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O Neighbor selection is a
key building block for
overlay applications

O Love your neighbors as
yourself (assuming you
can’t easily move)

O Changing neighborhood
in overlays is cheap;
just rewire!

O Implications?
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Pay as you go + Autonomy = Market ‘#‘ﬁ

O Not your father’s Internet

B Infrastructure owner has no incentive to
minimize cost for tenants

B Tenants make resource acquisition/control
decisions and have no incentive to optimize
for, or be fair/friendly to others

O Holistic system (social) view is passé

B Challenge is to design the right mechanisms
that enable an efficient marketplace
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Talk overview: Three settings

Overlay network connectivity management
B Selfish Neighbor Selection (SNS) game

Cloud resource acquisition
B Colocation Games

Shared bandwidth arbitration
B Trade & Cap
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Choosing thy neighborhood game fﬁi}

O Given an established overlay network

B A node evaluates the advantage (if any)
from picking a different set of neighbors

B If rewiring is warranted, the node changes
its (outbound) neighbors accordingly

B This rewiring may trigger more rewiring by
other nodes

and the “Selfish Neighbor Selection” (SNS)
game goes on...
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SNS Game: Interesting questions

B What is the optimal strategy? How does it compare
to empirical ones (e.g., random)?

B Under what conditions will neighborhoods stabilize,
i.e., reach Nash-like equilibrium?

B What do the resulting Nash equilibria look like?

What is the price of anarchy?

B What if some (most) nodes are naive? malicious?
or adversarial?

B What is the impact of partial knowledge, of churn,
and of changes in physical network?

B Could answers to the above questions inform
systems/protocol design?
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SNS: Target applications

O Routing Networks (e.g., Skype):
B Send unicast traffic from one overlay node to another

B Node’s objective is to minimize its average (or maximum)
routing cost to all destinations

O Broadcast Networks (e.g., MS update):
B Send data from one node to all nodes in the overlay
® Node's objective is to minimize its average (or maximum)
broadcast cost to all destinations

O Query Networks (e.g., Gnutella):
B Find content available in some (unknown) overlay node
B Node's objective is to query the most number of overlay
nodes using scoped flooding
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Formulation of SNS for routing

B Sis the residual wiring graph ==
defined by the local wirings of @
all nodes except node v, 'i"q;

B Best-Response (BR) of v, is the . &
local wiring s; that minimizes

C($)=C (S uis})= zplj 'ds("n‘/j)
vieh,
s, 1<k
where:
O p;is the preference of v; for destination v;
0 dg(v;V;) is the cost of the shortest path from v; to v;in §
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How we depart from prior work?

O Selfish routingt
B Game input: Fixed network topology
B Game outcome: Selfishly constructed
source-based routes over the topology

= Our SNS work:
B Game input: Shortest-path routing

B Game outcome: Selfishly constructed
network topology

1 References: [Roughgarden & Tardos, JACM’02] [Qiu et al, Sigcomm’03]
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Best Response for SNS is NP hard

O Theorem:
Under uniform overlay
link weights (e.g., hop-
count), finding BR to S is
equivalent to solving the
asymmetric k-median on
S, with reversed edges

O Corollary: Gt

cost the same

Constant approximation neighbors w,s
with an O(log n) blow-up can be found by
in kis possible [Lin and S:’;'W_a-""ﬁd'ﬂg p

" on S, with reverse
Vitter, '92] edges
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Game theoretic results for SNST

O Theorem:
All games with uniform node preference, node degree,
and link costs have pure Nash equilibria (stable graph).

B In any such stable graphs, the cost of any node-is at
most 2+ k=01 that of any other node.

B The diameter of the stable graph for a uniform game
is-O(sqrt(n logim)).

O Theorem:

There exist non-uniform games with no pure Nash
equilibria.

T Proofs, constructions, and more resuits in Laoutaris, Rajaraman, Sundaram, Teng, “A
bounded-degree network formation game?, from arXiv-CoRR cs.GT/0701071.
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Topology of stable (NE) SNS graphs #«%g

O Under unit link costs and uniform routing
preference to all destinations, we know
that a Nash-equilibrium exists.

O What are the characteristics of the
resulting wiring graphs?
B Are they random?
B Do they exhibit a uniform in-degree
distribution?
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k=8

O Not uniform, but skewed in-degree distribution

O Selfishness yields preferential attachment to
“accidentally” popular nodes

O Phenomenon more evident for small &» — why?
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How should a new comer connect?

April 19, 2010
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Results in non-uniform networks

OLink cost generation
1. Synthetically using BRITE:

® Euclidean distance used to derive cost of overlay links
2. Empirically from PlanetLab:

B 300-node PlanetLab topology

®m All-pair ping traces used to derive cost of overlay links
3. Empirically from AS-level maps:

® 12/2001 Rocket-Fuel data of the Internet topology

m AS-level hop-count used to derive cost of overlay links

O Control parameter
B Bound on out-degree (k) = link density ()

® Barabasi-Albert (BA) model with heavy-tailed 2D placement
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O Neighbor selection strategy
a. The k-random heuristic
b. The k-closest heuristic, a.k.a. greedy
c. SNS Best Response (BR) wiring using ILP

O Experiments done in nine permutations

B Three strategies for a new comer, each assuming residual graph
was wired using one of the three strategies

O Performance metrics
® Individual Cost = Average cost for a newcomer
=> Cost ratio for strategy x = C(x)/C(BR)
®  Social Cost = Sum of cost for all nodes
= Social Cost ratio for strategy x = SC(x)/SC(BR)
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SNS over random residual networks
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= BR is dominant, with k-closest decidedly better than k-
random. BR’s benefit pronounced for small k = why?
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SNS over greedy residual networks
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= BR is dominant, with k-random slightly better than -
closest = why?

If your neighbors are greedy, it pays to be selfish
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SNS over selfish residual networks
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Social cost benefit from SNS

= BR is dominant, but not by a significant margin, with -
closest being quite competitive — why?

If your neighbors are selfish, it’s OK to be naive
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7=50 =01 T=025
k-Random/BR | k-ClosestBR | k-Random/BR k-Closcst/BR.
BRITE 1.44 153 1.52 184
PlanctLab 223 148 175 123
AS-level 2.04 1.90 1.83 1.61

= Adopting BR as a neighbor selection strategy results in a
significant reduction in the social cost (by 30-60%) over
naive (random/greedy) approaches.

The network is better off with selfish nodes!
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EGOIST: Implementation

Protocol for EGOIST overlay node v,
1. Bootstraps by connecting to arbitrary neighbors
2. Joins link-state protocol to get residual graph
3. Measures cost to candidate neighbors
4. Wires according to chosen strategy (default: BR)
5. Monitors and announces overlay links

T We have also implemented a light-weight version of this protocol, in
which steps 2, 4, and 5 are implemented on a central server.
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EGOIST: SNS prototype
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EGOIST: Features

O Supported metrics:
® Delay (actively/passively monitored with ping/Pyxida)
® Available bandwidth (monitored with pathChirp)
® Node load (monitored with Toadavg)

O Supported wiring strategies:

® k-random

® j-closest

B f-regular

B Best-Response (Delay and AvailBw formulations)

® Hybrid Best-Response (subset of links donated to the network)

O BR Computation:
B By using the full residual graph
® By sampling the residual graph
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EGOIST: Baseline results (n=50)

Metric: Delay {via ping)
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EGOIST: Marginal utility of re-wiring
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BR Lazy BR (threshold = 10%)

O Most of the benefit achieved with k ~ 3-4
O Re-wirings could be reduced using “lazy” BR
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EGOIST:

115
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Normalized cost
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k population of free rdeds

O Free riders avoid being chosen as neighbors by
inflating cost of their outgoing links (*2 above)

O EGOIST is robust to abuse by free riders (not
the case with greedy neighbor selection)
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Talk overview: Three settings

Overlay network connectivity management
B Selfish Neighbor Selection (SNS) game

Cloud resource acquisition
B Colocation Games

Shared bandwidth arbitration
B Trade & Cap
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Network Embedding

Network P
Monitoring S
Service Real ¥ Host
- Network -
- !
Synthetic L.

Topologies ﬂ
Constraint -
Expression IZI}
Task P

N
Virtual ) "y
\_Network ()

3

Matching
Algorithm

http://csr.bu.edu/netembed
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Motivation: IaaS pricing

T Creas an 7S o 1

amazon
weliservices

About AWS - Praducts - Solutions - Resources - Suppart - Your Aczount
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Amazon Elastic Compute Cloud (Amazon ECZ) =

“Pricing is per instance-hour
consumed for each instance type.
Parial instance-hours consumed are
billed as full hours."

3riirgis per netzrea-aaLr ca75Umac for sach inztzncs type. Parsl inztznc -~curs cons.med 37 Slzc as =1
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(Cloud) Colocation Games

O IaaS cloud providers offer fixed-sized
instances for a fixed price

O Provider’s profit = number of instances
sold; no incentive to colocate customers

O Virtualization enables colocation to
reduce costs without QoS compromises

O Customers’ selfishness reduces the
colocation process to a strategic game
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Colocation Games
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Colocation Games: Questions o

O Does it reach equilibrium?

O If so, how fast? At what price of anarchy?
O How about multi-resource jobs/hosts?

O How about multi-job tasks?

O How about job/host dependencies?

O How could it be implemented?

O How would it perform in practice?
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How do we depart from prior work?

O Vickrey-style auctions work™
B Assumes supply < demand
B Takes a social perspective
B Offers a strategy-proof solution
B Requires central authority
B Susceptible to collusion

+ A. Young, B. Chun, A. Snoeren, and A. Vahdat. Resource allocation in federated
istri ing i In OS/archi support for on-demand IT

infrastructure, 2004.
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S
How do we depart from prior work? ‘iﬁ

O Cooperative cost-sharing games™
B Find coalition where nobody gains by leaving
B Computationally hard
B Applied to best-effort routing problems
B Player cost not use based; unjustifiable

+ Chen, H.-L. & Roughgarden, T. Network design with weighted players. In SPAA 2006.
+ E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Roughgarden.
The price of stability for network design with fair cost allocation. In FOCS 2004.

April 19, 2010 Network and Cloud Resource Management Games @ Texas State 36

Colocation Game: Model

O A hosting graph G =(V,E)
B /& E labeled by capacity vector R and fixed price P
O A set of task graphs 7, =(V,.E)
B V. & E; labeled by a utilization vector W
O Valid mappings
BV, > V&E > E:XW<R; supply meets demand
O Shapley cost function

m Cost P of a resource is split among tasks mapped to
it in proportion to use
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The General Colocation Game (GCG) }%{

O GCG is a pure strategies game:

Each task is able to make a (better response)
move from a valid mapping M into another M’
so as to minimize its own cost

O Example applications:
mOverlay reservation, e.g., on PlanetLab
BCDN colocation, e.g., on CloudFront
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General Colocation Game: Properties

O GCG may not converge to ==
a Nash equilibrium

O Theorem:
Determining whether a GCG hasa ™ @4 7
Nash Equilibrium is NP-Complete T, @8
(by reduction to 3-SAT problem) =
T @—5e

O Need more structure to =
ensure convergence
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Colocation Games: Variants 2

O Process Colocation Game (PCG):
Task graph consists of a single vertex representing
an independent process that needs to be assigned
to a single host with only one capacitated resource

O Multidimensional PCG (MPCG):

Same as PCG but with multi capacitated resources

O Example applications:
BVM colocation, e.g., on a Eucalyptus cluster
EStreaming server colocation
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Colocation Games: Variants

O Parallel PCG (PPCG):
Task graph consists of a set of vertices (indepen-
dent processes), each with multidimensional
resource utilization needs

O Uniform PPCG:
Same as PPCG but with identical resource
utilization for all processes

O Example applications:
EMap-Reduce paradigm
BMPI scientific computing paradigm
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Colocation Games: Theoretical results »d

B PCG converges to a Nash Equilibrium under
better-response dynamics

B PCG converges to a Nash Equilibrium in O(n?)
better-response moves, where n = | V]

B Price of Anarchy for PCG is 3/2 when hosting
graph is homogeneous and 2 otherwise

B MPCG converges to a Nash equilibrium under
better-response dynamics

B Uniform PPCG converges to a Nash equilibrium
under better response dynamics

| B
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PCG: Better Response

Best-Response moves require knowledge of
utilizations of all processes — not practical

Local Better-Response solution:
1.Select a random target hosting node and obtain process
utilizations of all processes on that node

2.Determine if a cost-reducing “legal” move to that node is
possible = an NP-hard Knapsack problem

B Dynamic Programming solution in pseudo-polynomial time
for small number (100s) of processes/host [DPKP]

®  Breadth-First branch & bound Search heuristic [BFS]
B Depth-First branch & bound Search heuristic [DFS]
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PCG: Performance Evaluation

Workloads

B Trace-driven: CoMon PlanetLab traces
O Real hosting environment with 3-dimensional resource utilizations
O Infeasible to compute optimal colocation
B Synthetic
O Allows systematic exploration of the space
O Optimal colocation is known by construction

Metrics (over 100 experiments)
B Colocation Ratio (bounded by PoA)

O How inefficient is the resulting colocation compared to optimal or best?
B Number of moves until NE is reached

O How much churn (overhead) to be expected?
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PCG: Synthetic baseline results
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MPCG: PlanetLab baseline results ‘#‘ﬁ
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MPCG: Colocation Ratio
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MPCG: Number of Moves
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The CLOUDCOMMONS prototype

O API for Strategic Services
To facilitate colocation, e.g., allow users to find
each other, compute strategic responses, ...

O API for Operational Services
To enforce outcomes of colocation, e.g.,
migration, reconfiguration, accounting, ...

O Implemented over Xen
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CLOUDCOMMONS: Sample Results

B

Process Movement

Data Movement

cnonBRERES

Players
| Strategic Mov

es

Players
Operational Transfers

Chum ~ 5 players / hour
Requested utiization ~ [0-1]

April 19, 2010

Network and Cloud Resource Management Games @ Texas State 50




CLOUDCOMMONS: Sample Results

Normalized Average Cost Including Overhead

1
o} ]
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Time

Chum ~ 5 players / hour
Requested utiization ~ [0-1]
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Talk overview: Three settings

Overlay network connectivity management
B Selfish Neighbor Selection (SNS) game

Cloud resource acquisition
B Colocation Games

Shared bandwidth arbitration
B Trade & Cap
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The perils of the fixed pricing model

O It's here to stay; metered pricing rejected

O Implications:
B Customer has no incentive to save bandwidth
B ISP cost depends on peak demand - 95/5 rule

B Reigning in bandwidth hogs is incompatible with
Net Neutrality

O Must devise mechanisms that take ISPs out
of the “traffic shaping” business

April 19, 2010 Network and Cloud Resource Management Games @ Texas State 53

DSLAM “last-mile” architecture

2=

o P s
e nsi
PC madens

Traffic shaping done at BRAS
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Solution: Create a marketplace xﬁé‘
O Recognize the two types of user traffic:
B Interactive Traffic (IT)
O Browsing, VoIP, Video, Messaging, Gaming, ...
O Limited bandwidth; highly sensitive to response time
B Fluid Traffic (FT)
O P2P, Network backup, Netflix/software downloads, ...
O Open-ended bandwidth; less sensitive to response time

O Create a marketplace:
1. Give users rights to DSLAM bandwidth, and
2. Let users trade IT & FT allocations over time
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The Marketplace

O Each user gets a fixed budget per epoch
B Budget proportional to level of service

B An epoch is a fixed number of time-slots,
e.g., 1 day = 288 5-min slots

O Trade & Cap
B User engages in a pure strategies game that
yields a schedule for its IT sessions

B User acquires as much FT bandwidth as its
remaining budget would allow
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Trading Phase: Strategy Space

O Session:

An IT session is the sequence of slots during which an IT
application is active

O Slack:

User may have flexibility in scheduling IT sessions; slack
specifies the number of slots that an IT session is allowed to
be shifted back/forth

O Strategy Space:

The set of all possible arrangements of IT sessions within
allowable slack define the strategy space for a user
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Trading Phase: Cost Function

O Let x;, be the bandwidth used in slot £ by
a chosen IT session schedule for user i.

O The cost incurred by user i is given by:

6= 2% U= 2 %] D%,

keslots keslots jeusers

O Cost of user i depends on the choices
made by other users - hence the game!
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Trading Phase: Illustration

Cost(User 2) = 6
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Trading Phase: Illustration

Cost(User 2) = 4
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Trading Phase: Best Response

O BR of user i is the schedule of IT sessions
that minimizes its cost ¢,

O Computing BR is NP-hard, equivalent to
solving a generalized knapsack problem

O Dynamic programming solution is
pseudo-polynomial in the product of the
number of sessions and number of slots

O Scales well for all practical settings -
100s of users and 100s of slots
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Trading Phase: Findings

O Provably converges to Nash Equilibrium,
even in presence of constraints

O For n users, Price of Anarchy is n, but in
practice below 2, especially for n>10

O Experimentally, large reduction of peak
utilization, even with small flexibility
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Capping Phase: Best Response

O BR of user i is to maximize total FT
allocation

W, = Z Wik

keslots

subject to the budget constraint

Z Wy, Up+ ijk =B —¢

keslots Jjeusers
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Capping Phase: Budget

O Let ¥ be an upper-bound on traffic per slot

O The ISP sets a target capacity C = V/R,
where R > 1 reflects its “resistance” to traffic

O The ISP allocates C in some proportion
(e.qg., equally) to all users over all slots

O This constitutes the budget B assigned to a
user over an epoch
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Capping Phase: Findings

O Computing BR is efficient using Lagrange
Multipliers method

O Provably, converges to a unique global
(social) optimum that maximizes the FT
allocations of all users

O Experimentally, smoothes the aggregate
IT+FT traffic to any desirable level
controlled by resistance parameter R
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Experimental Evaluation

Workload
Derived from WAN traces |[mze

of MAWI project

mIdentify users from volume
and direction of flows to known
ports (e.g., most traffic
destined to port 80)

mIdentify user IT sessions
using thresholds on per-IP
traffic intensities over time
mSlack introduced using

Downatream traffi (MF)

Trading Phase: Experimental PoA »d

Over 5 slots Over 10 slots
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April 19, 2010 Network and Cloud Resource Management Games @ Texas State

Theoretical PoA is n but not in practice
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Trading Phase: Smoothing effect

Max | Reduction
Slack in 95%

Value proposition to ISPs 3 15%
6 24%
12 31%
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Trade & Cap: Flexibility pays off!

Value proposition to customers

Normalized FT traffic

600

200 400
IT traffic (MB)
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Trade & Cap et

A win-win for ISPs and customers

Normalized Traffic Volume

Time Slot
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Trade & Cap: Implementation

O On Client Side (DSL Modem):
+ Strategic agent to execute Trade & Cap
+ Operational service to classify and schedule

Schedaler

O ISP Side (DSLAM or BRAS):
+ Support exchange between strategic agents
+ Enforce traffic/slot/user from Trade & Cap
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Conclusion

O In many settings, resource management
must be seen as a strategic game among
peers or tenants of an infrastructure

O By setting up the right mechanism, one can
ensure convergence and efficiency

O New services are needed to support
strategic and operational aspects of these
game-theoretic mechanisms
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