlying graph to
be computed accurately.

While seemingly straightforward, risk assessment is typ-
ically complicated by the fact that in relevant settings such
as vulnerability assessment via traffic anomaly detection,
the underlying network connecting entities to one another
is composed of privately managed subnetworks (each under
the control of an autonomous, self-interested party). Though
every party is interested in – and capable of – measuring
its own traffic to evaluate risks associated with its assets, no
single party has a full view of the entire underlying graph
that would allow it to evaluate the same risk assessment
metrics network-wide. Moreover, the various parties that
make up the system view the structure and self-initiated
measurements of their private networks as highly-valued
(and/or highly-sensitive) assets that constitute a significant
investment and marketplace competitive advantage (and/or
marketplace liability). As such, these parties may not be
incentivized or willing to trust such assets (e.g., the “health”
of their internal nodes or the topology of their internal
networks) to any other party.

For individual parties, the circumstances described above
may lead to lost opportunities to leverage valuable global
information in conjunction with local measurements. Fur-
thermore, investments that parties make in measuring their
own networks may not maximize returns, and may even

be redundant if they attempt to use partial information to
approximate measurements of neighbor networks. Many of
these issues could be addressed if it were possible to com-
pute aggregate measurements on network data from multiple
private networks without requiring sharing of sensitive infor-
mation (this would also reduce risks and incentivize parties
to work together to measure global network properties).

1.1. Secure Multi-Party Computation

In this paper, we tackle this problem by leveraging
secure Multi-Party Computations (MPC) – a cryptographic
construct that allows the computation of a function over a
set of private(ly-held) inputs in such a way that the only
information revealed by the computation is the output of
the function. A key hurdle facing wide adoption of MPC
is the computational inefficiencies associated with evaluat-
ing arbitrary functions over sizable inputs. Consequently,
an important body of recent research on MPC has been
concerned with the development of optimizations targeting
specific algorithms or settings [3]. In this paper, we do so
for a very important (and we believe very large) class of
problems that involve the evaluation of ”network distance”
algorithms over an interconnection of private networks. To
that end, we present our work towards a generalizable frame-
work that consists of graph transformations and compile-
time optimizations that could be integrated seamlessly into
generic graph algorithm libraries, and eventually provided
transparently to programmers through standard APIs.

1.2. Scenario and Approach

For ease of presentation and without loss of generality,
we use the network resulting from interconnecting a set of
private enterprise networks to illustrate the premise of our
proposed framework. In particular, we consider the problem
of assessing the risk of threat propagation in communica-
tion networks by computing the minimum distance (or hop
count) between a private network node (a router or server
in an enterprise network) and compromised nodes that may
exist in other private networks. We assume that the set of
private (enterprise) networks that make up the system are
interconnected to one another via a set of border gateways.
The border gateways and the topology connecting these
border gateways to one another are assumed to be public,
whereas the internal nodes in an enterprise network (as well
as the topology connecting these nodes to one another) are
assumed to be private (and thus not to be revealed).

One straightforward approach to using MPC to compute
the distances between all pairs of nodes in the underlying
network while preserving confidentiality of the topology and
node state information of private networks is to convert the
entire node distance algorithm into an MPC form using
an existing technique or framework [4], [5]. However, per-
forming operations under MPC can be prohibitively costly
when compared to executing the same operations over the
inputs “in the open”. This added cost comes from the

communication overhead and the increased complexity of
analyzing data obliviously [3].

We present a method for optimizing (and thus making
feasible for large-scale networks) the computation of node
distances in a network under MPC (regardless of what
particular MPC system is used). We assume that the overall
network consists of many private sub-networks (each be-
longing to a distinct party) connected by edges between their
public “gateway” nodes (each belonging to a sub-network).
Using this method, each participating party only learns the
distances between its own nodes and the closest “threat”
nodes outside its sub-network.

We combine two techniques to improve the efficiency
of the computation: separating the MPC computation into
distinct local and global stages [6], [7] and using standard
compiler optimization techniques [8] to reduce the number
of costly operations in the MPC stage. These techniques can
be applied to a variety of network analysis algorithms that
can be run under any of a number of distinct MPC protocols.

The first technique is reducing the size of the input to
the MPC computation. We split the computation into stages.
The function to be computed (network distance) is applied
locally by each party on their respective input. A portion
of this stage’s output (the gateway nodes) is then secret-
shared between the parties and constitutes the input to the
MPC stage. The gateway nodes need to be augmented with
additional distance information to properly represent their
local sub-networks in the secure computation. The results
of the MPC stage are put back into the local sub-network,
and the parties execute another round of local computation,
yielding the distances from internal nodes.

The second technique is optimizing the MPC com-
putation via symbolic optimization. The network distance
problem is iterative in nature, and each iteration propagates
the “threat” metric from each node to its neighbors. Nodes
take the minimum threat from each neighbor. This requires
computing a large number of minimum operations in every
iteration, the results of which are fed into the next iteration.
As minimum is expensive to compute in MPC, we use
standard code and arithmetic optimization techniques [8],
[9] to reduce the number of occurrences of the operator by
(1) using loop unrolling to produce symbolic expressions
describing the computation and (2) refactoring the expres-
sions by exploiting the algebraic properties that govern the
minimum and addition operators.

2. Problem Definition

Given an undirected graph G with a set V of nodes
(nodes can be either safe or vulnerable), we must find the
shortest distance between each node and the closest vulner-
able node. We assume initially that vulnerable nodes have
distance 0 and safe nodes have distance ∞. More formally,
we are trying to compute f(n) = minv∈VN (dist(n, v)),
where VN is the set of vulnerable nodes and dist(n, v) is
the shortest distance between nodes n and v.

Algorithm 1 computes network distance, where nb(n) is
the set of neighbors of n and Di[n] is the distance computed

Algorithm 1 Network Distance
1: i← 0
2: while i < iterations do
3: for n ∈ V do
4: Di+1[n]← min(Di[n], min

v∈nb(n)
(Di[v] + 1))

5: i← i+ 1

at iteration i for node n. Notice that initially D0[n] = 0 or
∞ if n was vulnerable or safe, respectively. The number
of iterations can be set to the number of nodes. However,
it is sufficient to set it to the diameter d of the graph. The
runtime of the algorithm is O(n × d × k), where n, d, k
are the number of nodes, diameter, and degree, respectively.
Notice that if n is fixed then d quickly decreases if k is
increased (by Moore’s upper bound [10]).

We consider input networks that are composed of two
parts: (1) several private networks (each belonging to a
party) for which the number of internal nodes and their
interconnections are not public and each of which interacts
with the rest through a relatively small number of publicly-
known gateways; and (2) a public network that connects
gateways of different parties. Note that this implies that the
total number of gateways must be much smaller than the
total number of nodes in the entire network. The number of
gateway nodes per party and their connections with gateway
nodes of other parties is assumed to be public information
(note that an edge between two gateways of the same party
is considered private and not part of the public network).
Security assumptions. The security model is assumed to be
semi-honest [11]. Each party should learn only the distances
at its own nodes, so the MPC stage yields different outputs
to each party. The parties wish to hide the following.

1) The topology of a party’s private network, including
the number of nodes and their connections. This can
be achieved at a significant performance cost when
running MPC on the whole network by padding
additional “fake” nodes. We achieve this in our
three-round (local-MPC-local) approach without in-
curring additional costs.

2) The shortest path along which a vulnerable node
propagates the “threat” to any of its gateway nodes.

3) A vulnerability’s origin: from which node or which
party’s network a vulnerability has propagated.

Each party will know only the distances from each of its
nodes to the closest threat. If the party is connected to
multiple parties, or if the public network connecting the
parties is sufficiently complex, there will be many paths
along which the vulnerability could propagate, thus hiding
the original source.

3. Computation Stages

Given our security assumptions, the computation can-
not publicly refer to the internal topology of the parties’
networks. Thus, the private networks (the number of nodes

and their connections) and initial distances (0 or ∞) must
be secret-shared as inputs to the computation. This adds a
huge communication cost and complicates the computation,
as it must operate on secret-shared network representations.
Given current performance overheads of MPC, this approach
is impractical for networks at realistic scales.

We propose doing the computation in multiple stages.
First, each party will compute distances in its own private
network (as if in isolation) to obtain the distances between
all pairs of gateway nodes (i.e., the input to the MPC stage).
This can greatly reduce the size of the input to the MPC
stage (from the entire network to a much smaller sub-
network). As the network connecting the gateways is public,
we avoid the complications of secret sharing this network.
We use Algorithm 1 for all stages of the computation.

Even with relaxed security assumptions that allow leak-
ing information about the internal topology of the private
networks, running MPC on the whole network will remain
unrealistic due to the network size. In our approach, the
MPC stage considers only the public network made out of
the gateways and their connections, which is assumed to
be much smaller than the entire network. Furthermore, the
diameter of the public graph is known and can be used in
the MPC stage to achieve a run-time of O(n × d × k) as
described in Section 2. The diameter of the entire network
is not known (unless it is computed in MPC or the security
assumption is relaxed further to reveal it). Thus, running
MPC on the entire network requires using the number of
nodes as an upper bound on the diameter, increasing running
times to O(n3) for dense networks.

Local stage for inputs. In the first stage of the computa-
tion, each party performs the algorithm locally on its private
network. We are only interested in computing the distances
of the gateways. It may help to use a modified version of the
algorithm that computes the distances for only the gateways
without considering distant nodes that do not contribute.

A party’s gateways may be connected internally inside
its private network. These connection must not be ignored
by the MPC stage since they can affect the outcome. For
example, consider a case in which two parties networks are
not connected directly but are connected to two different
gateways of a third party (which are then connected in-
ternally by some path in that third party’s local network).
Failure to provide the MPC stage with information about
the connection between these two gateways will cause
vulnerabilities in the first party to be “invisible” to the
second party and vice versa, preventing the vulnerability
information from propagating.

Therefore, each party computes the shortest distance
between every pair of gateway nodes. If two gateways are
unconnected, the distance is set to be ∞. These distances
will serve as “weights” to imaginary edges between gate-
ways in the MPC stage. The actual value of the weights
remains unknown as they are secret-shared. This will not
reveal the existence (or nonexistence) of a path between two
gateways, nor will it reveal its length. Thus, no information
about the internal topology of any private network is leaked.

MPC stage. When all parties complete their local com-

putations, they begin a multiparty computation. Each party
secret shares (using Shamir secret sharing [12]) the distances
of each gateway and the “weights” between every pair of
gateways. Each party then builds two sets of expressions
such that each gateway has a unique corresponding expres-
sion in each set. The first set is responsible for propagating
distances over public edges between different sub-networks;
the second set propagates distances over weighted imagi-
nary edges connecting gateways in the same sub-network.
These expressions are optimized and evaluated in MPC as
explained in Section 4.

Local stage for outputs. Finally, each party receives the
output distances of each gateway from the MPC stage, plugs
the information into the result from the first local stage,
and executes Algorithm 1 locally. This propagates distance
information about local vulnerabilities as well as external
vulnerabilities learned from the output of the MPC stage.
The distances of the gateway nodes remain unchanged and
the final distances of the internal nodes are computed.

4. Expression Trees and Symbolic Evaluation

Algorithm 2 MPC Stage
1: E10 = {n→ Xn | n ∈ gateways} . Public edges.
2: for i← 1 to d do . d: Public graph diameter.
3: for n ∈ gateways do
4: m = min

v∈nb(n)
(E1i−1[v] + 1)

5: Ei[n] = simplify(min(E1i−1[n],m))

6: E2 = {} . Weighted edge expr.’s.
7: for n ∈ gateways do . gnb(n): gateways in party of n.
8: m = min

v∈gnb(n)
(Xv + weight(v, n))

9: E2[n] = min(Xn,m)

10: valuation0 = {Xn ← secretshare(n) | n ∈ gateways}
11: for i← 1 to |parties| − 1 do
12: tmp = {}
13: for n ∈ gateways do
14: tmp[Xn] = eval(E1d[n], valuationi−1)

15: for n ∈ gateways do
16: valuationi[Xn] = eval(E2[n], tmp)

17: for n ∈ gateways do
18: result [Xn] = eval(E1d[n], valuation |parties|−1)

We propose to derive a symbolic expression that de-
scribes an execution of the algorithm on a particular in-
put graph. Each expression is an unfolding of algorithm
iterations via symbolic execution. This yields two kinds
of expressions (described below); every gateway will have
a single expression of each type. Minimum operations
are computationally expensive in MPC since they include
several comparisons and multiplications on secret shares
(which have a high communication overhead). Therefore,
we optimize these expressions by reducing them to a single
minimum operation with fewer arguments.

Public edge expressions. The first kind of expression
is responsible for propagating distance information over the

edges connecting different sub-networks. These are built by
symbolically executing Algorithm 1 with symbolic variables
as initial values. The abstract syntax for these expressions
is defined as follows, where Xn is the variable representing
the gateway n, and z is an integer representing a distance
between gateways belonging to different sub-networks:

e ::= z | Xn | e+ . . .+ e | min(e, . . . , e)

Furthermore, the particular algorithm being used ensures
that every expression tree consists of alternating levels of
min and addition operators. A min operator represents a
single iteration for a single node in the execution of the
algorithm, and its children are addition expressions that add
the expressions from the previous iteration to either weights
or to the integer constant 1 (line 4 in Algorithm 1).

Our goal is to reduce the number of min operators while
pushing them up towards the root of the expression tree by
exploiting the algebraic properties of + and min. This is
accomplished using three kinds of reductions.

In a Plus-Min reduction, an expression of the form
min(e0, ..., en) + e′0 + ... + e′m is reduced by moving the
addition operations inside the min operator to produce
min(e0+e, ..., en+e) where e = e′0+...+e′m. The resulting
min operation has the same number of arguments as the
original; the e′i are guaranteed to not contain a min operator
since the algorithm only adds 1.

In a Min-Min reduction, expressions of the form
min(min(e0, ..., en), ...,min(e′0, ..., e′m)) are flattened to a
single operation min(e0, ..., en, e′0, ..., e′m) via associativity.

In an Early-Min reduction, any duplicates or arguments
that are provably larger than at least one other argument are
removed in expressions of the form min(e0, ..., en) (where
the ei do not contain any min operators). This ensures
that each gateway’s variable appears as an argument at
most once, so the maximum number of arguments in each
expression matches the number of gateways.

We alternate between the first two reductions starting
from the bottom of the expression tree and moving upwards
(as the tree itself alternates between addition and min op-
erators), yielding an equivalent single min operation. We
apply the third reduction to the resulting tree. Applying the
reductions in every iteration to keep expression sizes small
can speed up the simplification (lines 1–5 of Algorithm 2).

Weighted edge expressions. The gateways of each party
can be connected by a path of internal nodes; if such paths
are not included in the computation we may get incorrect
results. Each party will therefore compute the shortest dis-
tances between every pair of its gateways; this second kind
of expression is responsible for propagating the distance
information through these paths. The abstract syntax for
these expressions is defined below (Wn,v represents the
weight between gateways n and v, where Wn,v ≡Wv,n):

e ::= Xn | Wn,v | Xn +Wn,v | min(e, . . . , e)

An addition expression containing Xn may only contain
one weight between n and some other gateway v belonging
to the same party. These expressions are constructed by

lines 6–9 of Algorithm 2 and do not need to be simplified.
Each gateway n has a single expression of this kind of the
form min(Xn, Xv1+Wn,v1, Xv2+Wn,v2, . . .); the argument
count is equal to the number of gateways in the party.

Expression evaluation. The symbolic expressions are
evaluated using a valuation map that assigns secret shares
of values to variables. This map differs by party since each
has different shares of each value. When all expressions are
evaluated, parties send their shares of every gateway value to
the party of that gateway. Parties combine the shares of their
gateways to learn the distances at these gateways without
learning the distances at others’ gateways.

Iterative evaluation of the expressions is required. The
first kind of expression propagates distances coming from
gateways connected by a path of public edges; the second
kind propagates distances through the weighted edges to
allow distances connected by a combination of public edges
and a single weighted edge to propagate. In the worst case,
two gateways may have as many weighted edges separating
them as there are parties (e.g., two gateways at opposite
ends of a chain of sub-networks). Thus, we must repeatedly
evaluate the weighted expressions as many times as there
are parties while evaluating the public edge expressions in
between. The result of each evaluation is the new valuation
of the respective gateway. This is implemented in lines 10–
18 of Algorithm 2. At the end of the MPC stage, we only
evaluate public edge expressions (the subsequent local stage
achieves the effect of evaluating weighted edge expressions).

The symbolic execution and simplification process does
not include any MPC constructs or message passing and can
be executed quickly. Expressions themselves are evaluated
under MPC. There are two expressions per gateway, each
containing no more arguments than the number of gateways.
Thus, the total size of all expressions is 2 × g × g. Since
we repeat the evaluation for each party, the total run-time in
MPC for p parties and g gateways is O(p×g2). This mirrors
the run-time for Algorithm 1 with the diameter set to p and
the degree set to g (since every gateway is connected by a
weighted edge to every other gateway in its party).

5. Tool-set and Implementation

We implemented a Python library, ExpressionMPC [13],
that allows programmers to quickly write code segments
that execute symbolically and evaluate in MPC. It provides
classes (simplifiers) that implement the reductions from
Section 4 and an evaluator that uses VIFF [4] to secret share
inputs between parties (as well as to interpret the expressions
using generic VIFF operators). The results are opened and
shared only with appropriate parties. Code written using this
library need not include explicit MPC constructs or parse-
tree manipulations, but expert users can explicitly include
reduction operations to improve performance. The library
provides overloaded operators for building expression trees,
and users of the library can write their own simplifiers or
evaluators and use them in combination with those provided.

We ran our implementation on networks representing
autonomous systems peering information [14]. Each party’s

TABLE 1. EXPERIMENTAL RESULTS

P Node Edge Gateway Pub. Edg. Our Method MPC1 Clear
3 32378 67218 34 86 0.72min > 24hrs 1.7s
3 32378 67218 220 579 62min > 24hrs 2s
4 43510 89783 43 105 2.75min > 24hrs 2.8s
4 43510 89783 301 850 72min > 24hrs 2.8s
5 55093 156773 45 105 2min Rec. Limit2 5.8s
5 55093 156773 393 981 154min Rec. Limit2 5.9s
10 108788 250800 44 124 3min - 19.4s

sub-network was one of these networks in its entirety. Gate-
ways were selected randomly from each sub-network and
connected by edges drawn from a scale-free distribution. We
used one Amazon EC2 c4.large instance per party (2.9GHz,
2 cores, 3.75GB RAM). The benchmarks in Table 1 show
that the dominating factor is the number of gateways per
party, which agrees with our analysis (as the number of
weights is quadratic in the number of gateways per party).

6. Related Work

Prominent theoretical approaches to MPC [3] are based
on linear secret sharing (LSS) [15] and garbled circuits [16].
Recent efforts to deliver these approaches to programmers
yielded many publicly-available implementations [4], [17],
[5], [18], [19], [20], [6], [21]. The past few years have
also seen successful deployments of MPC in production
[22], [23]. Sepia [17] is an LSS-based framework offer-
ing protocols for semi-honest majority that are optimized
to reduce latency in order to support near real-time data
processing. The authors of Sepia propose aggregating traffic
volume information across ISPs to detect systemic traffic
anamolies–the supported metrics are heuristics such as top-
k queries; our work complements this effort by enabling
more sophisticated analytics such as network flow. VIFF [4]
implements an asynchronous protocol for LSS-based MPC
over arithmetic circuits with suites for dishonest minority
and actively-malicious adversaries. VIFF was chosen as
our prototype’s backend due to its convenient integration
with Python, support for a variable number of parties and
threat models, and code base quality. While most MPC
frameworks operate by translating a program into an arith-
metic or boolean circuit, alternatives exist [24], [25]. For
example, there exists an iterative approach to computing
shortest distance metrics under MPC [25] in which itera-
tively leaking and using information that can be inferred
from the final output throughout the protocol execution
improves performance significantly. However, this technique
does not directly apply to our scenario because it relies on all
computed distance values being revealed to all participating
parties; this entails far more leakage than revealing gateway
node distances to their respective owners. Investigating how

1. The direct implementation of Algorithm 1 in MPC on the entire graph.
This keeps the initial distances and origin of vulnerabilities private but
reveals all the nodes and connections in all the sub-networks. The security
guarantees of this approach are a strict subset of our security guarantees.

2. Python maximum recursion depth was reached after 20 hours. The
recursion depth in the computation was 10000 (the default is 1000).

such optimizations can be tailored to match our requirements
is promising future work. Our work builds on earlier efforts
to explore how decomposing MPC protocols into stages
enables new optimizations and trade-offs [7], [26].

7. Conclusion and Future Work

We have described – and demonstrated the relative
performance advantages of – novel techniques that enable
scalable application of MPC to the calculation of network-
wide metrics in federated networks. We hope to apply
these techniques to other algorithms, eventually assembling
a general-purpose framework for defining network analyses
that scale well when executed under MPC. We believe our
approach of dividing computations into stages to reduce
input sizes and symbolically optimizing expressions that
represent executions can apply to a variety of algorithms
for which a publicly available termination condition exists.
In particular, we are investigating how this technique can be
used when computing minimum spanning trees (e.g., using
Borůvka’s algorithm) and maximum flows. We also plan
to extend the library to support more expression patterns,
operators, and algebraic laws beyond the existing support
for the associative and distributive properties of addition
and minimum. In certain algorithms, it should be possible
to transform loops and conditionals into expressions in a
similar manner. Finally, we plan to implement and test
the same algorithms using other MPC frameworks, both to
obtain a performance baseline and to evaluate scalability on
real-world large-scale network data sets.

Acknowledgments: This work benefited from discussions
and feedback from Mayank Varia and Ran Canetti, and was
partially supported by National Science Foundation Grants
#1414119 and #1430145.

References

[1] “ACSC: MassInsight Advanced Cyber Security Center,” http://www.
acscenter.org/, [Accessed: March 9, 2017].

[2] K. M. Carter, N. C. Idika, and W. W. Streilein, “Probabilistic threat
propagation for network security,” IEEE Transactions on Information
Forensics and Security, vol. 9, no. 9, pp. 1394–1405, 2014.

[3] D. W. Archer, D. Bogdanov, B. Pinkas, and P. Pullonen, “Maturity and
performance of programmable secure computation,” IEEE Security
Privacy, vol. 14, no. 5, pp. 48–56, Sept 2016.

[4] “VIFF, the Virtual Ideal Functionality Framework,” http://viff.dk/,
[Accessed: March 9, 2017].

[5] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A Framework
for Fast Privacy-Preserving Computations,” in Proceedings of the 13th
European Symposium on Research in Computer Security, ser. Lecture
Notes in Computer Science, S. Jajodia and J. Lopez, Eds., vol. 5283.
Springer Berlin / Heidelberg, 2008, pp. 192–206.

[6] A. Rastogi, M. A. Hammer, and M. Hicks, “Wysteria: A program-
ming language for generic, mixed-mode multiparty computations,” in
Proceedings of the 2014 IEEE Symposium on Security and Privacy,
ser. SP ’14, 2014, pp. 655–670.

[7] N. Volgushev, M. Schwarzkopf, A. Lapets, M. Varia, and
A. Bestavros, “DEMO: Integrating MPC in Big Data Workflows,”
in Proceedings of the 23rd ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 2016.

[8] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, and Tools (2Nd Edition). Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2006.

[9] R. Kastner, A. Hosangadi, and F. Fallah, Arithmetic Optimization
Techniques for Hardware and Software Design, 1st ed. New York,
NY, USA: Cambridge University Press, 2010.

[10] A. J. Hoffman and R. R. Singleton, “On moore graphs with diameters
2 and 3,” IBM J. Res. Dev., vol. 4, no. 5, pp. 497–504, Nov. 1960.

[11] O. Goldreich, Foundations of Cryptography: Volume 2, Basic Appli-
cations. New York, NY, USA: Cambridge University Press, 2004.

[12] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, Nov. 1979.

[13] “ExpressionMPC,” https://github.com/hicsail/ExpressionMPC, [Ac-
cessed: March 9, 2017].

[14] “Stanford large network dataset collection: Autonomous systems (as)
peering information inferred from oregon route-views,” https://snap.
stanford.edu/data/, [Accessed: March 9, 2017].

[15] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness the-
orems for non-cryptographic fault-tolerant distributed computation,”
in Proceedings of the Twentieth Annual ACM Symposium on Theory
of Computing, ser. STOC ’88, 1988, pp. 1–10.

[16] A. C. Yao, “Protocols for secure computations,” in Proceedings of
the 23rd Annual Symposium on Foundations of Computer Science,
ser. SFCS ’82, 1982, pp. 160–164.

[17] M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos, “Sepia:
Privacy-preserving aggregation of multi-domain network events and
statistics,” in Proceedings of the 19th USENIX Conference on Secu-
rity, ser. USENIX Security’10, 2010, pp. 15–15.

[18] M. Keller, P. Scholl, and N. P. Smart, “An architecture for practical
actively secure mpc with dishonest majority,” in Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications
Security, ser. CCS ’13, 2013, pp. 549–560.

[19] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “Oblivm: A
programming framework for secure computation,” in IEEE S & P,
2015.

[20] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and
E. Shi, “Graphsc: Parallel secure computation made easy,” in 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA,
USA, May 17-21, 2015. IEEE Computer Society, 2015, pp. 377–394.

[21] D. Malkhi, N. Nisan, B. Pinkas, Y. Sella et al., “Fairplay-secure two-
party computation system.” in USENIX Security Symposium, vol. 4.
San Diego, CA, USA, 2004.

[22] I. Damgård, K. Damgård, K. Nielsen, P. S. Nordholt, and T. Toft,
“Confidential benchmarking based on multiparty computation,” Cryp-
tology ePrint Archive, Report 2015/1006, 2015, http://eprint.iacr.org/.

[23] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen,
M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter,
M. Schwartzbach, and T. Toft, “Financial cryptography and data se-
curity,” R. Dingledine and P. Golle, Eds., 2009, ch. Secure Multiparty
Computation Goes Live, pp. 325–343.

[24] A. Shelat and M. Venkitasubramaniam, “Secure computation from
millionaire,” in Proceedings of the 21st International Conference on
the Theory and Application of Cryptology and Information Security.
Springer, 2015, pp. 736–757.

[25] J. Brickell and V. Shmatikov, “Privacy-preserving graph algorithms
in the semi-honest model,” in Proceedings of the 11th International
Conference on Theory and Application of Cryptology and Information
Security. Springer-Verlag, 2005, pp. 236–252.

[26] N. Volgushev, A. Lapets, and A. Bestavros, “Programming Support
for an Integrated Multi-Party Computation and MapReduce Infras-
tructure,” in Proceedings of the Third IEEE Workshop on Hot Topics
in Web Systems and Technologies, Washington, D.C., USA, November
2015.

