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Forms of Learning 

AI system “learns” if it improves its performance 
based on observations & feedback from its 
environment 

Unsupervised learning (=clustering): 

Input: vector of attributes. No explicit feedback. 

Supervised learning:  

Input: vector of attributes.  Feedback = output of continuous or 
discrete value(s) = labels of input examples. 

Reinforcement Learning: 

Actions are rewarded or punished. 

 



In 440/640:  Supervised Learning 
Training set = N example input-output pairs 

(x1,y1),  (x2,y2),  ....,  (xN,yN) 

where each yj was generated by an unknown function f, such 
that  f(x) = y.  Function f needs to be learned. 

 The AI system finds a function h that approximates f.  For 
example, the AI system trains a neural net that computes 
h(xj)=yj  for all examples in the training set. 

 There are no guarantees that new inputs h(xnew) ≈ f(xnew). 

 To measure accuracy (Is h ≈ f?), we use a test set of labeled 
examples = input-output pairs (≠ training set!): 

A neural net is trained well if h(xtest)  ≈ ytest for all test example 
pairs (xtest , ytest ). 



Classification versus Regression 

Depending on the type of output, the learning 
problem is a  

 Classification problem:   

Output values: number of classes (discrete, finite) 

 

 Regression problem: 

Output values are numbers, e.g., tomorrow's temperature 



Occham's Razor 
= Law of succinctness 

Which hypothesis among h1, h2, h3 ... should the AI system 
choose? 

Choose the simplest hypothesis consistent with the data. 

The simplest explanation will be the most plausible until 
evidence is presented to prove it false. 

Example:  Prefer a degree-1 polynomial (line) over a degree-7 
polynomial 

Trade-off between complex hypothesis that fit training data 
well and simpler hypotheses that may generalize better 
(and can typically be computed faster) 

 

 



Occam’s Razor:  Choose green over blue model 
for h 

Source: Wikipedia 



Overfitting 

 Avoid choosing an excessively complex learning 
system= model= hypothesis=neural net h. 

 h is too complex if it has too many parameters 
relative to the number of observations.  

 A model which has been overfitted will generally 
have poor predictive performance, as it can 
exaggerate minor fluctuations in the data. 

 Higher-degree polynomials or complicated neural 
nets with many hidden layers and nodes fit the data 
better but may lead to overfitting. 

 



Overfitting 

 Avoid choosing an excessively complex learning system= model= 
hypothesis=neural net h. 

 h is too complex if it has too many parameters relative to the number of 
observations.  

 A model which has been overfit will generally have poor predictive 
performance, as it can exaggerate minor fluctuations in the data. 

 Higher-degree polynomials or complicated neural nets with many hidden 
layers and nodes fit the data better but may lead to overfitting. 

Solutions: 

 Use “wrapper” to enumerate models h according to model size (e.g., 
number of nodes in neural net h). Select model with smallest error. 

 Feature selection:  Simplify model by discarding irrelevant attributes 
(dimensionality reduction). 

 Minimum description length: Select model with smallest number of bits 
required to encode program and data.  

 



Loss Functions:  SPAM Example 

Loss value L(ytrue,y)  

= cost of misclassifying email: 

 

A “false positive,” e.g. hypothesize “non-spam” but 
it is truly “spam”  L(spam,non-spam) = 1    

Annoying but simply delete email. 

 

A “false negative,” e.g. hypothesize “spam” but it is 
truly “non-spam” L(non-spam, spam) = 10 

Much worse, you may miss an important email. 



Loss Functions 

 Absolute value loss: L1(ytrue,y) = |ytrue-y| 

 Squared error loss = Euclidean loss:                               
               L2(ytrue,y) = (ytrue-y)2 

 0/1 loss:  L0/1(ytrue,y) = 0  if ytrue= y, else 1 

 Find h that minimizes the empirical loss                                 
       EmpLoss(h) = 1/N ∑ L(ytrue, i , h(xi))   

       = mean error over a set of N examples (xi,ytrue, i)   



Cross-Validation 

Holdout cross-validation =                                                                   
Randomly split available (input,output) pairs into a training set to learn 
h and a test set to test the learned h. 

k-fold cross-validation =  

 Split data into k equal subsets.   

 Perform k rounds of learning.  Each round leaves 1/k examples 
out of the training set that can then be used as the test set.   

 The average test set score should be a better estimate than a 
single score (need to keep k h's around for prediction). Typically, 
k=5 or 10. 

Leave-one-out cross validation: k=N.  


