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Pay as you go + Autonomy = Market

Not your father’s Internet 
Infrastructure owner has no incentive to 
minimize cost for tenants
Tenants make resource acquisition/control 
decisions and have no incentive to optimize 
for, or be fair/friendly to others

Holistic system (social) view is passé
Challenge is to design the right mechanisms 
that enable an efficient marketplace
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Talk overview: Three settings

Overlay network connectivity management
Selfish Neighbor Selection (SNS) game

Cloud resource acquisition 
Colocation Games

Shared bandwidth arbitration
Trade & Cap 
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Overlay connectivity management

Neighbor selection is a 
key building block for 
overlay applications

Love your neighbors as 
yourself (assuming you 
can’t easily move) 

Changing neighborhood 
in overlays is cheap; 
just rewire!

Implications?
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Choosing thy neighborhood game

Given an established overlay network
A node evaluates the advantage (if any) 
from picking a different set of neighbors
If rewiring is warranted, the node changes 
its (outbound) neighbors accordingly
This rewiring may trigger more rewiring by 
other nodes

and the “Selfish Neighbor Selection” (SNS) 
game goes on…

April 19, 2010 Network and Cloud Resource Management Games @ Texas State 7

SNS Game: Interesting questions

What is the optimal strategy? How does it compare 
to empirical ones (e.g., random)?
Under what conditions will neighborhoods stabilize, 
i.e., reach Nash-like equilibrium? 
What do the resulting Nash equilibria look like? 
What is the price of anarchy?
What if some (most) nodes are naïve? malicious? 
or adversarial? 
What is the impact of partial knowledge, of churn, 
and of changes in physical network?
Could answers to the above questions inform 
systems/protocol design?
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SNS: Target applications

Routing Networks (e.g., Skype): 
Send unicast traffic from one overlay node to another
Node’s objective is to minimize its average (or maximum) 
routing cost to all destinations

Broadcast Networks (e.g., MS update):
Send data from one node to all nodes in the overlay
Node’s objective is to minimize its average (or maximum) 
broadcast cost to all destinations

Query Networks (e.g., Gnutella):
Find content available in some (unknown) overlay node 
Node’s objective is to query the most number of overlay 
nodes using scoped flooding

Formulation of SNS for routing

S-i is the residual wiring graph 
defined by the local wirings of 
all nodes except node vi

Best-Response (BR) of vi is the 
local wiring si that minimizes

where: 
o pij is the preference of vi for destination vj

o dS (vi,vj) is the cost of the shortest path from vi to vj in S
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How we depart from prior work?

Selfish routing†
Game input: Fixed network topology
Game outcome: Selfishly constructed 
source-based routes over the topology

Our SNS work:
Game input: Shortest-path routing
Game outcome: Selfishly constructed 
network topology 

† References:  [Roughgarden & Tardos, JACM’02] [Qiu et al, Sigcomm’03]
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Best Response for SNS is NP hard

Theorem: 
Under uniform overlay 
link weights (e.g., hop-
count), finding BR to S-i is 
equivalent to solving the 
asymmetric k-median on
S-i with reversed edges

Corollary:
Constant approximation 
with an O(log n) blow-up 
in k is possible [Lin and 
Vitter, ’92]

u

w

Since these
cost the same 
neighbors w,u
can be found by 
solving 2-median
on S-i with reversed
edges

w

u
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Game theoretic results for SNS†

Theorem:
All games with uniform node preference, node degree, 
and link costs have pure Nash equilibria (stable graph).

In any such stable graphs, the cost of any node is at 
most 2 + k -1 + O(1) that of any other node.
The diameter of the stable graph for a uniform game 
is O(sqrt(n logkn)).

Theorem:
There exist non-uniform games with no pure Nash 
equilibria.

† Proofs, constructions, and more results in Laoutaris, Rajaraman, Sundaram, Teng, “A 
bounded-degree network formation game”, from arXiv-CoRR cs.GT/0701071.
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Topology of stable (NE) SNS graphs

Under unit link costs and uniform routing 
preference to all destinations, we know 
that a Nash-equilibrium exists.

What are the characteristics of the 
resulting wiring graphs?  

Are they random?
Do they exhibit a uniform in-degree 
distribution?
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Selfishness yields skewed attachment 

k = 2 k = 3 k = 5 k = 8

Not uniform, but skewed in-degree distribution
Selfishness yields preferential attachment to 
“accidentally” popular nodes
Phenomenon more evident for small k/n – why?

n = 15
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… distinct from skew in preferences

k

Skew

Why is node 13 popular?
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Results in non-uniform networks

Link cost generation
1. Synthetically using BRITE: 

Barabasi-Albert (BA) model with heavy-tailed 2D placement
Euclidean distance used to derive cost of overlay links

2. Empirically from PlanetLab:
300-node PlanetLab topology
All-pair ping traces used to derive cost of overlay links

3. Empirically from AS-level maps:
12/2001 Rocket-Fuel data of the Internet topology
AS-level hop-count used to derive cost of overlay links

Control parameter
Bound on out-degree (k) ≈ link density (β) 
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How should a new comer connect?

Neighbor selection strategy
a. The k-random heuristic
b. The k-closest heuristic, a.k.a. greedy
c. SNS Best Response (BR) wiring using ILP

Experiments done in nine permutations
Three strategies for a new comer, each assuming residual graph 
was wired using one of the three strategies

Performance metrics
Individual Cost = Average cost for a newcomer

Cost ratio for strategy x = C(x)/C(BR)
Social Cost = Sum of cost for all nodes

Social Cost ratio for strategy x = SC(x)/SC(BR)
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If your neighbors are naïve, it pays to be selfish

SNS over random residual networks

BR is dominant, with k-closest decidedly better than k-
random. BR’s benefit pronounced for small k – why?

Link density Link densityLink density

BRITE (n=50) PlanetLab (n=50) AS-Level (n=50)
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SNS over greedy residual networks

BR is dominant, with k-random slightly better than k-
closest – why?

Link density Link densityLink density

BRITE (n=50) PlanetLab (n=50) AS-Level (n=50)

If your neighbors are greedy, it pays to be selfish
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SNS over selfish residual networks

BR is dominant, but not by a significant margin, with k-
closest being quite competitive – why?

Link density Link densityLink density

BRITE (n=50) PlanetLab (n=50) AS-Level (n=50)

If your neighbors are selfish, it’s OK to be naïve
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Social cost benefit from SNS 

Adopting BR as a neighbor selection strategy results in a 
significant reduction in the social cost (by 30-60%) over 
naïve (random/greedy) approaches.

The network is better off with selfish nodes!  

n=50
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EGOIST: Implementation

Protocol for EGOIST overlay node vi
1. Bootstraps by connecting to arbitrary neighbors
2. Joins link-state protocol to get residual graph
3. Measures cost to candidate neighbors
4. Wires according to chosen strategy (default: BR)
5. Monitors and announces overlay links

† We have also implemented a light-weight version of this protocol, in 
which steps 2, 4, and 5 are implemented on a central server. 
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EGOIST: SNS prototype

EGOIST Demo at: http://csr.bu.edu/sns
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EGOIST: Features

Supported metrics:
Delay (actively/passively monitored with ping/Pyxida)
Available bandwidth (monitored with pathChirp)
Node load (monitored with loadavg)

Supported wiring strategies:
k-random
k-closest
k-regular
Best-Response (Delay and AvailBw formulations)
Hybrid Best-Response (subset of links donated to the network)

BR Computation:
By using the full residual graph
By sampling the residual graph
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EGOIST: Baseline results (n=50)
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EGOIST: Marginal utility of re-wiring

Most of the benefit achieved with k ~ 3-4
Re-wirings could be reduced using “lazy” BR

BR Lazy BR (threshold = 10%)
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EGOIST: Vulnerability to abuse

Free riders avoid being chosen as neighbors by 
inflating cost of their outgoing links (*2 above)
EGOIST is robust to abuse by free riders (not 
the case with greedy neighbor selection)
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Talk overview: Three settings

Overlay network connectivity management
Selfish Neighbor Selection (SNS) game

Cloud resource acquisition 
Colocation Games

Shared bandwidth arbitration
Trade & Cap 
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Network Embedding

http://csr.bu.edu/netembed

Host

Task
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Motivation: IaaS pricing 
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“Pricing is per instance-hour 
consumed for each instance type. 

Parial instance-hours consumed are 
billed as full hours.”

(Cloud) Colocation Games

IaaS cloud providers offer fixed-sized 
instances for a fixed price
Provider’s profit = number of instances 
sold; no incentive to colocate customers
Virtualization enables colocation to 
reduce costs without QoS compromises
Customers’ selfishness reduces the 
colocation process to a strategic game
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Colocation Games

08:00 am / Amazon $3 09:00 am / Amazon $3

10:00 am / Amazon $2 11:00 am / Amazon $2
Hosts

Tasks
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Colocation Games: Questions

Does it reach equilibrium?
If so, how fast? At what price of anarchy?
How about multi-resource jobs/hosts?
How about multi-job tasks?
How about job/host dependencies?
How could it be implemented?
How would it perform in practice?
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How do we depart from prior work?

Vickrey-style auctions work†

Assumes supply < demand 
Takes a social perspective 
Offers a strategy-proof solution
Requires central authority
Susceptible to collusion
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† A. Young, B. Chun, A. Snoeren, and A. Vahdat. Resource allocation in federated 
distributed computing infrastructures. In OS/architectural support for on-demand IT 
infrastructure, 2004.

How do we depart from prior work?

Cooperative cost-sharing games†‡

Find coalition where nobody gains by leaving
Computationally hard
Applied to best-effort routing problems
Player cost not use based; unjustifiable 
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† Chen, H.-L. & Roughgarden, T. Network design with weighted players. In SPAA 2006. 
‡ E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Roughgarden. 

The price of stability for network design with fair cost allocation. In FOCS 2004.

Colocation Game: Model 

A hosting graph G =(V,E)
V & E labeled by capacity vector R and fixed price P

A set of task graphs Ti =(Vi,Ei)
Vi & Ei labeled by a utilization vector W

Valid mappings
Vi V & Ei E: Σ W ≤ R ; supply meets demand

Shapley cost function
Cost P of a resource is split among tasks mapped to 
it in proportion to use
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The General Colocation Game (GCG)

GCG is a pure strategies game: 
Each task is able to make a (better response) 
move from a valid mapping M into another M′
so as to minimize its own cost

Example applications:
Overlay reservation, e.g., on PlanetLab
CDN colocation, e.g., on CloudFront
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General Colocation Game: Properties 

GCG may not converge to 
a Nash equilibrium

Theorem: 
Determining whether a GCG has a 
Nash Equilibrium is NP-Complete 
(by reduction to 3-SAT problem)

Need more structure to 
ensure convergence
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Colocation Games: Variants

Process Colocation Game (PCG):
Task graph consists of a single vertex representing 
an independent process that needs to be assigned 
to a single host with only one capacitated resource

Multidimensional PCG (MPCG):
Same as PCG but with multi capacitated resources

Example applications:
VM colocation, e.g., on a Eucalyptus cluster
Streaming server colocation
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Colocation Games: Variants

Parallel PCG (PPCG):
Task graph consists of a set of vertices (indepen-
dent processes), each with multidimensional 
resource utilization needs

Uniform PPCG:
Same as PPCG but with identical resource 
utilization for all processes

Example applications:
Map-Reduce paradigm
MPI scientific computing paradigm
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Colocation Games: Theoretical results

PCG converges to a Nash Equilibrium under 
better-response dynamics
PCG converges to a Nash Equilibrium in O(n2)
better-response moves, where n = |V| 
Price of Anarchy for PCG is 3/2 when hosting 
graph is homogeneous and 2 otherwise
MPCG converges to a Nash equilibrium under 
better-response dynamics
Uniform PPCG converges to a Nash equilibrium 
under better response dynamics
…
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PCG: Better Response

Best-Response moves require knowledge of 
utilizations of all processes – not practical 

Local Better-Response solution:
1.Select a random target hosting node and obtain process 
utilizations of all processes on that node
2.Determine if a cost-reducing “legal” move to that node is 
possible – an NP-hard Knapsack problem 

Dynamic Programming solution in pseudo-polynomial time 
for small number (100s) of processes/host [DPKP] 
Breadth-First branch & bound Search heuristic [BFS] 
Depth-First branch & bound Search heuristic [DFS] 
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PCG: Performance Evaluation

Workloads
Trace-driven: CoMon PlanetLab traces

Real hosting environment with 3-dimensional resource utilizations
Infeasible to compute optimal colocation 

Synthetic
Allows systematic exploration of the space
Optimal colocation is known by construction

Metrics (over 100 experiments)
Colocation Ratio (bounded by PoA)

How inefficient is the resulting colocation compared to optimal or best? 

Number of moves until NE is reached
How much churn (overhead) to be expected?
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PCG: Synthetic baseline results
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Number of processes Number of processes

Median(Colocation Ratio) Median(Number of Moves)

1-D Synthetic Workload

PoA    

MPCG: PlanetLab baseline results
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Number of processes Number of processes

Median(Colocation Ratio) Median(Number of Moves)

3-D PlanetLab Workload

MPCG: Colocation Ratio
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Number of processes Number of processes

Median(Worst/Optimal) Median(Worst/Best)

3-D Synthetic Workload 3-D PlanetLab Workload

MPCG: Number of Moves
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Number of processes Number of processes

Median(Number of Moves) Median(Number of Moves)

3-D Synthetic Workload 3-D PlanetLab Workload

The CLOUDCOMMONS prototype

API for Strategic Services
To facilitate colocation, e.g., allow users to find 
each other,  compute strategic responses, …

API for Operational Services
To enforce outcomes of colocation, e.g., 
migration, reconfiguration, accounting, …

Implemented over Xen
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CLOUDCOMMONS: Sample Results
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Process Movement Data Movement

Players
Strategic Moves

Players
Operational Transfers

Time Time
Churn ~ 5 players / hour

Requested utilization ~ [0-1] 



CLOUDCOMMONS: Sample Results
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Normalized Average Cost Including Overhead

Time

Churn ~ 5 players / hour
Requested utilization ~ [0-1] 

Talk overview: Three settings

Overlay network connectivity management
Selfish Neighbor Selection (SNS) game

Cloud resource acquisition 
Colocation Games

Shared bandwidth arbitration
Trade & Cap 
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The perils of the fixed pricing model

It’s here to stay; metered pricing rejected

Implications:
Customer has no incentive to save bandwidth
ISP cost depends on peak demand – 95/5 rule 
Reigning in bandwidth hogs is incompatible with 
Net Neutrality

Must devise mechanisms that take ISPs out 
of the “traffic shaping” business
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DSLAM “last-mile” architecture

Traffic shaping done at BRAS   

Broadband Remote
Access Server

DSL Access
Multiplexer
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Solution: Create a marketplace

Recognize the two types of user traffic:
Interactive Traffic (IT)

Browsing, VoIP, Video, Messaging, Gaming, …
Limited bandwidth; highly sensitive to response time

Fluid Traffic (FT)
P2P, Network backup, Netflix/software downloads, …
Open-ended bandwidth; less sensitive to response time 

Create a marketplace:
1. Give users rights to DSLAM bandwidth, and
2. Let users trade IT & FT allocations over time
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The Marketplace

Each user gets a fixed budget per epoch
Budget proportional to level of service 
An epoch is a fixed number of time-slots, 
e.g., 1 day = 288 5-min slots

Trade & Cap
User engages in a pure strategies game that 
yields a schedule for its IT sessions
User acquires as much FT bandwidth as its 
remaining budget would allow
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Trading Phase: Strategy Space

Session: 
An IT session is the sequence of slots during which an IT 
application is active

Slack: 
User may have flexibility in scheduling IT sessions; slack 
specifies the number of slots that an IT session is allowed to 
be shifted back/forth

Strategy Space:
The set of all possible arrangements of IT sessions within 
allowable slack define the strategy space for a user
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Trading Phase: Cost Function

Let xik be the bandwidth used in slot k by 
a chosen IT session schedule for user i.
The cost incurred by user i  is given by:

Cost of user i  depends on the choices 
made by other users – hence the game!
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Trading Phase: Illustration

Cost(User 2) = 6
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User 1 User 1

User 2 User 2

Up 2 2 20 0 01 1

Trading Phase: Illustration

Cost(User 2) = 4
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User 1 User 1

User 2 User 2

Up 1 2 11 0 11 1

Trading Phase: Best Response

BR of user i is the schedule of IT sessions 
that minimizes its cost ci 

Computing BR is NP-hard, equivalent to 
solving a generalized knapsack problem
Dynamic programming solution is 
pseudo-polynomial in the product of the 
number of sessions and number of slots
Scales well for all practical settings –
100s of users and 100s of slots 
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Trading Phase: Findings

Provably converges to Nash Equilibrium, 
even in presence of constraints
For n users, Price of Anarchy is n, but in 
practice below 2, especially for n>10
Experimentally, large reduction of peak 
utilization, even with small flexibility
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Capping Phase: Best Response

BR of user i is to maximize total FT 
allocation

subject to the budget constraint
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Capping Phase: Budget

Let V be an upper-bound on traffic per slot
The ISP sets a target capacity C = V/R, 
where R ≥ 1 reflects its “resistance” to traffic 
The ISP allocates C in some proportion 
(e.g., equally) to all users over all slots
This constitutes the budget B assigned to a 
user over an epoch 
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Capping Phase: Findings

Computing BR is efficient using Lagrange 
Multipliers method
Provably, converges to a unique global 
(social) optimum that maximizes the FT 
allocations of all users
Experimentally, smoothes the aggregate 
IT+FT traffic to any desirable level 
controlled by resistance parameter R
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Experimental Evaluation

Workload
Derived from WAN traces 
of MAWI project

Identify users from volume 
and direction of flows to known 
ports (e.g., most traffic 
destined to port 80)

Identify user IT sessions 
using thresholds on per-IP 
traffic intensities over time

Slack introduced using 
various models (e.g., fixed,  
proportional, etc.) 
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Trading Phase: Experimental PoA

Theoretical PoA is n but not in practice
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Over 5 slots Over 10 slots

Trading Phase: Smoothing effect

Value proposition to ISPs
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Trade & Cap: Flexibility pays off!

Value proposition to customers
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Trade & Cap

A win-win for ISPs and customers
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Trade & Cap: Implementation

On Client Side (DSL Modem): 
+ Strategic agent to execute Trade & Cap
+ Operational service to classify and schedule

ISP Side (DSLAM or BRAS):
+ Support exchange between strategic agents
+ Enforce traffic/slot/user from Trade & Cap
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Conclusion

In many settings, resource management 
must be seen as a strategic game among 
peers or tenants of an infrastructure

By setting up the right mechanism, one can 
ensure convergence and efficiency

New services are needed to support 
strategic and operational aspects of these 
game-theoretic mechanisms 
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