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Abstract. The problem of recognizing objects subject to affine transformation in images is examined from a
physical perspective using the theory of statistical estimation. Focusing first on objects that occlude zero-mean
scenes with additive noise, we derive the Cramer-Rao lower bound on the mean-square error in an estimate of
the six-dimensional parameter vector that describes an object subject to affine transformation and so generalize
the bound on one-dimensional position error previously obtained in radar and sonar pattern recognition. We then
derive two useful descriptors from the object’s Fisher information that are independent of noise level. The first
is a generalized coherence scale that has great practical value because it corresponds to the width of the object’s
autocorrelation peak under affine transformation and so provides a physical measure of the extent to which an
object can be resolved under affine parameterization. The second is a scalar measure of an object’s complexity that
is invariant under affine transformation and can be used to quantitatively describe the ambiguity level of a general
6-dimensional affine recognition problem. This measure of complexity has a strong inverse relationship to the level
of recognition ambiguity. We then develop a method for recognizing objects subject to affine transformation imaged
in thousands of complex real-world scenes. Our method exploits the resolution gain made available by the brightness
contrast between the object perimeter and the scene it partially occludes. The level of recognition ambiguity is shown
to decrease exponentially with increasing object and scene complexity. Ambiguity is then avoided by conditioning
the permissible range of template complexity above a priori thresholds. Our method is statistically optimal for
recognizing objects that occlude scenes with zero-mean background.

Keywords: object recognition, object complexity, coherence scale, coherence volume, recognition ambiguity,
Fisher information, bandwidth, statistical estimation theory, lower bounds on estimation error, background models,
traffic sign recognition, simulated annealing

1. Introduction

The problem of recognizing objects in complex real-
world scenes is investigated for objects that can be
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uniquely determined by the six parameters of an affine
transformation as well as a seventh parameter that
identifies the object class. Experimental data is used to
determine the joint probability distribution of the pixel
brightness measurements in our charge-coupled device
(CCD) images, which we find are corrupted by zero-
mean, additive Gaussian noise. This distribution is then
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used to construct the likelihood function for the affine
parameter vector that defines the object to be estimated
from our image data.

Two useful descriptors of an imaged object that are
independent of noise level are derived from the object’s
Fisher information, which can be computed directly
from the likelihood function. The first is a generalized
coherence scale that determines the extent to which an
object is self-correlated under affine transformation and
so provides a physical measure of the extent to which an
object can be resolved under affine parameterization.
The second is a scalar measure of an object’s complex-
ity that is invariant under affine transformation and has
a strong inverse relationship to recognition ambigu-
ity. The practical value of this measure of complexity
is that the ambiguity level of the recognition problem
can be quantitatively described by it. We also derive
the general Cramer-Rao lower bound on the mean
square error in an estimate of the six-dimensional affine
parameter vector that describes the 2-D position, rota-
tion, dilation, and skew of an object in a zero-mean
scene with additive noise and so generalize the bound
on one-dimensional position error derived previously
in radar and sonar pattern recognition (Van Trees, 1968;
Levanon, 1988).

To address the problem of recognizing objects
in complex real-world scenes that generally contain
nonzero-mean backgrounds we develop a recognition
method based on the normalized correlation coeffi-
cient. The coefficient is used as a “match measure”
(Rosenfeld and Kak, 1982) between some portion of
the scene and a “template object.” The template object
is computed by an affine transformation of its corre-
sponding “model image.” Model images are collected
in advance and represent the classes of objects to be re-
cognized. Our method searches for the affine parameter
set that describes the two-dimensional rigid body
motion and linear distortion that the model object
must undergo in order to correlate with the scene
object. The object is considered recognized if the
normalized correlation coefficient reaches a prede-
fined threshold for this parameter set. The relation-
ship between the normalized correlation coefficient, the
matched filter, and the maximum likelihood estimator
is discussed.

Since the recognition problem is inherently non-
linear, a global optimization procedure is necessary
for its solution. We develop a global search method
based on simulated annealing. Our method’s perfor-
mance is evaluated experimentally by applying it to

the problem of recognizing traffic signs in images of
complicated outdoor scenes. For flat objects, such as
traffic signs, we show that our affine parameterization
is sufficient for recognition, so long as the objects do
not have purely specular surfaces. For inherently three-
dimensional objects, the parameter vector must be sup-
plemented to account for such effects as variation in
shading caused by changes in surface orientation with
respect to a given source distribution and receiver ge-
ometry. For the traffic sign case, however, we show
that the normalized correlation coefficient is invariant
to the uniform variations in shading characteristic of
the signs.

In both our theoretical and experimental analysis,
we find that the level of ambiguity, as measured by
the number of incorrect matches, is strongly depen-
dent upon both our measures of the complexity of the
object and the complexity of the background scene. In
general, we find that the level of ambiguity falls off
with an exponential trend as complexity increases. To
prevent false matches, we then find that it is necessary
to precondition the recognition system with sufficiently
large background and template complexities. We also
show that the ambiguity level cannot be meaningfully
characterized solely by the relative size of a template
or scene object.

2. Position Estimation in Nonzero-Mean
Background

In this section, we use examples from 1-D position es-
timation to show that (1) nonzero-mean backgrounds
affect object resolution and recognition ambiguity and
(2) the normalized correlation coefficient rather than
the matched filter is the appropriate tool for object
recognition in nonzero-mean scenes.

References (Zadeh and Ragazzini, 1952; Difranco
and Rubin, 1968; Van Trees, 1968; Rosenfeld and
Kak, 1982) define the classical matched filter h(x), for
a 1D signal s(x) that is corrupted by additive zero-mean
noise n(x), as the impulse response

h(x) = cs(xm − x). (1)

Here h(x) is the signal shifted by its true position xm

and “time-reversed,” and c is a constant invariant with
respect to the true and test positions. The position esti-
mate x̂m is then given by the lag at which the matched
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filter output

f (x) = c
∫ L/2

−L/2
h(x − ξ) (s(ξ) + n(ξ)) dξ

= c
∫ L/2

−L/2
s(ξ − (x − xm)) (s(ξ) + n(ξ)) dξ

(2)

is maximized, i.e., x̂m = arg max f (x). The additive
noise leads to fluctuations in the peak, so that x̂m is not
necessarily xm . In the absence of noise, however, the
matched filter reduces to an unnormalized autocorrela-
tion of the signal with peak at xm , since

f (x) = cRs(x − xm)

+ c
∫ L/2

−L/2
s(ξ − (x − xm)) n(ξ) dξ (3)

where Rs(x) is the unnormalized autocorrelation of the
signal s(x). The peak output of the autocorrelation is at
the true location xm of the signal. It follows that in the
case of high signal-to-noise ratio (SNR), the estimate
x̂m becomes unbiased. Moreover, the matched filter
f (x) is a sufficient statistic according to information
theory, and for high SNR attains minimum variance,
and is therefore asymptotically optimal according to

Figure 1. (a) The mean brightness values of an imaged object, located between a and b. (b) A scene with zero-mean background with stationary
additive noise. (c) The object occludes the zero-mean background between a and b. A classical matched filter can be used to estimate the position
of the object in this scene by shifting the object through the image and computing the filter output at each spatial lag. The dotted line in (b)
shows the object at one of these lags, between c and d, where d − c = b − a. (d) The classical matched filter output. In high signal-to-noise, as
in the case shown, the peak output is expected to occur at the true position xm of the object.

classical estimation theory. Among all linear filters,
its output also has maximum signal-to-noise ratio
(Difranco and Rubin, 1968). The statistical optimal-
ity characteristics of the matched filter are discussed
in more detail in Section 8. The classical approach is
illustrated in Fig. 1, where an object occludes a zero-
mean background in a scene with stationary additive
noise. Since the given SNR is high, the position of the
object can be estimated optimally with a matched filter.

For the object recognition problem in computer vi-
sion, the brightness value at each pixel in the back-
ground is often expected to be nonzero. This is il-
lustrated in Fig. 2, which shows the same object as
in Fig. 1 now occluding a nonzero-mean background.
The classical matched filter is not designed for this
case and gives the wrong position estimate as shown in
Fig. 2(c). Even in the absence of noise, n(x) = 0, the
matched filter reduces to a cross-correlation, between
object s(x) and object in the expected background i(x),
the maximum of which is not guaranteed to fall at the
true location of the object xm . The normalized cross-
correlation, however, can be applied successfully to the
computer vision problem of recognizing an object that
occludes a nonzero-mean background, as we discuss in
Section 8, where the local background data is used to
compute the normalizing factor.
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Figure 2. The graphs illustrate the computer vision scenarios. (a) A nonzero-mean background with zero-mean stationary additive noise n(x).
(b) Scene i(x) + n(x), where the background in (a) is occluded by the object shown in Fig. 1(a). The dotted line shows a replica of the object
that is shifted through the image and tested at each spatial lag to find the correct position xm . (c) The output of the classical matched filter for the
scene in (b). The peak output is not at the true position xm , since the classical matched filter does not apply here. (d) The normalized correlation
coefficient between the scene in (b) and the object shown in Fig. 1(a). The peak output is at the true position xm .

Given a discontinuity between object and mean
background, as in Fig. 2(b), the normalized cross-
correlation not only yields a peak that converges to the
true position of the object in high SNR, but also a po-
sition estimate of higher resolution than would be pos-
sible if the transition between object and background
was continuous. This is illustrated in Fig. 2(d) where
the filter’s correlation peak is considerably sharper than
the object’s autocorrelation peak shown in Fig. 1(d).

Figure 3. (a) A nonzero-mean background. (b) The same scene as (a), but part of the scene is occluded by the object shown in Fig. 1(a).
(c) The normalized correlation coefficient between scene (b) and the object shown in Fig. 1(a) with a peak at xm . Since the object-to-background
transition is continuous, lower-resolution estimation than in the case shown in Fig. 2(b) results.

The gain in resolution follows from the local weighting
which incurs a heavy penalty for the type of mismatch
produced by a small shift away from the true posi-
tion under such discontinuous transitions from object
to background. Conversely, under smooth object-to-
background transitions, or when the background along
the perimeter of the object is constant, the normal-
ized cross-correlation peak approaches that of the nor-
malized autocorrelation, illustrated in Fig. 3(b), and a
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Figure 4. (a) A nonzero-mean scene that, on the left, has background ambiguity with shape identical to the object in Fig. 1(a). (b) The same
scene, but on the right, the object occludes the nonzero-mean background between a and b. (c) The normalized correlation coefficient between
scene (b) and the object in Fig. 1(a). The position of the object in (b) cannot be estimated unambiguously, since the object could be found either
on the left at xamb or on the right at xm . In typical computer vision scenarios, however, such ambiguity is unlikely, unless the complexity of the
scene object is low.

lower-resolution estimation of the object’s position re-
sults. The crucial issue here is that the expected back-
ground can affect the form and resolution of an esti-
mator. This effect does not appear in classical matched
filter theory where the expected background is assumed
to be zero.

The issue of deterministic background ambiguity
also distinguishes the computer vision problem from
the radar/sonar problem where the classical matched
filter applies. In the latter, noise may cause spurious
matches, but these become increasingly weak as the
signal-to-noise ratio increases. In the former, the back-
ground scene is not zero mean, and false matches may
occur even in the limiting case of no noise. This is
illustrated in Fig. 4, where the background contains a
feature with shape identical to that of the object given
in Fig. 1(a). When the object is placed in this scene, as
in Fig. 4(b), the optimal estimator localizes two ob-
jects, one at the correct position xṁ and one at the
position of the background ambiguity xamb. Classical
estimation theory offers no solution to this dilemma
since it is based solely upon statistical optimality
criteria, while the ambiguity here is deterministic.
Moreover, these statistical criteria only apply when the
estimate is in close proximity to the true solution and
so do not touch upon the ambiguity issue.

Ambiguity then only becomes a serious problem
when the object to be recognized is highly correlated
with a portion of the background. In later sections, we
define a quantitative measure of complexity, and show

that such false matches are only likely to occur in the
recognition of objects of low complexity. We also show
that ambiguities can be avoided by preconditioning the
recognition system’s range of permissible template and
background complexities.

3. The Statistics of Image Brightness

Charge-coupled device (CCD) cameras do not output
the intensity W of light. Instead, they output a power-
transformed intensity on an 8-bit grey-scale which we
refer to as image brightness I (x, y). The brightness
is linearly proportional to W −γ (x, y) where γ is a
“gamma correction,” e.g., γ = 2.2 (Poynton, 1993).
The purpose of this transformation is to correct for
the response of cathode-ray tube monitors so that the
output of any monitor is proportional to intensity.

Experiments with the CCD video camera used in
our vision system indicate that the standard deviation
σ(x, y) of the output I (x, y) is not only small com-
pared to the mean m(x, y), but, as shown in Fig. 5,
does not depend on the mean or on position (x, y). The
noise, therefore, is additive and signal-independent,
such that σ(x, y) = σ . We speculate that the noise is
due to small mechanical vibrations between source and
receiver, as well as electronic shot noise. Thermally in-
duced fluctuations of natural light, however, are not a
significant cause of errors in our measurements as is
shown in Appendix A.
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Figure 5. The measured mean and standard deviation of the image
brightness I as a function of the mean. The sample standard deviation
is signal independent and obtained by averaging hundreds of images
of outdoor scenes. The average standard deviation is 2.65.

Our measured average skew of −0.02 and kurtosis of
2.81 are so close to the corresponding Gaussian values
of 0 and 3, respectively, that our data can be effectively
modeled as Gaussian at each pixel. By computation
of the sample covariance of brightness between image
pixels, our experiments also indicate that the brightness
measurements are statistically independent across the
pixels.

Let vector I represent image I (x, y) where the rows
of the image are concatenated into one column vec-
tor in lexicographic order. Each component Ik of vec-
tor I contains an independent intensity measurement
I (x, y) for 1 ≤ k ≤ MN. Then the probability density
for I is approximately

P(I) = 1

(2πσ 2)MN/2
exp

(
− 1

2σ 2

MN∑
k=1

(Ik − mk)
2

)

(4)

for 0 ≤ Ik ≤ ∞, where the variance is constant and the
mean varies throughout the image. If signal-dependent
noise had been found, a nonlinear transformation of
I could have been used to obtain signal-independent
noise (Makris, 1995). Many references (Rosenfeld and
Kak, 1982; Jain et al., 1995; Horn, 1886; Trucco and
Verii, 1998; Umbaugh, 1998) also propose a Gaussian
distribution to describe common noise in images and
show how the noise can be removed to solve the clas-
sical image processing tasks of image restoration and
enhancement. Our work, however, has a different fo-
cus. We model the noise so that we gain insight to the
object recognition problem by considering it as a sta-
tistical parameter estimation problem.

4. Recognition as a Parameter
Estimation Problem

We use the six-dimensional vector a = (x0, y0, θ0, sx ,

sy, α) to describe rigid body motion and linear dis-
tortion of an object q in an image with position
x0 = (x0, y0), rotation θ0, contractions sx , sy , and skew
α which vanishes in a rectangular Cartesian coordi-
nate system. For example, suppose the general Carte-
sian coordinates (x ′, y′) are related to the rectangular
Cartesian system (x, y) by the 2-D affine transforma-
tion (

x ′

y′

)
=

(
A11 A12

A21 A22

) (
x

y

)
−

(
x0

y0

)
, (5)

which can be expressed more succinctly as x′ = Ax −
x0, where

A =
(

sx 0

0 sy

) (
cos θ0 sin θ0

−sin(θ0 + α) cos(θ0 + α)

)
.

(6)

A model object q(x ′, y′) in some ideal reference frame
(x ′, y′), therefore, appears as a translated, rotated,
contracted and skewed object q(x, y; a) in the covari-
ant reference frame (x, y) of an image. The parame-
ters a are then measured within the image reference
frame such that −∞ < x0, y0 < ∞, 0 ≤ θ0 ≤ 2π ,
−π/2 ≤ α ≤ π/2, and 0 < sx , sy < ∞, where di-
lations occur for 0 < sx , sy < 1 and contractions for
1 < sx , sy .

To account for the possibility that distinct objects
may have coincident vectors a we define an additional
parameter ν that identifies the class of the object. For
example, in traffic sign recognition, a “slow” sign is in
a different class from a “yield” sign, although the two
may have the same a.

From the perspective of statistical estimation theory,
recognizing an object is the same as estimating the
parameters a and ν from noisy image data.

5. Parameter Resolution: Fisher Information,
Recognizability, and the Coherence of Objects
in Images

Let us consider the problem of recognizing an object of
a given class in some scene. This can equivalently be
posed as the problem of estimating the parameter vector
a given the image data I. In our case, the likelihood
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function for a, given the image data I, is

P(I | a) = 1

(2πσ 2)MN/2

× exp

(
− 1

2σ 2

MN∑
k=1

(Ik − mk(a))2

)
(7)

where the mean mk(a) explicitly depends on the para-
meters to be estimated, while the noise variance σ 2

is independent of the parameter set. The form of the
likelihood function in this physical approach is not
arbitrary, but depends upon the probability distribu-
tion of the brightness measurements obtained with a
CCD camera, and is very different from that found for
other image data. For example, in many systems that
employ phased arrays, such as microwave radar and
active sonar, including medical ultrasound, or that em-
ploy coherent optical sources such as lasers, nonlinear
speckle noise corrupts the resulting intensity images
(Goodman, 1985; 1965; Makris 1996; Makris et al.,
1995) due to fluctuations in the source, propagation
medium, or scatterer. In these cases, the noise is not
independent of the measured signal as it is for our im-
age data. A homomorphic transformation of the mea-
sured data can then sometimes be used to transform the
signal-dependent noise into signal-independent noise
so that the object recognition techniques described in
this paper can be applied (Makris, 1995; Downie and
Walkup, 1994).

The Cramer-Rao lower bound (CRLB) on the mean-
square error in any unbiased estimate â can be ex-
pressed as

E[(â − a)(â − a)T ] ≥ J−1, (8)

where the Fisher information matrix J is defined by

Jij = −E

[
∂2

∂ai∂a j
ln P(I | a)

]

= 1

σ 2

M−1∑
x=0

N−1∑
y=0

(
∂m(x, y; a)

∂ai

∂m(x, y; a)

∂a j

)
. (9)

If we consider a zero-mean background scene, the im-
age mean m(x, y; a) only depends on the parameter
vector a for those pixels (x, y) ∈ O+ that constitute
the expected object q(x, y; a) and any neighboring pix-
els that are affected by small changes in a. The Fisher
information matrix then becomes

Jij = 1

σ 2

∑
(x,y)∈O+

∂q(x, y; a)

∂ai

∂q(x, y; a)

∂a j
. (10)

It is significant that any of the diagonal entries of the
bound can be expressed as

E[(âi − ai )
2] ≥ [J−1]i i = σ 2

E
�2

i , (11)

where the object energy

E =
∑

(x,y)∈O

|q(x, y; a)|2 (12)

and the coherence scale

�i =
(

[J−1]ii
E

σ 2

) 1
2

(13)

for each parameter ai are physical descriptors of the
object that are independent of the noise level. The co-
herence scale �i does not depend on the noise variance
σ 2, because σ 2 is included in the expression for the
Fisher information in Eq. (10), and dividing the Fisher
information by σ 2 therefore factors out the noise in
Eq. (13). To put our definition of �i into historical per-
spective, we note that it generalizes the coherence scale
found for the 1-D position estimate of a deterministic
signal in additive noise (Kay, 1993; Levanon, 1988)
to the 6 coherence scales necessary to describe ob-
ject recognition after affine transformation in additive
noise. Our Eq. (11) reduces to the 1-D case described,
for example, in Eq. (9.45) in Levanon (1988) and in
Eq. (3.38) in Kay (1993).

The coherence scale �i in Eq. (13) measures the
sensitivity of the object to variations in parameter ai

and, therefore, can be interpreted as the width of the
object’s autocorrelation peak as a function of ai . An
object with relatively high sensitivity to parameter ai ,
for example, will have a relatively narrow autocorrela-
tion peak. The error in estimating parameter ai , there-
fore, increases with the corresponding object coherence
scale �i and additive noise variance, but decreases with
object energy.

When all parameters are uncoupled and J is diago-
nal, the product of na coherence scales �1 · · · �na yields
a coherence volume that is a scalar measure charac-
terizing the combined na-dimensional variations of the
object, where na is the length of a. More generally, we
define the coherence volume V in terms of the deter-
minant |J| of the Fisher information matrix by

V =
(

E

σ 2

) na
2

|J|− 1
2 . (14)
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The lower bound can then be written as

J−1 = Jadj

(
σ 2

E

)na

V 2, (15)

where Jadj is the adjugate matrix of J (Strang, 1976).
This definition of a generalized coherence scale has

great practical value because it corresponds to the width
of the object’s autocorrelation peak under affine trans-
formation, as we will demonstrate, and so provides a
physical measure of the extent to which an object can
be resolved under affine parameterization. The general-
ized coherence scale is a physical measure independent
of noise level since all statistical quantities are factored
out in our definition. It is significant that in the strictest
sense, the coherence scale depends not only on the pix-
els values within the object, but also those directly bor-
dering the object since the Fisher information is defined
over O+, as is consistent with the intuitive analysis
presented in Section 2. Neglect of the external pixels,
however, enables one to more generally characterize
the inherent self-coherence of an object or class of ob-
jects. This is valuable in assessing resolution attainable
in a recognition problem involving the object or class of
objects before information about the background scene
is available. When bordering pixels are included, the
generalized coherence scale can only remain the same
or decrease. For example, such a decrease in a 1-D ob-
ject’s coherence length scale would lead to the increase
in positional resolution described in Section 2.

From the computer vision perspective, we consider
the interpretation of J as an information measure to
be far more useful than its interpretation as the in-
verse of the theoretical lower bound on estimation error.
Our approach and purpose therefore stands apart from
Cernuschi-Frias et al.’s (1989). For example, in the
type of optical pattern recognition problems encoun-
tered with low-variance CCD camera measurements,
the associated bounds on object positional resolution
fall in the sub-pixel regime and are somewhat of an
overkill. On the other hand, because the volume |J|
of Fisher information is inversely proportional to the
limiting mean-square resolutional volume of the pa-
rameters that uniquely specify the object, we consider
it to be a scalar measure of the object’s recognizability
in a given image. By Eq. (15) it is seen that there is a di-
rect relationship between this recognizability measure
and the physical components of the Fisher information,
namely, the object’s coherence volume and energy. For
example, within a given image, where the additive noise
variance is uniform, the information volume |J| only

varies with the object’s coherence volume and energy.
The noise variance appears only as a constant factor
in an object’s information volume or recognizability,
regardless of the noise level. This is a consequence of
the physical structure of the likelihood function.

5.1. Two-Dimensional Position Resolution

We first derive the lower bound on the error for any
unbiased two-dimensional position estimate of an ob-
ject with known rotation, contraction and skew. Note,
even this extends the classical radar/sonar 1-D posi-
tional Cramer-Rao lower bound of Van Trees (1968).
Given the true position (a1, a2) = (x0, y0), the Fisher
information matrix, with elements

Jij = 1

σ 2

M−1∑
x=0

N−1∑
y=0

×
(

∂q(x − x0, y − y0)

∂ai

∂q(x − x0, y − y0)

∂a j

)
,

(16)

can be expressed by a spatial “bandwidth matrix” B =
(σ 2/E) J that characterizes the object. To do so, it is
convenient to let the double sum in Eq. (16) be replaced
by a continuous double integral so that q(x, y) and
Q(u, v) can be defined as Fourier transform pair

Q(u, v) =
∫ ∫

O+
q(x, y)e− j2π(xu+yv)dxdy (17)

and

q(x, y) =
∫ ∞

−∞

∫ ∞

−∞
Q(u, v)e j2π(xu+yv)dudv (18)

where dx dy = (�x)2 is the pixel area. The four
elements of B can then be defined by a mean-square
bandwidth B2

x in x ,

B2
x = (2π)2

(�x)2 E

∫ ∞

−∞

∫ ∞

−∞
u2|Q(u, v)|2dudv, (19)

a mean-square bandwidth B2
y in y,

B2
y = (2π)2

(�x)2 E

∫ ∞

−∞

∫ ∞

−∞
v2|Q(u, v)|2dudv, (20)

and a cross-term

B2
xy = B2

yx = (2π)2

(�x)2 E

∫ ∞

−∞

∫ ∞

−∞
uv|Q(u, v)|2dudv,

(21)
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with the aid of Parseval’s Theorem

(�x)2 E =
∫ ∫

O+
|q(x, y)|2dxdy

=
∫ ∞

−∞

∫ ∞

−∞
|Q(u, v)|2dudv. (22)

These definitions for the object’s mean-square
spatial bandwidth can be considered as a 2-D gener-
alization of those introduced for one-dimensional sig-
nal waveforms by Gabor (1946). A distinction lies in
the positive-semidefinite nature of our object bright-
ness data versus the zero-mean nature of modulated
signal waveform data. As a result, our mean-square
bandwidths are defined about zero spatial frequency,
as in Makris (1995), while those in the signal process-
ing literature are defined about some average frequency
that approximates the carrier frequency for 1-D narrow-
band signals.

Given these definitions and the derivative rule for
Fourier transform pairs, the lower bound on position
recognition can be expressed as

J−1 = σ 2

E
B−1 = σ 2

E

(
B2

y −B2
xy

−B2
xy B2

x

)
A2

x0, y0
,

(23)

where

Ax0, y0 = |B|− 1
2 (24)

is the coherence area of the object, which follows from
Eq. (14), where V = Ax0, y0 for this 2-D scenario. For
example, the lower bound for estimating x0 is simply

E[(x̂0 − x0)
2] ≥ J−1

x0
= σ 2

E
�2

x0
, (25)

where the coherence length scale in x is

�x0 = B2
y

|B| = B2
y A2

x0, y0
, (26)

and the lower bound for y0 is

E[(ŷ0 − y0)
2] ≥ J−1

y0
= σ 2

E
�2

y0
, (27)

where the coherence length scale in y is

�y0 = B2
x A2

x0, y0
. (28)

This analysis provides a 2-D extension of the
well-known relationship between a 1-D signal’s mean-
square bandwidth and the optimal resolution attain-
able in an estimate of its position (Difranco and Rubin,

1968). While the coherence length scales �x0 and �y0

could have been obtained directly from Eq. (13) with-
out introducing the mean-square bandwidth concept,
this would have circumvented both the historical per-
spective and an important physical interpretation.

The great value of this formulation is that it leads to
measures of coherence that correspond well with what
is measured in practice. This is illustrated in Figs. 6–8
where the derived coherence scales are shown to pro-
vide a good measure of the peak widths of the respec-
tive autocorrelations of a given object as a function of
1-D or 2-D position lag. From the pattern recognition
perspective, these coherence scales are interpreted as
inherent physical scales to which the position of an
object can be well resolved.

More specifically, the coherence areas and length
scales of two traffic signs, a stop sign and a European
no-entry sign, are illustrated in Fig. 6. The figure shows
the signs’ 2D-autocorrelation surfaces with white cen-
ters that correspond to the sign’s coherence areas. The
coherence area of the stop sign, comprised of 26 pixels,
is less than half the size of the 56-pixel coherence area
of the European no-entry sign. In practice, this means
that, of the two signs, the position of the stop sign can be
better resolved, by more than a factor of two. Figure 6
also illustrates 1D-horizontal slices through the center
(cx , cy) of the signs’ autocorrelation surfaces, where
y-positions are fixed, i.e., y = cy , and x-positions vary.
The 8-pixel coherence length lx of the European no-
entry sign and 4-pixels coherence length of the stop
sign correspond as indicated to the widths of the au-
tocorrelation peaks. Of the two signs, the stop sign’s
horizontal position can be resolved better, by roughly
a factor of two, because of its narrower autocorrelation
peak-width and shorter coherence length.

While the coherence area is invariant to changes
in object rotation, the coherence lengths scales and
bounds on position estimation error are not, as is shown
in Appendix B by principal component analysis.

5.2. Angular Resolution

To investigate the angular resolution of an object, con-
sider the case when only the rotation θ0 of the object
about some point in the image plane is unknown. By Eq.
(13), the angular coherence scale for object rotation is

�θ0 =
(

E∑
(x,y)∈O+

∣∣ ∂q(x,y)

∂θ0

∣∣2

) 1
2

. (29)
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Figure 6. Above, the images of two traffic signs of size 120 × 120 and their 2D-autocorrelation surfaces are shown. The European no-entry
sign has a coherence area of 56 pixels, the stop sign has a coherence area of 26 pixels. The white centers in the autocorrelation surfaces, indicated
by arrows, correspond to the coherence areas of the signs. The position of the stop sign can then be resolved more easily than the position of the
European no-entry sign. Below are 1D-horizontal slices through the center (cx , cy) of the signs’ autocorrelation surfaces, where y-positions are
fixed, i.e., y = cy , and x-positions vary. The coherence length lx is 8 pixels for the European no-entry sign and 4 pixels for the stop sign. The
stop sign’s horizontal position can be resolved better than the European no-entry sign’s because of its narrower autocorrelation peak-width and
shorter coherence length.

This leads to the bound

E[(θ̂0 − θ0)
2] ≥ J−1

θ0
= σ 2

E
�2

θ0
(30)

on angular resolution of the object which is invariant to
changes in object position, since ∂x0

∂θ0
and ∂y0

∂θ0
vanish, but

depends on contraction and skew of the object, since
E and �θ0 are functions of sx , sy , and α.

The present formulation again leads to a coherence
scale that corresponds well with what is measured in
practice. This is illustrated in Fig. 7 where the angu-
lar coherence scales of a stop sign, �θ0 = 44◦, and a
European no-entry sign, �θ0 = 20◦, are shown to pro-
vide a good measure of the peak widths of the re-
spective autocorrelation functions as a function of ob-
ject rotation. The European no-entry sign has greater
circular symmetry and therefore has a wider angular

autocorrelation peak and a correspondingly larger an-
gular coherence scale than the stop sign. The stop sign
can then be better resolved in angle in a recognition
problem.

5.3. Contractional Resolution

To investigate contractional resolution, consider the
case when only an object’s contractions sx and sy are
unknown. Then, for 2-D parameter vector (a1, a2) =
(sx , sy), where sx , sy > 0, J is a 2 × 2 matrix with
elements defined in Eq. (10). The coherence area Asx ,sy

and coherence length scales �sx , �sy are then dependent,
by Eq. (14), on both diagonal and cross terms of the
Fisher information matrix, such that

Asx ,sy =
(

E

σ 2

)
|J|− 1

2 , (31)



Recognition, Resolution, and Complexity of Objects 15

Figure 7. Comparison of angular coherence scales �θ0 and angular autocorrelations of two model signs. The European no-entry sign’s angular
coherence scale is �θ0 = 44◦. The stop sign’s angular coherence scale is �θ0 = 20◦. The European no-entry sign’s autocorrelation peak is much
wider than the stop sign’s, indicating that its rotation is more difficult to resolve.

�sx =
(

[J−1]11
E

σ 2

) 1
2

and �sy =
(

[J−1]22
E

σ 2

) 1
2

.

(32)

The bounds for contractional resolution are then

E[(ŝx − sx )
2] ≥ σ 2

E
�2

sx
, (33)

and

E[(ŝy − sy)
2] ≥ σ 2

E
�2

sy
. (34)

These scales and bounds are invariant to changes in ob-
ject position but are only invariant to changes in object
rotation when the contractions sx and sy are equal.

The present theory again leads to coherence scales
that correspond well with what is measured in practice.
This is illustrated in Fig. 8 where the contractional co-
herence areas and scales are shown to provide a good
measure of the peak widths of the respective autocorre-
lations as a function of object contraction. Specifically,
the figure shows results for a European no-entry sign,
a stop sign, and a European priority sign. The contrac-
tional coherence areas of the signs are 0.009, 0.004,
0.029, respectively. Figure 8 also shows 1-D diagonal
slices of the autocorrelation surfaces along the diago-
nal sx = sy . The coherence scales ls of the European
no-entry, stop, and European priority signs are 0.095,

0.06, and 0.17, respectively, indicating that the stop
sign is most sensitive and can be resolved the best of
the three under contraction, as might be expected from
its complicated lettering.

6. The Complexity of Imaged Objects

According to standard usage, an object is considered
to be complex if it is “composed of elaborately in-
terconnected parts.” We may gather from this that
as complexity increases so does the number of inter-
connected parts. These ideas can help us formulate a
quantitative definition for the complexity of an imaged
object.

Let us first consider two objects of exactly the same
dimensions but of different complexities that are im-
aged in an otherwise empty scene. For example, let the
more complex object be a grey-scale Mona Lisa with-
out a picture frame, the less complex object be a blank
white canvas of the same dimensions, and the empty
background be solid black. Because of their like dimen-
sions, the two objects occupy the same overall area. As
may be inferred from their descriptions, however, the
two objects have vastly differing coherence areas. Let
us regard a coherence area as small if the ratio of it
to the overall object area is much less than 1. Then,
for example, the Mona Lisa’s coherence area is small,
due to its large number “of elaborately interconnected
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Figure 8. Above, the autocorrelation surfaces of model signs European no-entry, stop and priority are shown with contraction parameters sx

and sy increasing from the lower left to the top right of the surfaces. The white centers of the autocorrelation surfaces are the correlation peaks
and correspond to the contractional coherence areas of the signs, which are 0.009, 0.004, 0.029, respectively. Below, 1-D diagonal slices of the
autocorrelation surfaces are shown along the diagonal sx = sy . The corresponding coherence scales ls are 0.095, 0.06, and 0.17.

parts,” but the number of coherence areas or coherence
cells that fit into the Mona Lisa’s overall area is large.
Conversely, the coherence area of the blank canvas is
not small, but the number of coherence cells that fit
into the blank canvas’ overall area is near unity. We
may consider the overall object area as a kind of outer
scale and the coherence area as a kind of inner scale
for variations in an object’s 2-D position. It is the ratio
of this outer scale to its inner scale that determines the
number of coherence cells or the degrees of freedom
of the object. The higher the degrees of freedom, the
more sensitive the object is to affine transformations
and the easier it is to resolve or recognize. The degrees
of freedom, so defined, serve as a quantitative measure
of an object’s complexity.

Generalizing these concepts, we define the outer
volume under affine transformation, denoted by S, to
be the object area times 2π2. This is the product of

the outer scales for 2-D positional transformation, ro-
tation, 2-D contractions, and skew that respectively are
the object area A, 2π , unity, and π . The complexity of
an object under affine transformation is then the ratio
of this outer volume to the coherence volume V defined
in Eq. (14), so that

C = S

V
= A 2π2

(
σ 2

E

) na
2

|J| 1
2 . (35)

Equation (35) defines the complexity of an object using
the determinant of its Fisher information matrix, which
is given in Section 5, Eq. (10) for the case of zero-mean
background scenes. The Fisher information matrix is
defined for the set O+ of pixels, which not only con-
tains the pixels comprising the object, but also those
zero-mean background pixels bordering the object. In-
cluding these neighboring pixels in the computation of
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Figure 9. Comparison of the internal complexities C of various traffic signs: Signs with inscriptions and human figures have higher complexity
than signs composed only of simple geometric shapes.

the Fisher information matrix is crucial, because their
brightness values are affected by small changes in the
parameter vector. An object that forms a strong contrast
to the zero-mean background is easier to resolve than
an object that forms a low contrast. Similarly, if we
place an object in various nonzero-mean background
scenes, its coherence volume and therefore complex-
ity change from scene to scene, since the background
bordering the object also changes from scene to scene.
To provide a measure of an object’s complexity that
applies to the nonzero-mean case and does not vary
with any particular scene background, it is practical to
define the internal complexity using only the set O of
pixels comprising the object and not its boundary. To
distinguish it from the complexity defined in Eq. (35),
we call the object’s complexity based on the pixels in
O+ the outer complexity. The effect of external pixels
on resolution and coherence discussed in Sections 2
and 5 is readily extended to the analysis of complexity,
since complexity, by our definition, is simply inversely
proportional to the generalized coherence scale.

To help fix ideas, consider again the illustrative ex-
amples presented in Section 2. The position of the
object in Fig. 2(b) can be resolved better than the
same object in Fig. 3(b) because of the discontinuous
transition from object to background. This can also
be interpreted directly in terms of the Fisher informa-
tion which is defined in terms of partial derivatives of
the brightness values of the scene with respect to the
affine parameter vector describing the object. As a re-
sult, the coherence length of the object in the scene of
Fig. 2(b) is smaller than in Fig. 3(b) if external pixels are

included. While the inner complexities of the objects
are the same in both scenes, the outer complexity of
the object is then greater in Fig. 2(b).

The internal complexities of various traffic signs are
compared in Fig. 9. As may be expected from a qual-
itative perspective, signs with inscriptions and human
figures have much higher internal complexities than
signs composed only of simple geometric shapes. The
ability to unambiguously resolve an object in an arbi-
trary scene increases with the object’s internal com-
plexity, as is shown by data analysis in Section 15.1.

When the affine transformation is reduced to a 2-D
translation, the relevant positional complexity becomes

Cx0,y0 = A

Ax0,y0

, (36)

where the coherence area Ax0,y0 is given in Eq. (24).
Similarly, we define the rotational complexity of an

object by

Cθ0 = 2π

�θ0

, (37)

and the contractional complexity by

Cs = 1

Asx ,sy

, (38)

where the rotational coherence scale �θ0 is defined in
Eq. (29) and the contractional coherence area Asx ,sy in
Eq. (31). These positional, rotational, and contractional
complexities of the traffic sign models are plotted in
Fig. 10 and are consistent with qualitative appraisals
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Figure 10. The positional, rotational, and contractional complexities of the traffic sign models.

of the inherent positional, rotational and contractional
symmetries of the signs.

7. Image Edges

There is an important connection between the posi-
tional Fisher information of an object that occludes
a zero-mean background and “edge-based recogni-
tion.” Both require computation of the spatial gradient
(

∂q(x,y)

∂x ,
∂q(x,y)

∂x ) of the expected object. By Eq. (16),
however, the positional Fisher information integrates
gradient factors over the entire object. This includes

both slowly varying brightness contributions over the
entire area of the object as well as rapid variations
at edges that comprise a relatively small fraction of
the object’s overall area. A priori, there is no way to
judge which of these will make the dominant contri-
bution to the Fisher information. In spite of this ba-
sic fact, edge-based recognition methods threshold the
gradient magnitude over the object so as to discard
all information pertinent to the object’s recognizabil-
ity that is not contained in its edges. For example,
Fig. 11 shows the edge maps of an apricot for different
thresholds. The danger in edge-based methods is that
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Figure 11. The image of an apricot and its edge maps computed for three different thresholds. Underneath the images, the positional complexities
computed for the pixels that appear in these thresholded edge maps are given as an percentage of the complexity computed for all pixels.

a potentially larger amount of information may come
from slowly varying brightness changes accumulated
throughout the object’s area than from rapid changes
at edges. Edge-based recognition methods are then in-
herently sub-optimal. This is the case for the apricot
image in Fig. 11, which shows three different edge
maps obtained from three different thresholds. The po-
sitional complexities computed for the respective edge
maps are roughly a tenth, half, and 4/5 of the com-
plexity for the original image. The higher the thresh-
old becomes, the larger the loss of information and
the lower the complexity of the resulting edge image
become.

Conversely, if the predominant positional informa-
tion about an object is concentrated in its edges, the
analysis of Fisher information, coherence scales and
complexity remains equally pertinent regardless of the

Figure 12. A stop sign and three edge maps computed using same
thresholds as in Fig. 11. The predominant positional information
about the stop sign is concentrated in its edges, because the positional
complexities computed for its respective edge maps is 90%, 95%, and
98% of the complexity of the original image.

Figure 13. A stop sign and its partial derivatives with respect to x , y, θ , and s = sx = sy .

method of recognition. Figure 12 shows the edge maps
of a stop sign computed for the same thresholds as used
in Fig. 11. The complexity analysis of the three edge
maps shows that the positional information about the
stop sign is contained in its edges, because the posi-
tional complexities computed for its respective thresh-
olded edge maps is 90%, 95%, and 98% of the com-
plexity for the original image.

The foregoing analysis goes beyond consideration
of positional variations, as expressed in terms of the
horizontal and vertical gradient components also used
in edge methods, but also accounts for the general
linear variations permissible in an affine transforma-
tion. Figure 13 illustrates such variations, showing not
only the horizontal and vertical partial derivatives of
the stop sign, but also its rotational and contractional
derivatives.

8. Affine Parameter Estimation Using
the Normalized Correlation Coefficient

In this section, we describe methods for parameter esti-
mation in scenes corrupted by additive Gaussian noise
and discuss the cases of objects occluding zero-mean
and nonzero-mean backgrounds. We address the is-
sues outlined in Section 2 and show how the methods
are related and where they differ for both background
scenarios.
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8.1. Maximum Likelihood Estimation in Scenes
With Zero-Mean Backgrounds

We first discuss parameter estimation in scenes cor-
rupted by additive Gaussian noise where the object
occludes a zero-mean background. If scene image I
is described by the likelihood function in Eq. (7),
the maximum likelihood estimate âML = arg maxa

P(I | a) can be derived by maximizing the argument
− 1

2σ 2

∑
(x,y)∈I (I (x, y) − m(x, y; a))2 of the exponent

of the Gaussian distribution, since the noise variance
σ 2 does not depend on parameter vector a. This ar-
gument is also the Mahalanobis distance (Rao, 1973)
between the image mean m(x, y; a) that depends
on a and the measured scene data I (x, y). Solving
∂
∂a ln P(I | a)|a=âML = 0 yields the maximum likeli-
hood estimate

âML = arg min
a

∑
(x,y)∈I

(I (x, y) − m(x, y; a))2. (39)

The maximization is performed over the allowable
range of values for a and can be implemented as an
exhaustive search. The resulting maximum likelihood
estimator (MLE) is unbiased and attains the Cramer-
Rao lower bound for large datasets or high signal-to-
noise ratios (SNR) according to classical estimation
theory (Van Trees, 1968). For typical template ob-
jects obtained from low-variance CCD camera mea-
surements, as the traffic signs in Fig. 9, the SNR is
high so that the MLE is asymptotically optimal.

Equation (39) is also called the sum-squared dif-
ference (SSD) measure of match (Rosenfeld and Kak,
1982) and has been used extensively in computer vi-
sion to recognize objects in images with zero-mean
backgrounds. In these applications, the task may be
object identification as, for example, in printed char-
acter recognition. Then template and scene objects are
assumed to have the same sizes, and object position and
orientation are fixed. If the task is object localization,
template object q is considered small in comparison
to scene I and its position a in scene I is estimated.
Here the pixels that comprise template q(x, y; a) are
the nonzero image mean pixels m(a, x, y).

By expanding the SSD to
∑

I (x, y)2 −2
∑

I (x, y)

q(x, y; a)+ ∑
q(x, y; a)2, the measure of match∑

I (x, y)q(x, y; a) (Rosenfeld and Kak, 1982;
Ballard and Brown, 1982; Jain et al., 1995) can be de-
rived as a measure of correlation between object and
scene as a function of 2D position and rotation for
fixed skew and scale. Since the energies

∑
I (x, y)2

and
∑

q(x, y; a)2 are constant for fixed skew and scale,
maximizing the cross-correlation

∑
I (x, y)q(x, y; a)

also maximizes the likelihood function P and there-
fore yields an asymptotically optimal estimate in this
case. Template q can then be interpreted as a three-
dimensional matched filter over 2-D position and rota-
tion within the image plane when the object scale and
skew are known.

8.2. Normalized Correlation Coefficient

To address the problem of recognizing objects in com-
plex real-world scenes, we use a correlation measure
that is not computed over the whole scene image
as in the zero-mean background case, but instead
compares the template object q only with a scene
subimage Iq . Since various subimages must be tested
during the search for the best matching template,
the subimage Iq is not fixed, as in the zero-mean
background case, where Iq = I . The square root of
the energy

∑
I 2
q is then used as a normalizing fac-

tor so that matches with different subimages can be
compared. The resulting normalized cross-correlation
(
∑

Iq(x, y)q(a, x, y)/(
∑

Iq(x, y)2)
1
2 serves as a

match criterion for object identification and local-
ization in many computer vision applications (e.g.,
Rosenfeld Kak, 1982; Kelley et al., 1983; Yoshimura
and Kanade, 1994). If, in addition to object class and
position, object orientation is also unknown, the nor-
malized cross-correlation is computed for a set of tem-
plates, where each template has a different orientation
(Kashioka et al., 1976; Chin and Dyer, 1986; Kelley
et al., 1983; Yoshimura and Kanade, 1994; Rosenfeld
and Kak, 1982).

An additional step is taken in Rosenfeld and
Kak (1982) which proposes to normalize the cross-
correlation by subtracting the average gray level in the
image from the gray level of each pixel. The resulting
match measure is the normalized correlation coefficient
r = (

∑
(Iq − m̂ Iq )(q − m̂q))/(σ̂Iq σ̂q), where m̂ Iq and

m̂q are the respective sample means of the subimage
and template, and σ̂Iq and σ̂q the respective sample stan-
dard deviations. The normalized correlation coefficient
is dimensionless, with |r | ≤ 1 by the Cauchy-Schwartz
inequality, so that scene object Iq and template object
q are perfectly correlated when r = 1. Rosenfeld and
Kak (1982) calls attention to the shift invariance of r ,
which means that two templates that differ from each
other by a gray-scale shift yield the same normalized
correlation coefficient r when matched with a scene.
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The normalized correlation coefficient’s shift invari-
ance therefore provides an important advantage over
other match measures. In Appendix C we generalize
this argument and show the linear shift invariance of
r , which allows recognition of a scene object whose
brightness linearly differs from the brightness of the
template object.

Most importantly, the normalized correlation coeffi-
cient can be used to estimate the full affine parameter
vector a in nonzero-mean scenes. It therefore applies
to the general object recognition problem of finding a
translated, rotated, dilated, and skewed object in a scene
by quantifying how well the measured data in subim-
age Iq(x, y) matches the template object in q(x, y; a).
The local weighting by the standard deviations of scene
and template images ensures that the coefficient is not
biased by changes in either the scene energy or the ex-
pected object energy within the local template window.
We choose a computationally advantageous form of
the normalized correlation coefficient for our computer
vision system:

r(a) = 1

σ̂Iq (a)σ̂q(a)

(
A(a)

∑
(x,y)∈O

Iq(x, y)q(x, y; a)

− m̂ Iq (a)m̂q(a)

)
. (40)

Here A(a) is the number of pixels in the template im-
age q(x, y; a) that have nonzero brightness, and there-
fore constitute the template object, while O is the
region that contains the template object, as illustra-
ted in Fig. 14. The respective sample variances
of subimage Iq(x, y) and template image q(x, y; a) are
σ̂ 2

Iq
(a) = A(a)

∑
(x,y)∈O Iq(x, y)2 −(

∑
(x,y)∈O Iq(x,

Figure 14. Scene image I (x, y) with subimage Iq (x, y) and replica or template image q(x, y). Since the replica object may not be exactly
rectangular, the portion Iq (x, y) of the scene image that does not overlap the object replica must be removed from the match. To do so, the
m × n replica image q(x, y) is set to zero for pixels not belonging to the replica object. The computation time for any value of r is proportional
to the number of nonzero pixels A in the object, which is usually much smaller than the number of pixels in I .

y))2 and σ̂ 2
q (a) = A(a)

∑
(x,y)∈O q(x, y; a)2

−(
∑

(x,y)∈O q(x, y; a))2, and the respective image
sample means are m̂ Iq (a) = ∑

(x,y) ∈ O Iq(x, y) and
m̂q(a) = ∑

(x,y)∈O q(x, y; a).
The normalized correlation coefficient, SSD, and au-

tocorrelation produce similar outputs over the parame-
ter set, known as ambiguity surfaces, with strong peaks
at the true value for a so long as object complexity is
high and the background around the object perimeter
is constant. Potential differences between the shapes
of the global peaks are due to nonuniform object-
background contrasts, which improve resolution, as
shown in Section 2. Consider the ambiguity surface
of Fig. 15 for the position estimate of an object that
blends in relatively well with the background. For such
cases, when the estimate â is very close to its true value,
small changes in a can lead to negligible changes in
m I , m Iq , σI , and σIq , which may then be taken as lo-
cally constant. Over the entire global peak, the normal-
ized correlation coefficient, which compares a noise-
less object replica to noisy image data, then becomes
indistinguishable from the autocorrelation of the coin-
cident noiseless object replicas.

The ambiguity surfaces shown in Fig. 15 are typi-
cal of those derived during the extensive experiments
described in Section 15, where we find that high-
complexity objects can be recognized to within a pixel
width. This accuracy is consistent with the corre-
sponding sub-pixel-width positional Cramer-Rao error
bounds obtained for the high SNR encountered in the
traffic sign recognition problem. This finding is signif-
icant because it means that the method of estimation
has a variance that effectively attains the Cramer-Rao
lower bound. According to classical estimation the-
ory, any estimator that attains the Cramer-Rao lower
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Figure 15. Above, a scene image with a one-way sign. In the middle, three ambiguity surfaces computed for all possible translations of the
one-way sign replica with fixed angle and scaling parameters. The left surface is computed using the normalized correlation coefficient, the
middle surface is computed using the normalized sum-squared difference, and the right surface is the autocorrelation. The correlation peak of
the surfaces is a white spot located in the upper left of each plot. Below, horizontal and vertical slices through the global peaks of the ambiguity
surfaces. The left graph shows slices along the x-axis of the ambiguity surfaces with the y-coordinate fixed, and the right graph shows slices
along the y-axis with the x-coordinate fixed. The methods converge at the true solution.

bound is equivalent to the minimum variance estima-
tor. In the vicinity of the true value of the parameter
vector describing the object, the normalized correla-
tion coefficient then behaves as a minimum variance
estimator.

The ambiguity surfaces in Fig. 15 contain numer-
ous local maxima, illustrating the fact that object

recognition is an inherently nonlinear problem that re-
quires a global optimization procedure for its solution.
A brute-force solution, for example, would be an ex-
haustive search for the global maximum of the nor-
malized correlation coefficient’s ambiguity surface. In
high SNR, and for high-complexity objects, we find
that this approach is robust, as we will describe in
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Figure 16. The image irradiance I (x, y) is a function of the corresponding scene radiance L(X, Y, Z), which depends on the source direction
s, the viewer direction v, the surface normal n, and the scene irradiance Ei .

Section 15.1. Searching for objects with low complex-
ities, however, may result in false matches. A false
match occurs when the object to be recognized has
an ambiguously high correlation with a portion of the
background scene. This type of ambiguity is typically
referred to as “clutter” in radar and sonar detection
and is often described as a deterministic phenomenon.
Classical estimation theory offers no solution to the am-
biguity problem since it is based solely upon statistical
optimality criteria. To prevent mismatches due to de-
terministic ambiguities, we find that a computer vision
system must enforce sufficiently large background and
template complexities, as is described in Section 15.1.

9. Brightness Invariance of Flat Surfaces

The brightness of an object depends on its reflectance
properties, its shape, and its illumination. In particu-
lar, the scene radiance L of a surface patch centered at
world point (X, Y, Z) is proportional to the image ir-
radiance or intensity W measured at the corresponding
pixel (x, y), such that

W (x, y) = gL(X, Y, Z), (41)

where g is a function of parameters of the imaging sys-
tem (Horn, 1986). Since the sensitivity of our imaging

system is uniform over the whole image, we can assume
that g is constant. The imaging scenario is illustrated
in Fig. 16.

The scene radiance is related to the object’s bidirec-
tional reflectance distribution function (BRDF) fr and
the source irradiance Ei by

Lr (X, Y, Z) = fr (s(X, Y, Z), v(X, Y, Z), X, Y, Z)

×Ei (s(X, Y, Z)), (42)

where s(X, Y, Z) is the direction of a collimated light
source, and v(X, Y, Z) is the direction of the camera.
For a flat surface, however, the direction of the col-
limated source is constant over the object such that
s = s(X, Y, Z). Under the benign assumption that the
object’s reflectance has directional properties that are
separable from its spatial properties, we have

fr (s, v(X, Y, Z), X, Y, Z) = fr1(s, v(X, Y, Z))

×�(X, Y, Z), (43)

where �(X, Y, Z) is the albedo. If the camera is at least
a few object lengths away then its directional varia-
tions over the object will be so small that the cam-
era’s direction can be considered constant such that
v = v (X, Y, Z). Then the image brightness I = W −γ
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becomes

I = fr2(s, v) �−γ (X, Y, Z), (44)

which, to within the constant factor

fr2(s, v) = (g fr1(s, v) Ei (s))−γ , (45)

is invariant to changes in the geometry of the source,
receiver and object.

By distributivity, these results are easily extended
to a continuity of sources over a hemisphere, such as
the sky, so that the image brightness of the flat object
remains invariant to changes in the geometry of the
source, receiver and object to within the constant factor
fr2(s, v).

Under the relatively benign condition of separability,
given in Eq. (43), the resulting Eq. (44) then generally
applies to flat surfaces, not too near to the camera, re-
gardless of their reflectance properties. In the case of a
Lambertian surface, where fr2(s, v) = 1/π , however,
the result is also valid regardless of whether v(X, Y, Z)

is effectively constant or not, which means that it also
applies to the case that the camera is very close to the
object.

10. Recognition of Flat Objects

The normalized correlation coefficient, given in
Eq. (40), is invariant to linear transformations of image
brightness of the form

I ′(x, y) = c1 I (x, y) + c2, (46)

where c1 and c2 are scalar constants as shown in
Appendix C. But the analysis of the previous section
shows that, to within a scalar factor, the image bright-
ness of a flat object remains invariant to changes in
scene shading brought upon by changes in the geom-
etry of the source, receiver and object. The normal-
ized correlation coefficient, therefore, is invariant to
such changes in scene shading, as is our optimal esti-
mate of the parameters a, and as is necessary for object
recognition.

Uncooperative conditions such as strong shadows
and occlusion can change the image irradiance nonuni-
formly and will cause problems with recognition if they
are not accounted for. However, this is not an exclu-
sive weakness of our present formulation, since any

approach, for example, systems based on contour or
edge detection, will have difficulties in such unpre-
dictable and adverse situations.

11. The Traffic Sign Recognition System

Our method’s performance has been evaluated exper-
imentally by applying it to the problem of recogniz-
ing traffic signs. This application is very valuable for
intelligent vehicles, which can use the recognition re-
sults to adjust their speeds or localize themselves in
their environments (Betke and Gurvits, 1997). A sur-
vey of related papers on traffic sign recognition can
be found in Betke and Makris (1997). Our first re-
sults were published in Betke and Makris (1995, 1998).
Our method stands apart from previous approaches, be-
cause it is not restricted to edge detection and does
not rely on color information. In principle, our ap-
proach could be extended by parameterizing color
information.

An overview of our traffic sign recognition system
is shown in Fig. 17. The system has a library of replica
models, one for each traffic sign class, which are input
along with a scene image. It outputs a description a of
the recognized traffic sign in the scene image or con-
cludes that the scene does not contain a traffic sign. The
system consists of three components: a replica gene-
rator discussed in Section 12, an estimator based
on normalized correlation as discussed in Section 8,
and a parameter perturbation component discussed in
Section 13.

The recognition process starts by choosing an arbi-
trary model class ν and an initial parameter vector a
randomly. The replica generator uses the initial guess
of a to transform the model image into replica image
q(x, y; a, ν). The normalized correlation coefficient
r(a) is used to evaluate the match of the replica with the
scene. If the match is poor, meaning it does not satisfy
a predetermined threshold δ on r , the parameter vector
a is perturbed using simulated annealing, a standard
nonlinear optimization method. With the perturbed pa-
rameter vector, a new replica is created and tested.

The process of perturbing and evaluating a is it-
erated for a fixed amount of time and then repeated
for all sign classes. If the best-matching replica image
q(x, y; a∗, ν∗) among all parameters a and classes ν

correlates highly with the scene image, i.e. r ≥ δ, the
object is recognized, and the system outputs a∗ and ν∗.
Otherwise, the system outputs that no traffic sign was
found in the scene.



Recognition, Resolution, and Complexity of Objects 25

Figure 17. The traffic sign recognition system.

Figure 18. A 5 × 5 replica image is obtained from a 9 × 9 model image using contraction parameters sx = sy = 2 and rotation parameter
θ0 = 45◦. For the transformation, the pixels along diagonal vectors tx and ty are rotated by 45◦ and become aligned with the coordinate system
of the replica. Similarly, the pixels along vectors mx and my are rotated by 45◦ and become aligned with the diagonals of the replica. The replica
consists only of the circled pixels of the model and additional zero-brightness pixels where necessary to assure a rectangular image shape.

12. Generating Replicas From Model Images

For efficiency reasons, we use five parameters
(x0, y0, θ0, sx , sy) to approximate the affine transfor-
mation defined in Eq. (6). The skew parameter α is not
varied, but set to zero. This is a valid approximation of
transformations that traffic sign images undergo, be-
cause the signs are generally fronto-parallel to the im-
age plane or tilted by not more than 45◦ and are far
away from the camera compared to their sizes.

Figure 18 shows how a replica image is generated
from a model by subsampling. In this example, the
parameters are chosen so that the replica consists
only of the circled pixels of the model and additional

zero-brightness pixels. In general, a four-point interpo-
lation is used to compute the brightness values of the
subsampled replica. Examples of other replicas created
by this method are shown in Fig. 19. Our method com-
putes the replica very quickly by sweeping over the
model image only once. The time for creating a replica
image from a n × m model image is O(nm).

13. The Simulated Annealing Algorithm

Since the space of possible solutions of the recog-
nition problem is extremely large, the recognition
method described here is based on simulated anneal-
ing, a popular search technique for solving nonlinear
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Figure 19. Six replica images of a slow sign, obtained by sampling the slow sign model at various sampling rates and degrees of rotation.

optimization problems (Metropolis et al., 1953;
Kirkpatrick et al., 1983), which has been applied to
many computer vision problems, e.g., Friedland and
Rosenfeld (1991). Its name originates from the process
of slowly cooling molecules to form a perfect crys-
tal. The analogue to this cooling process is an iterative
search process, controlled by a decreasing “temper-
ature” parameter. At each iteration j , the algorithm
generates a replica q(x, y; a, ν) as described in
Section 12. A new test value a( j)

test for parameter a at
iteration j is created by

a( j)
test = a( j−1) + �a( j), (47)

where a( j−1) is the previous value of a and step �a( j) is
a random variable that is uniformly distributed within
some interval [−A, A]. The step bound A is deter-
mined experimentally. To properly deal with image
boundaries of a scene image, the j-th test value for
the center (x0, y0) of a replica of width wx and height
wy is computed by

x ( j)
0,test = (

x ( j−1)

0 + �x ( j)
0 − w( j−1)

x

)
× mod

(
m I − w( j−1)

x

) + w( j−1)
x (48)

y( j)
0,test = (

y( j−1)

0 + �y( j)
0 − w( j−1)

y

)
× mod

(
nI − w( j−1)

y

) + w( j−1)
y .

This definition avoids “attracting” the replica to the rim
or corners of the scene image during the search.

At each iteration, the test values for the rotation and
contraction parameters are used to create a replica im-
age and correlate it with the scene image at the test
location. If the normalized correlation coefficient r ( j)

test
increases over the previous coefficient r ( j−1), the test
parameter values are accepted since a better match is
found, i.e.,

if r ( j)
test ≥ r ( j−1) then a( j) := a( j)

test (49)

for each parameter a. If the current match is worse than
the previous match, i.e., r ( j)

test < r ( j−1), the test values
are accepted if

exp

(
−r ( j−1) − r ( j)

test

T ( j)

)
> ξ, (50)

where ξ is randomly chosen to be in [0, 1], T ( j) is
the temperature parameter in the j-th iteration, and the
negative exponent corresponds to the Boltzmann dis-
tribution for thermal equilibrium. For a sufficient tem-
perature, this allows “jumps” out of local maxima. The
cooling schedule for the j-th update of the temperature
parameter is

T ( j) = T0/j for 1 ≤ j ≤ L , (51)
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Figure 20. The recognition algorithm.

where T0 is the initial temperature and L is the number
of iterations during the search. Equation (51) describes
the fast converging inverse linear cooling schedule
(Szu and Hartley, 1987). See Strenski and Kirkpatrick
(1991) for a thorough comparison of annealing algo-
rithms with finite length cooling schedules. Since, after
L iterations, the search may not have yielded the op-
timal solution, a local exhaustive search is conducted
around the best solution found. The best result of the
local search among all classes describes the recognized
sign, as long as it has a normalized correlation coeffi-
cient that lies above threshold δ. The pseudo code of
the recognition algorithm is shown in Fig. 20. The be-
havior of the parameters during a typical run of the
algorithm is shown in Fig. 21.

14. The Computational Complexity of the Search

The number of possible solutions of the recognition
problem depends on the number of possible parame-
ter values for traffic sign class, position, rotation, and
contraction. For a typical image of size 320 × 240, the
number of possible positions is 76,800. For a number

of possible contractions in x and y of both 30, a num-
ber of possible rotations of 20, and a class size of 9,
the full search space has a size of 1.2 × 1010. Evaluat-
ing the full search space exhaustively is too slow to be
practical.

Although a comparison of the simulated annealing
algorithm with an exhaustive search may seem unfair,
it is nevertheless instructive. The annealing algorithm
finds a traffic sign in less than 7000 iterations. That
means that only 7000 possible solutions instead of 1.2×
1010 are evaluated, which is a speedup of several orders
of magnitudes over an exhaustive search.

Figure 21 reports a typical run of the algorithm,
which takes ca. 100 seconds per sign on a 333 MHz
PC running Linux.

15. Experimental Results

Our data consists of more than 3280 scene images, a
few of which are shown in Fig. 22. The main crite-
rion for the selection of the scene images is to obtain
a wide variety of traffic sign scenes, originating from
both the U.S. and Europe. The signs in the scenes have
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Figure 21. Five graphs illustrating the behavior of the correlation coefficient r and the parameters x0, y0, θ0 and sy during a typical run of the
simulated annealing algorithm with a stop sign scene as input. The algorithm is run with the initial parameters reported in Fig. 24. The algorithm
takes ca. 2 min per sign on a 333 MHz PC running Linux. The stop sign is almost recognized at iteration 2802, but the temperature parameter is
still too high for parameter convergence. The sign is finally recognized at iteration 4050, after which the parameters are only slightly adjusted.

different sizes and orientations, are illuminated differ-
ently, and have various backgrounds. Some traffic signs
are aged and bent, some are painted with graffiti. Some
street scenes do not contain any traffic signs. The model
images used to represent the traffic sign classes are
shown in Fig. 9. The model traffic signs are physically

different signs from the signs in the test scenes. One
hundred training images are used to determine the
recognition threshold.

The performance of our traffic sign recognition sys-
tem depends on the complexities of the signs in the
images. The system recognizes 94% of the traffic
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Figure 22. Some of the images used in the recognition experiments.
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Figure 23. Recognizing multiple and occluded signs: the best matching replica is shown overlying the circled sign in the image.

signs correctly and misclassifies 6%, provided that
the positional complexity of the template signs is not
smaller than 37. These numbers discount mismatches
of European signs with their corresponding American
signs. For example, replicas of European yield signs
do not have any inscriptions, but correlate highly with
scenes of American signs with the inscription “yield.”
Figure 23 shows some recognition results, including
scenes with occluded signs and with several traffic
signs. (The pseudo-code in Fig. 20 is easily modified
in line 25 so that several signs in a scene can be found).
The initial parameter values, step and domain bounds
used in the simulated annealing algorithm are listed in
Fig. 24.

The solid graph in Fig. 25 illustrates the average best
correlation for correct matches. For example, replicas
created from the footpath sign model match correctly
with scene images that contain footpath signs with an
average correlation of 0.78. An average of 408 scene
images per traffic sign was used, except for the rare slow
sign for which only a few images could be obtained.
The dashed graph in Fig. 25 illustrates the average best
correlation for scene images that do not contain a traf-
fic sign in the correct class or do not contain a traf-
fic sign at all. For example, the best correlation of a
stop sign replica with an arbitrary image that does not

Figure 24. Initial parameter values, step and domain bounds for
annealing algorithm.

contain a stop sign is 0.36 on average. The average
is taken over about 2200 scene images per sign class.
Note for comparison that the average correlation for
a replica that matches with an arbitrary scene is zero,
E[r ] = 0, while a perfect match yields r = 1.

A comparison between the average best correlation
for recognized signs and for scenes without signs shows
that the correlation for a correct match is high enough
to identify the correct sign class uniquely among the
9 classes. For almost all scene images, the correlation
is highest for matches between a sign in the image and
its corresponding replica.
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Figure 25. Recognition results for the nine model signs, ordered by their complexities as in Fig. 9. The solid graph plots the average best
correlation for scenes with a given sign recognized, and the dashed graph plots the average best false correlation for scenes without a given sign.
The comparison shows that the correlation for a correct match is high enough to identify the correct class uniquely among the 9 classes, because
the false positive correlations are always lower on average. Underneath the sign models, a table lists the number of correct positive matches and,
for scenes without corresponding signs, the number of correct negative and false positive matches. The sum of the entries in each column gives
the total number of scene images used for each model class. The internal positional complexities of the signs are reported from Fig. 6 illustrating
that false positive matches only occur for low-complexity signs. For signs with sufficiently high complexity, only true positive matches occur,
and therefore the Cramer-Rao lower bound on position estimation error is attained.

False positive matches occur when the best correlat-
ing replica is not in the correct class. Figure 26 shows
an example of a false positive match where the no-entry
sign to be recognized is covered by graffiti and occluded
by a nonuniform shadow. Although the sign in the scene
can be found, as shown in the left image in Fig. 26, the
corresponding match yields a normalized correlation
coefficient that is slightly lower than the coefficient due
to the best-matching European yield sign, as shown in
the right image in Fig. 26. As can be seen from the
data in Fig. 25, the European no-entry and European
yield models generally result in high normalized corre-
lation coefficients for arbitrary scenes and are therefore
responsible for the vast majority of false matches.

15.1. The Impact of Object Complexity
on Recognition Ambiguity

The problem of ambiguity is one that any object recog-
nition system must eventually address in practice.

Image ambiguities arise, for example, when a portion
of the background scene has high coincidental corre-
lation with the scene object to be recognized, as illus-
trated in Fig. 4 of Section 2. Ambiguities can then occur
in the absence of noise and are somewhat analogous
to background clutter in the radar/sonar problem
(Difranco and Rubin, 1968).

In our experiments, we find that the number of ambi-
guities encountered depends on the complexities of the
model image and the template created from this model,
which are independent of the data, as well as the com-
plexities of the scene object itself and the unoccluded
background of the correlation overlap window. When
the class of the template and scene object are identi-
cal, the recognition system finds a correct match with
high probability so long as both template and scene ob-
ject complexities are high. When low-complexity tem-
plates or scene objects are involved, however, recog-
nition ambiguities occur at high frequency. We find
that the number of these ambiguities falls off exponen-
tially as complexity increases and exploit this inverse
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Figure 26. Results for an image with a nonuniform shadow: On the left, the final no-entry template is shown overlying the no-entry sign. On
the right, the final yield template is shown matching with the scene background.

relationship between complexity and ambiguity level
to enhance system performance.

The impact of model complexity on recognition is
partially exhibited in Fig. 25 of the previous section
where false positive matches occur exclusively for
low-complexity models while high-complexity models
are effectively immune to ambiguity. This successful
performance is primarily achieved by our precondi-
tioning of the lower threshold allowable for template
complexity. Without such preconditioning, even high
complexity models would suffer significant recognition
ambiguity after downsampling, which in turn would
translate to a much higher overall level of false posi-
tive matches.

Figure 27. The impact of high template complexity on recognition: The oneway sign in the scene shown in (a) is uniquely recognized with
a correlation coefficient of 0.82. (b) The matching template, shown enlarged, has internal complexity 250. (c) The scene sign has internal
complexity 119 and outer complexity 140.

It is then important to understand the impact of
template complexity on recognition. Templates are
just downsampled models, so for example, a minor
reduction in the size of a high-complexity model
will yield a high-complexity template. Typically, high-
complexity templates either yield an unambiguously
high correlation with the correct scene object, which
gives a correct positive match, or a low correlation with
the scene background, which gives a correct negative
match.

Consider, for example, the high-complexity tem-
plate of Fig. 27(b) which is unambiguously recognized
by our simulated annealing algorithm in the scene of
Fig. 27(a). The high level of coregistration between
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Figure 28. Exhaustive search results for the scene in Fig. 27. Column (a): Four subimages of the scene with overlapping templates at the
positions that yield the maximum correlation coefficients. Column (b) lists the internal positional complexities, sizes, and maximum correlation
coefficients for the four templates. Column (c): The ambiguity surfaces computed for all possible translations of the four templates. The positions
that yield the maximum correlation coefficients are circled. The low-complexity templates 2 through 4 highly correlate with the scene background
and produce ambiguity surfaces with many spurious peaks. Only the high-complexity template 1 correctly matches the oneway sign in the scene.

template and scene object achieved at the correct value
of the object parameter vector leads to a well-defined
global maximum at the peak of the positional ambigu-
ity surface, as shown in Fig. 28(b)-1. More importantly,
however, Fig. 29 shows the maximum correlation co-
efficient versus template complexity for the correct
model object, in this case the oneway sign, as well as
other model objects that do not appear in the scene, in
an exhaustive search over the scene. While the figure
is for a specific example, the behavior it describes is
characteristic of that found in a wide range of recog-
nition problems. Specifically, at very low template

complexities, i.e. under 35 in this case, all signs have
maximum correlations high enough to produce false
positive matches. A lower limit on template complex-
ity, i.e. 35 in this case, then must be set to avoid this
problem. With increasing template complexity, how-
ever, the maximum correlation coefficient falls off
rapidly for all models, with one important exception.
This exception occurs when the complexity of the tem-
plate for the correct model approaches the complexity
of the scene object. The maximum correlation coef-
ficient then dramatically increases, with large fluctu-
ation, until it reaches a global maximum where the
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Figure 29. The maximum correlation coefficient in an exhaustive search over the scene shown in Fig.27(a) versus template complexity for
European yield and no-entry, stop, and oneway signs, which have internal model complexities of 67, 177, 399, and 491, respectively. Only the
oneway sign is in the scene and is recognized with a correlation coefficient of 0.82 at complexity 250. Note the significant number of ambiguities
for template complexities below 35.

Figure 30. The number of matches versus positional template complexity in an exhaustive search over the scene shown in Fig. 27(a) for
European yield and no-entry, stop, and oneway signs, which have internal positional model complexities of 67, 177, 399, and 491, respectively.
Only the oneway sign is in the scene. (a) The number of correlation coefficients above 0.3. (b) The number of false matches, which are defined
to be correlation coefficients above 0.6. Note the significant number of ambiguities for complexities below 35.
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template and scene object complexities coincide. Fig-
ure 29 also shows that a high-complexity template be-
longing to the wrong class yields a low correlation and
therefore does not cause a false positive match.

A more in-depth understanding of the relationship
between template complexity and recognition ambigu-
ity can be gained by analyzing the total number of cor-
relations above a given threshold, as well as the num-
ber of false positive matches, found in an exhaustive
search over a particular scene versus template complex-
ity. This is illustrated in Fig. 30, where the most striking
behavior is that the number of false positive matches
becomes exceedingly large when template complexi-
ties are small, regardless of the model. Fortunately, the
number of false positive matches falls off exponentially
with increasing template complexity until it eventually
vanishes at some critical value, i.e. 35 for the given ex-
ample. The basic issue then is that template complexity

Figure 31. The number of matches versus background complexity in an exhaustive search over the scene shown in Fig. 27(a) for European
yield and no-entry, stop, and oneway signs, which have internal model complexities 67, 177, 399, and 491, respectively. Only the oneway sign is
in the scene. (a) The number of correlation coefficients above 0.3. (b) The number of false matches, which are defined by correlation coefficients
above 0.6.

must be restricted at the low end to avoid the inevitably
large number of false positive matches that would oth-
erwise plague a recognition system. An intuitive un-
derstanding of this phenomenon can be obtained by
considering the definition of complexity as “the num-
ber of coherence cells” contained in the object. Then,
as the template complexity decreases, the number of
coherence cells also decreases. As the number of co-
herence cells decreases, the probability that spurious
combinations of these cells will constructively inter-
fere with the background to yield an ambiguously high
correlation increases.

Low-complexity templates are created when high-
complexity models are downsampled. The downsam-
pling is typically necessary to find the correct object
scale, but leads to loss of information and a relative
decrease in template complexity with respect to the
model. To help visualize the problem, an example of
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a low-complexity template that achieves a spuriously
high correlation with the scene background is illus-
trated in Fig. 28(b)-3. Low-complexity templates are
also created when low-complexity models are down-
sampled. In such cases, the relative reduction in com-
plexity may be small, but the final complexity is of-
ten so low that false matches occur, as illustrated in
Fig. 28(b)-4. Here the template size is roughly half that
of the object, but it is of the wrong class, and produces
a false positive match.

The complexity of the scene object also significantly
impacts the ability of a system to recognize it. Poor res-
olution or significant occlusion can lead to low com-
plexity in a scene object. If a low-complexity template
of the wrong class is then used to identify the ob-
ject, incorrect matches are likely. Conversely, use of
a high-complexity template of the correct class typi-
cally leads to a correct positive match. For example,
in Fig. 28(b)-1, a high-complexity template correctly
matches the lower complexity scene object shown in
Fig. 27(c).

Similarly, the complexity of scene background in the
overlap window of the correlation has a strong inverse
relationship with the level of recognition ambiguity.
As both the complexities of the template and overlap-
ping background decrease, the possibility of a spuri-
ous false match between the two becomes more likely.
This phenomenon is illustrated in Fig. 31, where the
number of matches is plotted versus background com-
plexity. Background overlap regions of low complex-
ity yield a large number of ambiguities. The number
of ambiguities decreases exponentially with increasing
background overlap complexity so long as the template
complexity is sufficiently high.

It is significant that the size of a template, scene
object or background overlap window is not a good
inverse measure of recognition ambiguity. This is il-
lustrated in Fig. 28 where the low-complexity template
shown in Fig. 28(b)-3 is scaled up by linear interpo-
lation so that gradients and complexity are preserved
to within the discretization error. The resulting tem-
plate, shown in Fig. 28(b)-2, has the same size as the
high-complexity template, shown in Fig. 28(b)-1 but
the same complexity as the low-complexity template of
Fig. 28(b)-3. The high-complexity template, however,
yields a correct match while the low-complexity tem-
plate of the same size and model yields a false match.
This example illustrates the fact that it is the complex-
ity of an template, scene object or background overlap
window that is inversely proportional to the recognition

ambiguity, not the size. The size only provides an outer
scale, but it is the ratio of the inner coherence scale to
the outer size scale that is important in assessing the
level of ambiguity to be expected.

16. Conclusions

The problem of object recognition for objects subject
to affine transformation, including the issue of recogni-
tion ambiguity, can be characterized in terms of phys-
ical descriptors for object resolution, coherence, and
complexity. We have derived analytic expressions for
these descriptors, where for example, the resolution
of an object subject to affine transformation is given
in terms of generalized coherence scales that are ex-
tracted directly from a scene’s Fisher information ma-
trix. Use of the Fisher information matrix in this man-
ner is novel and advantageous because it enables scalar
coherence scales or multi-dimensional coherence vol-
umes to be consistently defined for any set of the affine
parameters defining the object. The formulation has the
desired limiting behavior since our coherence scale for
1-D position estimation reduces to the coherence length
defined in the signal processing literature by Gabor
(1946). Our generalized coherence scales are shown
to be of great practical value because they correspond
to the width of the object’s autocorrelation peak under
affine transformation and so provide a direct measure
of the extent to which an object can be resolved under
affine parameterization. The theory shows that resolu-
tion increases as the contrast between object and scene
background along the object perimeter is increasingly
nonuniform.

We then develop a method for recognizing objects
subject to affine transformation in complex real world
scenes based on template matching. In the search for
the best matching template, the affine parameter vector
that describes the template is perturbed using simu-
lated annealing, a standard nonlinear optimization pro-
cedure. The match is quantitatively evaluated using the
normalized correlation coefficient. The method is then
used to recognize traffic signs in thousands of real-
world scenes.

We show that our measure of complexity, derived in
terms of the object’s generalized coherence scales, has
a strong inverse relationship to the level of recognition
ambiguity, whereas other potential metrics, such as the
relative size of the scene object or template, exhibit no
such simple relationship. We exploit these findings to
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reduce the level of recognition ambiguity by precondi-
tioning the permissible range of template complexity
above a priori thresholds.

For many three-dimensional objects, the affine vec-
tor of the present formulation must be supplemented
by further parameters that account for such effects as
variation in shading caused by changes in surface ori-
entation with respect to a given source distribution and
receiver geometry. Our approach, however, can be di-
rectly applied to this more general problem to derive
recognition methods, object coherence scales and com-
plexities so long as partial derivatives of scene bright-
ness can be sensibly defined in terms of the compo-
nents of the augmented parameter vector, as should be
the case when a physical model is employed.

In summary, our analysis shows that object recogni-
tion, resolution, coherence, complexity, and ambiguity
are all fundamentally related. We have developed prac-
tical tools for computing resolution and complexity and
demonstrated their importance in the object recognition
problem.

Appendix

A. Signal-Dependent Fluctuations of Natural Light
are Negligible in the CCD Brightness Data

This section shows that thermally induced fluctua-
tions of natural light are not a significant cause of er-
rors in our measurements. Natural light fluctuates as
a circular complex Gaussian random (CCGR) process
(Goodman, 1985). The probability density of an M×N
intensity image W measured from a CCGR field is the
gamma distribution
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MN∏
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where the number of coherence cells µ in the intensity
average is defined to be the time-bandwidth product
µ = T τ , where T is the coherence or measurement
time, and τ is the bandwidth of the light. The expected
value of Wk is σk , and the variance of Wk is σ 2

k/µ.
Given Eq. (52), the probability density for the “gamma-
corrected” brightness I is
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since Ik = W
1
γ

k . For notational convenience, the sub-
script k is dropped in the following. The expected
value of I is
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(�(µ))2
.

An approximation of the mean of I using Stirling’s
Formula that �(µ) = µµ− 1

2 eµ(2π)
1
2 yields

E[I ] ≈ σ
1
γ

(
1
γ

+ µ
) 1

γ
+µ− 1

2 e−( 1
γ
+µ)

µ
1
γ µµ− 1

2 eµ

≈ σ
1
γ e

1
γ +µ− 1

2
γµ e− 1

γ ≈ σ
1
γ ,

which holds for large µ. The variance of I can be ap-
proximated by

var(I ) ≈ σ
2
γ

µγ 2
,

and is therefore a function of the mean, which reveals
that the noise arising from circular complex Gaussian
random fluctuations in the received field is signal de-
pendent. This is important for radar and sonar imag-
ing (Makris, 1995), where, due to signal-dependent
fluctuation noise, the variance of high-intensity mea-
surements can be larger than the mean of low-intensity
measurements. For fluctuations of natural light, how-
ever, the intensity average of the measurements is large
enough to reduce the standard deviation to a negligibly
small fraction of its mean, as shown in the following
example for green light.

Green light has a bandwidth of τgreen = 3 × 108 m
s

(550 nm − 500 nm)/(550 nm × 500 nm) = 5.45 ×
1013 Hz. With exposure time of T = 1/100 s, the num-
ber of coherence cells is µ = 5.45 × 1011. The ratio
of the standard deviation of I to the mean of I is
approximately

std(I )

E[I ]
≈

√
σ

2
γ

µγ 2

1

σ
1
γ

= 1√
µγ 2

,

which is O(6×10−7), a negligibly small ratio compared
to that actually measured in Section 3. Therefore, the
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inherent signal-dependent fluctuations of natural light
have a negligible effect on our image data.

B. The Lower Bound on Position Estimation

This section analyzes how the lower bound on po-
sition estimation, as derived in Section 5.1, varies
with changes in object rotation. Let R be a two-
dimensional orthonormal matrix. The Fisher informa-
tion can then be expressed in terms of R and a diagonal
matrix D that consists of R’s principal components D11

and D22,

J = E

σ 2
B = E

σ 2
RDRT = E

σ 2
R

(
D11 0

0 D22

)
RT .

(54)

where

D11 = B2
x − B2

y

2
+ 1

2

√
4B4

xy + (
B2

x − B2
y

)2
(55)

D22 = B2
x − B2

y

2
− 1

2

√
4B4

xy + (
B2

x − B2
y

)2
. (56)

The angle ϕ that rotates the x- and y-axes of the image
into the principal axes given by the object’s bandwidth

r(Iq , c1q + c2) = A
∑

Iq(x, y)(c1q(x, y) + c2) − ( ∑
Iq(x, y)

)( ∑
(c1q(x, y) + c2)

)
√

A
∑

Iq(x, y)2 − ( ∑
Iq(x, y)

)2
√

A
∑

(c1q(x, y) + c2)2 − ( ∑
(c1q(x, y) + c2)

)2

matrix is defined by

tan(2ϕ) = 2B2
xy

B2
x − B2

y

. (57)

The lower bound on position recognition is therefore

J−1 = σ 2

E
RD−1 RT . (58)

The lower bound on recognizing the position coordi-
nate x0 can then be expressed as

E[(x̂0 − x0)
2] ≥ J−1

x0
= σ 2

E

D11 sin ϕ + D22 cos ϕ

D11 D22

(59)

and on recognizing the coordinate y0 as

E[(ŷ0 − y0)
2] ≥ J−1

y0
= σ 2

E

D11 cos ϕ + D22 sin ϕ

D11 D22
.

(60)

If the coordinate axes correspond to the principal
components of the bandwidth of the object, i.e.,
B2

x = D11 and B2
y = D22, then the error in the x-

and y-coordinate of the position is lower bounded
by σ 2/(EB2

x ) and σ 2/(EB2
y), respectively. Let the to-

tal estimation error be the Euclidean distance ξ =√
E[(x̂0 − x0)2]2 + E[(ŷ0 − y0)2]2. The total error is

then lower bounded by

ξ ≥ σ 2

E

√
D2

11 + D2
22 + 2D11 D22 sin 2ϕ. (61)

The bound is smallest if the principal components of the
object’s bandwidth matrix are aligned with the coordi-
nate axes, i.e., ϕ = 0 or ϕ = π/2. The bound is largest
for ϕ = π/4, for which E[(x̂0 − x0)

2] = E[(ŷ0 − y0)
2].

C. Linear Invariance of the Normalized
Correlation Coefficient

Given the definition in Eq. (40), the normalized corre-
lation coefficient

describes how well a linearly transformed replica
c1q(x, y) + c2 matches with the measured data in
subimage Iq(x, y). The numerator of r(Iq , c1q + c2)

is

c1

(
A

∑
Iq(x, y)q(x, y)−

∑
Iq(x, y)

∑
q(x, y)

)
,

and the second square root in the denominator is(
A

∑ (
c2

1(q(x, y))2 + 2c1c2q(x, y) + c2
2

)
−c2

1

(∑
q(x, y)

)2

−2c1 Ac2

∑
q(x, y) − (Ac2)

2
)1/2

,
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Figure 32. The number of matches versus template complexity in an exhaustive search over the scene shown in Fig.27(a) for European yield
and no-entry, stop, and oneway signs, which have internal model complexities of 1.3 × 105, 5.3 × 106, 5.4 × 107, and 8.7 × 107, respectively.
Only the oneway sign is in the scene. (a) The number of correlation coefficients above 0.3. (b) The number of false matches occurring for
correlation coefficients above 0.6.

which yields c1

√
A

∑
(q(x, y))2 − (

∑
q(x, y))2.

Since

r(Iq , c1q + c2)

= c1
(

A
∑

Iq (x, y)q(x, y) − (∑
Iq (x, y)

) (∑
q(x, y)

))
√

A
∑

Iq (x, y)2 − (∑
Iq (x, y)

)2
c1

√
A

∑
(q(x, y))2 − (∑

q(x, y)
)2

= r(Iq , q),

the normalized correlation coefficient is invariant to
linear transformations of image brightness and Eq. (46)
holds.

D. Number of Matches vs. Template Complexity

The impact of positional complexity on recognition
was analyzed in Section 15.1. The analysis general-
izes to the full complexity that is not just computed
for the positional, but also for the rotational and con-
tractional parameters. Figure 32 illustrates the number

of matches versus template complexity in an ex-
haustive search over the scene shown in Fig. 27(a)
for European yield and no-entry, stop, and oneway
signs, which have internal model complexities of
1.3×105, 5.3×106, 5.4×107, and 8.7×107, respec-
tively. Only the oneway sign is in the scene. The figure
shows the number of correlation coefficients above 0.3
and the number of false matches occurring for correla-
tion coefficients above 0.6.
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