
DNS-based Internet Client Clustering and Characterization�

Azer Bestavros Sumit Mehrotra
Computer Science Department

Boston University
fbest|sumitg@cs.bu.edu

Abstract

This paper proposes a novel protocol which uses the Internet Domain
Name System (DNS) to partition Web clients into disjoint sets, each of
which is associated with a single DNS server. We define an L-DNS
clusterto be a grouping of Web Clientsthat use the sameLocal DNS
server to resolve Internet host names. We identify such clusters in real-
time using data obtained from a Web Server in conjunction with that
server’s Authoritative DNS—both instrumented with an implementa-
tion of our clustering algorithm. Using these clusters, we perform
measurements from four distinct Internet locations. Our results show
that L-DNS clustering enables a better estimation of proximity of a Web
Client to a Web Server than previously proposed techniques. Thus, in
a Content Distribution Network, a DNS-based scheme that redirects a
request from a web client to one of many servers based on the client’s
name server coordinates (e.g., hops/latency/loss-rates) would perform
better with our algorithm.

1. Introduction

The ability of a web site to characterize client access patterns
enables the distribution of content to replicas to be done in a
“network-aware” fashion, by moving content closer to the web
clients and balancing load across replicas.

Motivation and Paper Contributions: In this paper we use
the termL-DNS cluster to denote a set of web clients (IP ad-
dresses), which use the same Local Domain Name Server to
resolve host names in the Internet. We present a novel tech-
nique that enables the identification of such L-DNS clusters in
real-time using data obtained from a Web Server in conjunc-
tion with that server’s Authoritative DNS—both instrumented
with an implementation of our clustering technique. Once de-
rived, L-DNS mappings could be used to characterize the dis-
tribution of load that is associated with a particular DNS name
server, which in turn can be used to perform a number of unique
functions (related to load distribution, engineering, prediction,
among others).

The availability of a mapping of clients to name servers is
valuable because it enables a distributed web server to achieve
a number of unique functionalities. For example, it is partic-
ularly interesting to estimate the “load quantum” that will re-
sult from a particular response to a DNS request—which in
turn can be used to improve (possibly significantly) the per-
formance of load balancing/distribution for clustered, as well
as geographically-distributed web servers. This functionality is
important for load balancers and QoS managers over the wide
area. Another particularly valuable use of such mapping is to as-

�This work was partially supported by NSF research grants ANI-9986397
and ANI-0095988.

sociate “distance metrics” between multiple servers in a Content
Distribution Network (CDN) and a set of clients (represented
by a DNS server). This functionality is crucial for distribution
schemes employed by CDNs (such as Akamai [1], Digital Is-
land [3], and others). Another important value of this technol-
ogy is the ability to associate “locales” (say for personalization
or localization) to DNS servers.

Using L-DNS clusters we obtained over a 16-day period
(by implementing our algorithm on a “live” Web site), we per-
formed measurements from four distinct Internet locations. For
comparison purposes, we performed similar measurements for
random clusters (referred henceforth as R-DNS clusters) as well
as for prefix-matched clusters (referred henceforth as P-DNS
clusters). Our results show that L-DNS clustering enables a bet-
ter estimation of proximity of a Web Client to a Web Server than
both of these techniques.

A request redirection scheme that redirects a request from
a web client to one of many servers based on the client’s name
server coordinates (e.g., hops/latency/bandwidth/loss-rates be-
tween the client’s name server and the CDN servers) would
benefit immensly from using our L-DNS clustering technique.
Specifically, our findings suggest that basing request routing de-
cisions on the “proximity” (with respect to some performance
metric) of a CDN proxy to the client’s name server is warranted
only for name servers whose L-DNS cluster exhibits a high-
enough level of correlation with respect to the metric of interest.

Related Work: The simplest approach to clustering Web
Clients is based on prefix length matching of IP addresses of
these clients, obtained from the access logs of the web server.
Clients which share the firstn bits of their IP addresses are
said to belong to the same network cluster. For such cluster-
ing to work, the value ofn must be known for various classes of
IP addresses. With address aggregation (introduced by Class-
less Inter-Domain Routing (CIDR) [10]), the applicability of
this clustering technique becomes questionable because net-
work address prefixes may have varying lengths (which are
not necessarily on octet boundaries). For example, 2 IP ad-
dresses 206.205.204.20 and 206.205.204.40 have the same 24-
bit prefix but they may lie on two entirely different networks,
206.205.204.0/24 and 206.205.204.32/27, which may be geo-
graphically far away from each other.

A more suitable approach is to complement network pre-
fixes with network mask information obtained from Border
Gateway Protocol (BGP) [13]. Such a technique was proposed
and evaluated in [12]. Using client IP addresses from web server
logs and the collated BGP data from a number of BGP tables,
a prefix match is done for the client addresses. Clients hav-
ing the longest prefix match are clustered together. Though this



technique is better (in approach and in accuracy of results) than
simple prefix length matching, it depends on frequent transfers
and collation of large amounts of BGP information from BGP
routers. This would be appropriate to do in an off-line manner.

An alternative approach to clustering web clients is based
not on the clients IP addresses, but on the domain to which
these IP addresses belong. For example, both 128.197.10.4
(csb.bu.edu) and 128.197.10.5 (csd.bu.edu) belong to
the bu.edu domain. Using name lookup utilities likenslookup
anddig, a domain name of an IP address can be determined.
It is important to note that IP addresses belonging to the same
domain may well be on different subnetworks. For example
IP address 128.197.12.3 (csa.bu.edu) is on a subnetwork
different from that of the above two bu.edu IP addresses. A
network prefix based policy would clustercsa.bu.edu and
csb.bu.edu into different clusters, though in reality they lie
in the same administrative domain. However, the methodol-
ogy described in [12] would cluster these addresses on a higher
level (based on BGP data) and would classify them correctly as
one belonging to the same administrative domain, but only after
some aggregation is performed.

Another clustering technique is based on the distance be-
tween clients and servers as measured bytraceroute [8, 7]. Run-
ning traceroute is an expensive proposition and is inherently
limited by traceable IP addresses. These, among other anoma-
lies, limit the extent to whichtraceroute distances can be used
effectively for clustering.

The clustering technique proposed in [15] is closest to ours.
In that work, a heuristic approach was devised to form<L-
DNS,Client> clusters based on comparison of time stamps in
web server logs and name server logs. Problems resulting from
clock skews (between Web server and asociated DNS server)
and caching by web browsers could have undesirable effects on
the accuracy of the clusters generated using this approach. Un-
like the work in [15], our approach produces anauthoritative
<L-DNS,Client> association of clients to DNS servers. This
is due to the architecture we propose and to the deterministic
protocol we use to discover such associations (as discussed in
Sections 2 and 3).

2. L-DNS Clustering Algorithm

The basic idea of our protocol is to incrementally discover (and
continually maintain) a partition of the population of clients ac-
cessing a given (web) server. Clients that belong to the same
class in the partition use the same name server to perform
the domain-to-IP-address translation. We call such a class a
“Name-Server-equivalent Cluster” (NSC). NSC discovery is
done by allowing the name server that serves domain name
translation requests for a web server to use one or more “spe-
cial” (alias) IP addresses tocolor Internet clients. The protocol
works by ensuring that each such special IP address is issued
for exactly one name server at a time. This enables the associa-
tion of all clients that use this special IP address with the name
server to which this special IP address was advertised.

Definitions and Terminology: There are four main players in
our NSC discovery protocol. We describe these players below,
along with other terms we use throughout the paper.

WS (Web Server):This is one of the hosts that the client would
eventually contact to access the web site. We assume that WS
is configured to have a number of IP aliases. One of these IP
addresses is theDefault IP address (DIP) and the other IP ad-
dresses are called theSpecial IP addresses (SIP). Each SIP is
used to color a NSC. Thus, the more SIPs we assign to a WS
the more concurrent coloring we can perform.

GD (Global Director):This is the Authoritative Name Server
for the web site we are managing. The GD is the server that
responds to DNS queries for domain-to-IP address translations,
and is the entity that controls the issuing of SIPs to color NSCs.

IC (Internet Client):This is the client machine. The purpose of
our protocol is to assign the IP address of the IC (or its network)
to a NSC.

NS (Name Server):This is the (primary) name server that is
acting on behalf of an IC. The client will be assigned to the NSC
that includes all other ICs that use this NS as their (primary)
name server.

Overview of NSC Discovery Protocol: We present our NSC
discovery solution by describing modifications to the protocol
that is typically used by GDs (e.g. BIND). For simplicity, we
assume that we want to color onlyone NSC at a time. The
NSC discovery process starts when a NS (the NSC of which we
want to identify) queries the GD. Rather than returning DIP to
that NS, we return SIP. Since SIP is returned only to that NS, it
follow that the first request by an IC to the WS using SIP must
be the result of the IC having NS as its name server. Thus for
each such incident we can assume that the client belongs to the
NSC of NS.

Before detailing the NSC Discovery protocol, we discuss a
number of important issues that the protocol must consider.

Length of Time to Enable Coloring of a NSC:The longer we al-
low the protocol to color a NSC the more clients (or networks)
we are likely to classify as belonging to a NSC. To obtain the
full set of client we would need to do this “forever”. In prac-
tice (and as validated in our experimentation), it is likely that
at some point we may reach a point of diminishing return, after
which the rate at which we add new clients (or networks) to a
NSC decreases.

Canceling the Coloring Process:It is possible that the NSC as-
sociated with a name server is “not worth discovering” because
it generates so few requests that it warrants ignoring. One way
of canceling the coloring process is to check if the load gen-
erated from the NSC is below a given threshold and the name
server of the NSC fails to come back for a repeat request before
some timeout expires. Both of these conditions are necessary.

Black Listing a Name Server:If the load generated from the
NSC is large enough (above a given threshold) and the name
server of the NSC fails to come back for a repeat request before
some timeout expires, then we can assume that the NS is not
adhering with the TTL constraint set forth by the GD. Hence,
we could “black list” such an NS.

Speed of NSC Mapping versus Number of IP Addresses Used
for Coloring: So far, we have considered what happens when a
single name server (representing a single NSC) requests a DNS
lookup and how we can use a “special” IP (SIP) to color the



NSC. Obviously, we could use multiple SIPs to color multiple
NSCs concurrently. The more colors we use the faster the dis-
covery process is likely to be; usingn colors would speed up
the mapping processn-fold. The disadvantage (of course) is
that we have to dedicate many IPs to this process, which may
present a problem (from an administration’s point of view). In
the pseudo code below, we assume that we have functions that
manages the SIP pool (i.e. allocate a SIP, free a SIP, etc.)

NSC Map Compression:An important question, especially for
high-volume web sites, is the management of (potentially) very
large NSC. The question is not the raw space needed to store
the client IP addresses for a given NSC, but rather how to repre-
sent an NSC in a compact data structure that can be efficiently
indexed and searched. To that end, the hierarchical nature of IP
addresses suggests a simple tree structure. Traversing this tree
structure in a top-down fashion would allow us to identify the
various networks and sub-networks belonging to a NSC, along
with the cardinality (i.e. number of) clients in each such net-
work.

Synchronization Issues:The coloring of clients using a given
SIP starts when that SIP is “issued” to a specific name server
and is stopped when that SIP is “withdrawn” from the name
server. However, it is possible that a race condition occurs
whereby (1) a client issues a DNS lookup and gets back SIP1;
(2) the name server of that client later queries the GD and gets
a DIP; (3) Another name server queries the GD and gets back
SIP1; (4) the client requests the web page using SIP1 and hence
gets assigned to the wrong NSC. This race conditions is ex-
tremely unlikely. Nevertheless, to minimize the chances of this
race condition, the GD should simply wait for a while before
recycling a revoked SIP.1

NSC Discovery Protocol: Our NSC discovery starts with a NS
requesting a translation. The steps that the GD would take as
a result of this request are shown in the functionDNSpro-
cess(query) shown in Listing 2. In addition to these steps,
it is necessary to periodically “reclaim” SIPs. The pseudo code
for such a process is shown in Listing 2.2. The pseudo code
shown in Listings 2 and 2.2 make use of a number of timeout
parameters. These are defined in table 1.

A Hierarchical Approach to NSC Discovery: The above tech-
nique adopts a sequential approach to the discovery of NSC. In
other words, it proceeds by coloring (at any point in time) a
fixed number of NSC. If the total number of NSC in the Inter-
net is N and we are able to discovern of these NSC everyT
units of time, then the length of time it takes to color the whole
Internet is(N � T=n).2 Thus, if N = 1,000,000 andn=100 and
T=100 minutes, this results in a time of 1,000,000 minutes�
700 days, which is clearly unacceptable.

The O(N) time complexity of the coloring process can be
reduced significantly toO(logn(N)) by adopting a hierarchical
approach to the discovery of NSCs. The basic idea is to re-
cursively partition the name servers in the Internet inton NSC.
Here, everyT units of time, we are able to subdivide a NSC to

1Note that an adversarial client can always defeat this approach by waiting
for a long time between doing a DNS lookup and sending in the first request to
the web server. We do not consider such a scenario to be plausible.

2The values ofN , T , andn can vary widely based on the popularity of the
web site used to perform the clustering.

n smaller NSCs. Starting with one NSC, it would takelogn(N)
steps to cover all N NSCs. For the above illustrative numbers,
it would take only few hours to complete the NSC discovery.

Listing 2.1 Function to process a GD DNS query

Begin DNSprocess(Query){
If (!Colored(Query.NS)) {

SIP = GetNextSIP ;
If (SIP != NULL) {
SIP->LeasedTo = Query.NS;
SIP->TimeOfLease = CurrentTime();
AddToSIPlist(SIP);
AddToColoredList(Query.NS);
AddToLog("+", Time, Query.NS, SIP->Address);

}
}
SIP = SIPlist ;
While (SIP != NULL) {

If (SIP->LeasedTo == Query.NS) {
If ((CurrentTime()-SIP->TimeOfLease) > TTC) {

SIP->LeasedTo = NULL;
Query.Answer = DIP ;
AddToLog("-", Time, Query.NS, SIP->Address);
Sleep(TTR);
FreeSIP(SIP);
Return();

}
Query.Last = CurrentTime();
Query.Answer = SIP->Address;
Return();

}
Query.Answer = DIP;
Return();

}
}

Listing 2.2 SIP Reclaimer at the GD

Begin SIPreclaimer() {
SIP = SIPlist ;
While (SIP != NULL) {

If ((CurrentTime() - SIP->Last) > TTA) {
If (ServerLoad(SIP->LeasedTo) < LoadThresh) {

AddToLog("-", Time, Query.NS, SIP->Address);
FreeSIP(SIP);
Return();

}
AddToBlackList(SIP->Address);

}
SIP = SIP->Next;

}
Return();

}

3. An Architecture for NSC Discovery

We illustrate our proposed architecture to cluster clients around
the Local Domain Name Server (NS) they use for name resolu-
tion, by using a Web server in conjunction with its Authoritative
Domain Name Server.

The typical sequence of events that takes place when the
name of a website (e.g.,www.cs.bu.edu is looked-up by a
browser is: (1) the client queries the local name server (NS) for
a name-to-IP translation, (2) if the NS has such a translation in
its cache, then it returns it as an answer to the query, otherwise
(3) NS queries other name servers, as specified in [14] until it
gets an answer, or it reaches an Authoritative Name Server for



Time Meaning Settings
TTL Time-To-Live sets the expiration time for the

translation handed out from the GD to the NS.
To enable more control of load, TTL is set to a small value.

TTA Time-To-Abandon is the length of time we
want the GD to wait for a name server before
it decides that the NSC associated with that
name server is a ”deadbeat”.

TTA could be a simple constant threshold value (e.g. 5 minutes) or it could be a
dynamically calculated value based on the lack of NSC activity at the WS. In the
remainder of this document we assume that the TTA will be a simple constant
value. TTA is typically a multiple of TTL.

TTC Time-To-Color is the length of time we want
the GD to keep coloring a particular NSC.

TTC could be a simple constant threshold value (e.g. 10 minutes) or it could
be a dynamically calculated value based on the deceleration of the discovery
process. In the remainder of this document we assume that the TTC will be a
simple constant value. TTC is typically a multiple of TTA.

TTR Time-To-Recycle is the amount of time be-
tween reclaiming a SIP from a NS and the time
of putting it back in the pool of SIPs for color-
ing purposes (to avoid race conditions).

This value is set to be larger than the expected time between when a client re-
quest a DNS lookup and when it issues the first request to the web site. This
amount of time is typically very small (few msecs).

Table 1. Various Timeouts used in the L-DNS protocol with associated meanings and typical settings

the domain name.3 Once the client gets the answer back, it can
go directly to the Web Server, using the IP in the answer.

Architecture Overview: In our architecture, we insert two
modules to be invoked as part of the above event sequence:
The first module is called COLOR and it interfaces with the
GD. The second module is called WSI (Web Server Interface)
module and it interfaces with WS. The NSC discovery algo-
rithm presented in Section 2 is implemented within these two
modules, along with minimal instrumentation of both a Name
Server (NS) and a Web Server (WS). Figure 1 depicts our archi-
tecture and the flow of information between the entities in this
architecture.

Web Server Instrumentation: For the basic implementation of
our algorithm we used two Web servers hosting a “live” cultural
Web sitewww.coptic.net. A primary server (whose IP is
“widely known”) is used as the main server for the site. Along
with it, we use areplica server, which mirrors the content on the
primary server and is used as the server for coloring/clustering
clients. We set up the primary server on a Solaris 5.6 box. As
mentioned before, we refer to the IP address of this host as DIP.
The replica server is set up on a Linux (Kernel 2.2.14) box us-
ing the Apache Web Server (Version 1.3.14) [2]. We set up the
network interface on the replica machine to listen to 4 Special
IP (SIP) addresses. The Apache Server on this machine is con-
figured so as to listen to HTTP requests onall four of these SIP
addresses. We instrumented the Apache Web server so that it
relays the tuple<WebClientIP,WebServerIP> to the WSI mod-
ule. This tuple contains the IP address of the Client that ac-
cesses the replica server, and also of the Webserver IP address
it uses to access the replica server—in other words, one of the
SIP addresses.

Authoritative Name Server Instrumentation: We use the
Berkeley Internet Name Distribution (BIND) software [4, 6] to
set up the name server—i.e., the Global Director (GD)—for the
Web site. We registered [5] one of our machines as an Author-
itative DNS for the site4 www.coptic.net. We log all NS
accesses to our GD.

3An Authoritative Name Server for a domain name is the name server, which
by definition has the answer to the query sent by the client.

4For the purpose of this paper, we omit the discussion of Secondary Name
Servers and Zone transfers, in the context of Authoritative Name Servers.

We instrumented the GD such that for resolving names
of www.coptic.net andcoptic.net (Class IN, Type A
queries), instead of picking up IP addresses from the Zone
database, it queries the COLOR module. If the COLOR module
is running, implying that coloring is in progress, it returns one
of the available SIP addresses to the GD, which in turn returns
it to the querying NS. If an SIP is not available then the original
information from the zone databse is returned by the GD.

The COLOR Protocol Implementation: The coloring pro-
tocol defines the messages passed on the interfaces between
GD and COLOR, between COLOR and WSI and between WSI
and the Web Server. Figure 1 shows the messages passed be-
tween these various parties. Messages of type Query and An-
swer are exchanged between GD and COLOR—GD generating
the queries and COLOR answering the queries with either SIP
(if available) or DIP. Along with the IP address, COLOR also
passes along a Time To Abandon (TTA) parameter, which is
returned to the NS as the standard Time To Live (TTL) of the
Resource Record returned by a Name Server to the NS. During
this time all Internet Clients (IC) that access the NS to resolve
the namewww.coptic.net will receive the cached answer.
We want ICs to use this answer for TTA units of time. TTA is a
configurable parameter of our architecture and we aim to work
with different values of TTA and observe the efficacy of these
values for our algorithm.

The exchanges between COLOR and WSI form the heart
of the L-DNS clustering protocol. COLOR informs WSI when-
ever it assigns an SIP to an NS as result of a query from GD
to COLOR. It also informs WSI whenever it withdraws a SIP
given to an NS after its TTA expires. WSI maintains this map-
ping of NS to SIP, and accordingly clusters clients accessing the
webserver with a particular SIP. The protocol facilitates the flow
of client access information from the Web Server to WSI. The
IP address of every client accessing the replica server is sent to
the WSI along with the IP address it accessed the replica with.

As an illustration, assume that a client with IP address
128.197.12.3 requests a lookup forwww.coptic.net at time
t. Assuming that the NS (128.197.27.7) did not have the an-
swer in its cache, it requests a lookup from the GD. Assuming
that at that time, COLOR has one SIP (128.197.14.37) unas-
signed. It returns to the NS (128.197.27.7), this IP address as



(a) Proposed Architecture (b) The “COLOR” Protocol

Figure 1. L-DNS Clustering

the answer to the query through the GD and also communicates
the association<128.197.14.37,128.197.27.7> to WSI. Now,
the client accesses 128.197.14.37 over HTTP to get the content
from the Web site. The Web server running on 128.197.14.37
records and sends the tuple<128.197.12.3,128.197.14.37> to
WSI. Using this in conjunction with the DNS-to-SIP mapping,
WSI deduces the association of the client<128.197.12.3>with
the NS<128.197.27.7>. During the time [t,t+TTA] all clients
accessing 128.197.27.7 for resolution ofwww.coptic.net
will get the same SIP address<128.197.14.37>. At the
end of this time period WSI can log all the clients that
used <128.197.14.37> as being clustered around the NS
<128.197.27.7>.

WSI also sends periodic access statistics to COLOR.
Specifically, it reports how many clients accessed the web server
using a particular SIP in a given time interval. Based on this in-
formation, COLOR may decide to reassign the same SIP to the
NS instead of withdrawing it after the TTA period has expired.

4. Internet Characterization

In this section we present the results of experiments we con-
ducted on the Internet to cluster clients using the L-DNS cluster-
ing protocol/architecture described in the previous sections. We
present the characteristics of the L-DNS clusters we obtained
and compare those to results obtained using other client cluster-
ing approaches.

4.1. Characteristics of Name Server Access Patterns

We log access to the the Authoritative Name Server (GD), using
different TTLs for the data in our zone (coptic.net). We extract
the IP addresses of the NSs accessing the GD at three different
periods of time and with different values of TTL. A period of 6
days (from the6th of December, 2000 to the11th of December,
2000) which we refer to asPeriod1. A period of 38 days (from
the12th of December, 2000 to the18th of January, 2001), re-
ferred to as Period 2. Finally a period of 16 days (from the22nd

of February, 2001 to the10th of March, 2001), referred to as
Period3.

For Period1 we set a TTL for the records handed out by

GD, to the NS requests to be one day and forPeriod2 we set the
TTL to be one hour.Period3 is a special case because in this
period we ran our coloring algorithm. We set up the TTL for
records returned to NSs that were not being colored to be one
minute and the TTA (same as the TTL) for the NSs that were
being colored to be five minutes.

Total NS Hits Unique NS hits
Period1 1,874 1,221
Period2 19,009 4,517
Period3 10,754 2,939

Table 2. Number of NS accesses logged on the GD for
three Time Periods

Table 2 gives the number of NS accesses during these 3
periods. In Figure 4.1(a) we present the number of GD access
of these unique NSs in the three time periods. We plot the access
frequencies of an NS against the rank of that NS (lower rank =
higher frequency of access). In all three graphs we observed a
heavy-tailed distribution for the frequency of NS access vs rank.

Table 3 shows the total number of client accesses as well
as the number of accesses to the replica server. It also shows
the number of unique client hits that were observed (for both
servers) and those that were clustered during the coloring pe-
riod. By a client access, we mean a request by a client for a web
object and by a unique hit, we refer to the number of unique
clients logged, irrespective of the objects they request and the
time at which they access the object.

All NS NS Access Access
Colored by All by Clustered

Clients Clients
Total Accesses 10,754 6,870 185,256 54,794
Unique Hits 2,939 2,570 30,783 4,249

Table 3. Hits recorded in the logs of the GD and WS
during the coloring period (from 02/22/01 to 03/09/01)

We also obtain the distribution of interarrival times of all
the NS requests, in the three periods,Period1, Period2 andPe-
riod3. Figure 4.1(b) shows these distributions. We see that for



1

10

100

1000

1 10 100 1000 10000

N
um

be
r 

of
 A

cc
es

se
s

NSs ordered with decreasing number of accesses

(a)

TTL=1 day
TTL=1 hour

TTL=1 min TTC=5 min

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500

F
(x

)

Time(x100 sec)

TTL=1 day
TTL=1 hour

TTL=1 day TTC=5min

(a) The number of requests made to the (b) CDF of interarrival times of requests from
Authoritative NS from a Local NS Local NS during three different periods

Figure 2. Characterization of requests made to the Authoritative Name Server by Local Name Servers

Period1 64% of the requests conformed to the TTL value of one
day, returned by GD. For TTL value of one hour we had 92%
of the request conforming and for a TTL of one minute we had
89% requests conforming. Of the requests inPeriod3, 84% of
the colored NSs conformed to the five minutes TTA. Thus, we
conclude that most of the configurations of NSs running on the
internet assiduously follow the TTL value returned by the Au-
thoritative servers (as long as that value is not too large).

4.2. L-DNS Clustering Results

We ran our L-DNS clustering algorithm for a period of 16 days
and recorded the clusters that were produced. During this pe-
riod, we performed the coloring for a total of 6,870 times and
detected 2,570 unique clusters. The number of clients colored
in total was 5,778 of which, 4,249 were unique clients. The
maximum number of clients we discovered for a particular NS
was 56 and the length of time for which this particular NS was
colored equalled 7.5 hours.5 This is also the maximum time
for which any of the NSs were colored. The minimum num-
ber of clients we discovered in a cluster was zero. This can be
explained by noting that it is possible for a client to perform a
name look-up without accessing the web server (e.g., as a result
of nslookup or dig commands). In such a scenario the client IP
is not recorded by the web server but the NS is registered with
the GD. Of the 2,570 unique clusters, 435 clusters are due to
this phenomenon.

In our results, we find a high degree of correlation (0.79)
between the time for which an NS is colored and the number
of clients discovered in this NS’s cluster. We intend to study
further the marginal utility of incrementing the coloring period
for a given NS.

5The long time taken for coloring is an indication of the “unpopularity” of
the web site we used for our experiments. In particular, we were able to cluster
at the rate of one client for every 64 hits (� one client every 8 minutes) to the
web site. Had the web site used in our experiments been a popular server that
commands (say) 100 million hits per day, we would have been able to cluster
approximately 1,600,000 clients over a period of one day!

4.3. P-DNS Clustering Results

To get a feel of how a simple prefix matching would fare
as a clustering method, on the 4,249 (2,570 unique L-DNSs)
<NS,Client> pairs that we generated, we clustered clients
around the NS whose IP address has the most number of prefix
bits in common with a prefix of the client IP address.

For this clustering we calculate themean error coefficient
as the mean of the error coeffcients,� for each<P-DNS,Client>
due to this prefix based clustering, where� is defined as

� =

�
1; ifL�DNS 6= P �DNS
0; ifL�DNS = P �DNS

We found themean � to be 0.659, which indicates that if we
make use of a simple IP address prefix based scheme to cluster
clients around NSs, we would cluster around 66% of the clients
incorrectly! This shows the value of our L-DNS clustering ap-
proach.

Figure 3(a) gives the distribution of the number of clients
clustered using the P-DNS approach as well as the L-DNS ap-
proach. This Figure shows that the largest cluster sizes using
our L-DNS algorithm (=56) was smaller than that found using
P-DNS (=82). The difference between the two results supports
the fact that in the internet IP addresses are not the most reliable
way to discern information about the administrative domain of
a web client. Some other property has to be exploited; our al-
gorithm makes use of such a property.

Figure 3(b) shows the distribution of clusters with the mean
number of bits matched in each cluster. For this distribution we
take the mean number of bits matched between the NS and its
clients (clustered using the prefix-match algorithm). The mean
and the median number of bits matched are 11.1 and 7 respec-
tively.6

6The peak at 32 bits is attributed to local Name Servers running on the same
machine as the origin of a web request by the client (e.g. Web robots), resulting
in the NS being associated with itself as a client and hence resulting in a prefix
match of 32 bits, using the prefix-match algorithm.



1

10

100

1 10 100 1000 10000

N
um

be
r 

of
 C

lie
nt

s

Clusters, in decreasing order of number of clients

(c)

L-DNS based
P-DNS based

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35

F
(x

)

Number of bits matched

(d)

cdf

(a) Size of clusters formed vs. DNS index (b) Distribution of clusters over the mean number
in decreasing order of cluster sizes of bits matched between P-DNS and Client

Figure 3. Characteristics of cluster sizes formed using the L-DNS and P-DNS protocols

4.4. Correlation of RTT Metric

Web clients and NSs lying geographically close to each other—
for example on a common network (e.g. on a campus network
such as Boston University, or on an office network)—would ex-
hibit a high degree of correlation between the round trip times
(RTTs) of ping packets from a source to the NS and the RTTs
of ping packets from the same source to the web clients. Web
clients on a commercial network (e.g. America Online) would
show less (or no correlation) with their NSs. We explore quan-
titatitvely this correlation using our cluster information.

Using the clusters we obtained using our L-DNS clustering
approach, we performedpings from a source in Boston Univer-
sity to each NS as well as to all the clients clustered around that
NS. During the course of each experiment, we ping each IP ad-
dress in each cluster in a round-robin PASTA fashion (with the
inter-ping times between two ping packets being exponentially
distributed, with a mean of one second) for a total of 10 times.
Of the 6,819 IP addresses (2,570 NSs and 4,249 clients) that we
pinged, we were able to obtain 1,859<NS,Client> pairs that
responded to our pings. The correlation coefficient (for the ping
RTTs to the NS and to the clients) was found to be 0.2835.

To increase the representativeness of our ping RTT correla-
tion measurements, we performed the above experiment (ping-
ing NSs and clients that make up the L-DNS clusters around
these NSs) from three additional geographic locations in the US
(namely, University of Illinois at Chicago, Purdue University,
and Harvard University). Figure 4.4 shows a schematic diagram
of our measurement methodology.

The results of these experiments (from the four geographic
locations) are shown in Table 4. These results show that the
correlation between ping RTTs to a client and its NS is surpris-
ingly low (average = 0.3280). Thus, inspite of being on the
same administrative network, a client and its NS are not nec-
essarily “close” to each other in term of network latencies to a
given host. This shows that CDN redirection schemes based on
latency measurements between CDN nodes and a client’s NS
are unlikely to yield “optimal” server selection decisions, con-
firming the anomalies described in [11].

L−DNS Client

BU

HarvardPurdue

Chicago

Shared Path

Point of Separation

Figure 4. Schematic representation of the paths from
our measurement sources to a <NS,Client> pair.

Table 4 shows that the correlation coefficient depends on
the origin of the experiment (BU versus Purdue, for example).
This dependency can be explained by noting that the positive
correlation between ping RTTs to a client and its NS is due to
the shared portion of the path from a source to a client and its
associated NS (as illustrated in Figure 4.4). The “longer” this
shared path, the more we expect the ping RTTs to be corre-
lated (i.e. dependent). Notice that all our observation points
were hosts within subnets of academic institutions. This im-
plies that the shared portion of the paths to a client and its NS
observed from such hosts are likely to belonger than those ob-
served from hosts that are located closer to the Internet core—
proxies of CDNs at collocation points, for example. Thus, the
weak correlation coefficients shown in Table 4 are likely to be
even weaker when measured from such CDN proxies.

Ping RTT correlations are even weaker when the accu-
racy of the clustering approach is lower. To document this,
we repeated the above experiments using the P-DNS and R-



Location Correlation Correlation Correlation Standard
using using using Deviation

L-DNS R-DNS P-DNS (msec)
BU 0.2835 0.0257 0.1520 411.19
Chicago 0.2867 0.0239 0.1716 443.92
Purdue 0.4073 0.0297 0.2267 264.54
Harvard 0.3346 0.0249 0.2167 280.74

Table 4. Correlation for ping-RTT measurements to
L-DNS-Client, R-DNS-Client and P-LDNS-Client pairs
from different locations

DNS clustering approaches.7 For experiments conducted from
Boston University, the correlation coefficient for P-DNS clus-
tering (0.1520) was found to be lower than that of L-DNS clus-
tering (0.2835). And, as one would expect, the correlation co-
efficient for R-DNS clustering (0.0257) was found to be negli-
gible.

It is important to note that the RTT correlation coefficient
of 0.3280 is an average over all clusters we obtained. The cor-
relation coefficient was not uniformly weak across all cluster.
Specifically, we found that for some clusters, the RTT correla-
tion coefficient was quite high, whereas for others it was negli-
gible. This indicates that it is possible to characterize an L-DNS
cluster based on whether or not such a cluster exhibits a strong
correlation with respect to RTT. This characterization could be
quite valuable for CDN request routing. Specifically, if the RTT
correlation coefficient for the cluster around a NS is known to
be high, then a CDN could reliably assign the server with a min-
imum RTT to the NS and be assured that such a choice would
be (near) optimal for ICs belonging to such an NS. Alternately,
if the RTT correlation coefficient for the cluster around a NS
is known to be low, then a CDN may base its request routing
decision on other metrics (e.g. proxy load).

In Figure 5(I) we plot the NS ping-RTT against client ping-
RTT measured from four locations (BU, Chicago, Purdue and
Harvard). We observe that some of the points on the plot lie
at extremeties, much further than the ideal-case line fit on the
dataset. In other words, some of the clients are very far from
their L-DNS and vice versa, in terms of network latencies to the
source of the measurements. To estimate the deviations of the
measured times from those in the “ideal” case, we calculated
the standard deviation of the distances of the points from a hy-
pothetical 45-degree line passing through the origin. This ideal
case is a scenario, wherein the client and its NS are very close to
each other, just like on a campus network, or even on the same
host. Table 4 quantifies these deviations.

From Figure 5(II) we can see that although there are large
deviations from the “ideal case”, a fair number of clients lie
close to their NSs. As we hinted before, identifying clusters for
which this is true (or not true) could benefit DNS-based server
selection in CDN networks. Specifically, by indicating that for
highly-correlated (or highly uncorrelated) clusters a server that
is close to the NS is likely (not likely) to be close to the client.
This makes it possible to usedifferent CDN server selection
approaches for different clusters.

7Recall that P-DNS uses IP address prefix matching to assign a client to a
NS, whereas R-DNS assigns a client to a random NS.

Location Correlation Correlation Correlation
using using using

L-DNS R-DNS P-DNS
BU 0.6574 0.0086 0.4394
Chicago 0.6695 -0.0144 0.4879
Purdue 0.6606 0.0128 0.4763
Harvard 0.5737 0.0273 0.4542

Table 5. Correlation of traceroute measurements to L-
DNS-Client and R-DNS-Client pairs

4.5. Correlation of Hop-Count Metric

We performed measurements of proximity between a client and
its NS using the hop-count metric. We used thetraceroute tool
to obtain routes to each NS and its clients (identified using L-
DNS clustering). We did this measurement from three different
locations (Boston, Chicago, Purdue, and Harvard). We calcu-
lated thecommon-hop-count metric for <NS, Client> pairs,
which responded to ping measurements. The common-hop-
count metric is the number of hops that are common between
the path to the client and to NS from the sametraceroute source.

As with ping measurements, we computed the correlation
between the number of hops to the client and the number of
hops to its NS. Table 5 presents this correlation. From Boston
University, we find that the correlation (0.6574) is higher than
that observed for the ping RTT measurements (0.2835). This
follows simply from the weak correlation between hop-count
and latency metrics (documented in many studies, including [9]
for example).

To quantify the difference in “accuracy” between L-DNS
clustering and P-DNS clustering (and to compare both to the
baseline R-DNS clustering), we measured the hop-count corre-
lation for P-DNS and R-DNS. The results (shown in Table 5)
indicate that the correlation is lower for P-DNS, and is much
lower for R-DNS (as expected).

Figure 6 presents the cumulative distribution of the ratio of
common-hops to hops in the path to the client measured from
four locations, namely Boston University, Chicago, Purdue and
Harvard. Clustering using R-DNS gives the highest probability
for the ratio being less than some value, even for low values of
the ratio. Comparing L-DNS and P-DNS curves again demon-
strates the superiority of our protocol. For the same probability,
the L-DNS based approach gives a higher value for the ratio
than the P-DNS based approach. For example, ratios of 0.53 for
the L-DNS approach and 0.44 for the P-DNS approach have the
same probability of 0.53. This indicates that there is an almost
10% higher probability that with our approach we will form
pairings in which a client and an NS share longer portions of
the path to an arbitrary server.

As we observed for RTT correlation measurement, Table
5 shows that the correlation coefficient for hop-count depends
on the origin of the experiment. Again, this dependency can
be explained by noting that the positive correlation between
hop-count to a client and its NS is due to the shared portion
of the path from a source to a client and its associated NS (as
illustrated in Figure 4.4). The “longer” this shared path, the
more we expect the hop-count to be correlated (i.e. dependent).



0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500

L-
D

N
S

 p
in

g-
R

T
T

(m
s)

Client ping-RTT(ms)

(a)

BU

0

100

200

300

400

500

600

-1000 0 1000 2000 3000 4000 5000 6000

N
um

be
r 

of
 P

ai
rs

Distance from Ideal Line(ms)

(a)

BU

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500

L-
D

N
S

 p
in

g-
R

T
T

(m
s)

Client ping-RTT(ms)

(b)

Chicago

0

50

100

150

200

250

300

350

400

450

500

-1000 0 1000 2000 3000 4000 5000 6000 7000

N
um

be
r 

of
 P

ai
rs

Distance from Ideal Line(ms)

(b)

Chicago

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500

L-
D

N
S

 p
in

g-
R

T
T

(m
s)

Client ping-RTT(ms)

(c)

Purdue

0

50

100

150

200

250

300

350

-1000 -500 0 500 1000 1500 2000 2500 3000 3500

N
um

be
r 

of
 P

ai
rs

Distance from Ideal Line(ms)

(c)

Purdue

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500

L-
D

N
S

 p
in

g-
R

T
T

(m
s)

Client ping-RTT(ms)

(d)

Harvard

0

50

100

150

200

250

300

350

400

450

-1500 -1000 -500 0 500 1000 1500 2000 2500 3000 3500

N
um

be
r 

of
 P

ai
rs

Distance from Ideal Line(ms)

(d)

Harvard

(I) L-DNS ping-RTT vs. Client ping-RTT (II) Distribution of distance of the pairs from the ideal line

Figure 5. Comparison of ping RTTs to L-DNS-Client pairs, from (a) Boston (b) Chicago (c) Purdue (d) Harvard



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

F
(x

)

Ratio of common-hops to client-hops

(a) BU

L-DNS
R-DNS
P-DNS

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

F
(x

)

Ratio

(b) Chicago

L-DNS
R-DNS
P-DNS

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

F
(x

)

Ratio

(c) Purdue

L-DNS
R-DNS
P-DNS

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

F
(x

)

Ratio

(d) Harvard

L-DNS
R-DNS
P-DNS

Figure 6. CDF of Common-Hops/Client-Hops using 3
types of clusterings, measured from Boston, Chicago,
Purdue, and Harvard.

This leads us to the same conclusion we observed for RTT cor-
relation measurement—namely that the correlation coefficients
shown in Table 5 are likely to be weaker when measured from
hosts that are closer to to the Internet core—proxies of CDNs at
collocation points, for example.

5. Conclusion

In this paper we proposed a novel approach for clustering Web
clients around the local name server they employ. We have
demonstrated that this clustering fares better at grouping to-
gether NSs and clients which are more correlated, in terms of
network latency and network hop-count (compared to cluster-
ing heuristics that rely on matching client IP addresses). Our In-
ternet characterization findings have significant implications on
DNS-based request routing mechanisms employed in Content
Distribution Networks (CDNs) because they call into question
the wisdom of basing request routing decisions on the “proxim-
ity” (with respect to some performance metric) of a CDN proxy
to the client’s name server. Doing so is warrantedonly for name
servers whose L-DNS cluster exhibits a high-enough correla-
tion with respect to the metric of interest.

References

[1] http://www.akamai.com.
[2] http://www.apache.org/.
[3] http://www.digitalisland.com.
[4] http://www.isc.org/products/BIND/.
[5] http://www.networksolutions.com.
[6] P. Albitz and C. Liu.DNS and BIND. O’Riely, 1998.
[7] P. Barford, A. Bestavros, J. Byers, and M. Crovella. On the

Marginal Utility of Deploying Measurement Infrastructure. Tech-
nical Report BUCS-TR-2000-018, Boston University, Computer
Science Department, July 2000.

[8] A. Bestavros and C. Cunha. Server-initiated Document Dissemi-
nation for the WWW. InIEEE Data Engineering Bulletin, 19:3-
11, September 1996.

[9] R. L. Carter and M. E. Crovella. Dynamic Server Selection Us-
ing Bandwidth Probing in Wide-Area Networks. InTR-96-007,
Boston University Computer Science Department, March 1996.

[10] V. Fuller, J. Y. T. Li, and K. Varadhan. Classless Inter-Domain
Routing (CIDR): an Address Assignment and Aggregation Strat-
egy . InRFC 1519, September 1993.

[11] K. L. Johnson, J. F. Carr, M. S. Day, and M. F. Kaashoek. The
Measured Performance of Content Distribution Networks. In5th
International Web Caching and Content Delivery Workshop, May
2000.

[12] B. Krishnamurthy and J. Wang. On Network-Aware Clustering
of Web Clients. InACM SIGCOMM, Stockholm, August 2000.

[13] K. Lougheed and Y. Rekhter. A Border Gateway Protocol (BGP).
In RFC 1163, June 1990.

[14] P. Mockapetris. Domain Names - Implementation and Specifica-
tion. In RFC 1035, November 1987.

[15] A. Shaikh, R. Tewari, and M. Agrawal. On the Effectiveness of
DNS-based Server Selection. InIEEE INFOCOM, 2001.

Acknowledgments: We are grateful to the Coptic Network for
allowing us to use their domain name and web site to imple-
ment our L-DNS clustering. Also, we would like to thank Prof.
Kihong Park at Purdue University and Mayank Rawat at the
University of Illinois at Chicago for allowing us access to their
laboratories for the characterization component of this study.


