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Abstract
In this paperwe presenta novel approachto continuous,whole-sentenceASL recognition

that usesphonemesinsteadof whole signsasthe basicunits. Our approachis basedon a se-
quentialphonologicalmodelof ASL. Accordingto thismodeltheASL signscanbebrokeninto
movementsandholds,whicharebothconsideredphonemes.

This modeldoesaway with the distinctionbetweenwhole signsandepenthesismovements
thatwemadein previouswork [14]. Instead,epenthesismovementsarejust like theothermove-
mentsthatconstitutethesigns.

We subsequentlytrain HiddenMarkov Models(HMMs) to recognizethephonemes,instead
of wholesignsandepenthesismovementsthatwe recognizedpreviously [14]. Becausethenum-
ber of phonemesis limited, HMM-basedtraining andrecognitionof the ASL signalbecomes
computationallymore tractableand hasthe potentialto lead to the recognitionof large-scale
vocabularies.

We experimentedwith a 22 word vocabulary, andwe achievedsimilar recognitionrateswith
phoneme-andword-basedapproaches.This result is very promisingfor scalingthe taskin the
future. We plan to conductmoreexperimentsthat will demonstratethat usingphonemescan
improvebothrecognitionratesandcomputationalcomplexity.

1 Introduction
Gesturesaredestinedto play anincreasinglyimportantrole in human-computerin-

teractionin the future. Humansusegesturesin their everydaycommunicationwith
otherhumans,not only to reinforcethemeaningsthatthey convey throughspeech,but
alsoto convey meaningthatwouldbedifficult or impossibleto convey throughspeech
alone. Surely, to make human-computerinteractiontruly natural,computersmustbe
ableto recognizegesturesin additionto speech.Furthermore,gesturerecognitionis an
importantpartof virtual reality environments,wheretheusermustbeableto manipu-
latetheenvironmentwith hishands.

Closelyrelatedto thefield of gesturerecognitionis thefield of signlanguagerecog-
nition. Becausesignlanguagesaretheprimarymodeof communicationfor many deaf
people,andbecausethey are full-fledgedlanguagesin their own rights, they offer a
much more structuredand constrainedresearchenvironment than generalgestures.
Thanksto linguistic researchsincethe early 1960s,the propertiesof sign languages,
especiallyof AmericanSign Language(ASL), have becomewell-understood. For
thesereasons,sign languagerecognitionoffers an appealingtestbedfor researching
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themoregeneralproblemsof gesturerecognition.Lastbut not least,workingsignlan-
guagerecognitionsystemswould alsomake the interactionof deafpeoplewith their
surroundingseasier.

Possiblythemostsignificantpropertyof signlanguagesis thatsignsdo not consist
of unanalyzablewholes.They canbebrokendown into partsin a systematicmanner,
muchlike wordsin spoken languagescanbe broken down. Sucha breakdown is an
essentialprerequisitefor building truly scalablesystemswith large vocabularies(or
gesturesets).

Yet, to date,researchon systematicallybreakingdown signsinto their constituent
partsfor recognitionpurposeshasbeensketchy. If suchresearchaddressedtheproblem
atall, it followedtheearlytranscriptionsystemof ASL by Stokoe[12]. Thissystemhas
severalshortcomings,themostseriousof thembeingthatit treatsall aspectsof signsas
occurringin parallel.Morerecentresearchin thelate1980sandearly1990shasshown
thatsequentialityis averyimportantfeatureof signlanguages,andthatit shouldin fact
bethebasefor a goodphonologicalmodelof ASL [7, 2].

In thispaperweexplorethepossibilitiesof basingcontinuous,whole-sentenceASL
recognitionon a sequentialphonologicalmodel. Our focus is strictly on phonology.
We do away with thedistinctionbetweenwholesignsandepenthesismovementsthat
we madein previouswork [14], andunify themin a singlephonologicalframework.
Epenthesismovementsarejustlikethemovementsthatconstitutesigns.Althoughmor-
phology, syntax,andsemanticsareimportantaspectsof signlanguagerecognition,they
arebeyondthescopeof this paper. For simplicity, we do not addresshandshapesand
nonmanualfeatures,suchasfacialexpressions,in thispapereither. However, this is not
a limitation, becausethey canbeexpressedin termsof phonemesaswell.

We begin with an overview of relatedwork, thenproceedto a discussionof ASL
phonology, andshow how HiddenMarkov Modelscanbe usedto capturestatistical
variationsin signmovements.We thenprovidepreliminaryexperimentswith a 22sign
vocabulary to validateour assumptionsaboutphonologicalmodelingof ASL. Finally,
weprovidea discussionof openresearchquestions.

2 Related Work
Most previous work hasfocusedon isolatedsign languagerecognitionwith clear

pausesaftereachsign. Thesepausesmake it a mucheasierproblemthancontinuous
recognitionwithoutpausesbetweentheindividualsigns,becauseexplicit segmentation
of a continuousinput streaminto theindividual signsis very difficult. For this reason,
work onisolatedrecognitionoftendoesnotgeneralizeeasilyto continuousrecognition.

M. B. WaldronandS.Kim useneuralnetworksto recognizea smallsetof isolated
signs[16]. They useStokoe’s transcriptionsystem[12] to separatethe handshape,
orientation,andmovementaspectsof thesigns.M. W .KadoususesPower Glovesto
recognizea setof 95 isolatedAuslansignswith 80% accuracy, with an emphasison
computationallyinexpensive methods[5]. R. Erensthteyn andcolleaguesuseneural
networksto recognizefingerspelling[3].

Kirsti GrobelandMarcellAssamuseHMMs to recognizeisolatedsignswith 91.3%
accuracy outof a262-signvocabulary. They extractthefeaturesfrom videorecordings
of signerswearingcoloredgloves.[4]
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Thereis still relatively little work oncontinuoussignlanguagerecognition.Mostof
it is basedon HiddenMarkov Models(HMMs). HMMs offer theadvantageof being
ableto segmenta datastreaminto its constituentsignsimplicitly, thusbypassingthe
difficult problemof segmentation.

T. StarnerandA .Pentlanduseaview-basedapproachwith asinglecamerato extract
two-dimensionalfeaturesasinput to HMMs with a 40-wordvocabularyanda strongly
constrainedsentencestructureconsistingof a pronoun,verb,noun,adjective,andpro-
nounin sequence[11]. They assumethatthesmallestunit in signlanguageis thewhole
signandmakeno furthereffort to breakthesignsdown into their constituentparts.

Y. NamandK. Y. Wohn[8] usethree-dimensionaldataasinput to HMMs for con-
tinuousrecognitionof a very small set of gestures. They introducethe conceptof
movementprimes,whichmakeupsequencesof morecomplex movements.

R. H. LiangandM. OuhyounguseHMMs for continuousrecognitionof Taiwanese
Sign Languagewith a vocabulary between71 and 250 signs. [6] They work with
Stokoe’s model[12] to detectthehandshape,position,orientation,andmovementas-
pectsof therunningsigns.Unlikeotherwork in thisarea,they donotusetheHMMs to
segmenttheinput streamimplicitly. Instead,they performexplicit segmentationbased
on discontinuitiesin the movements.They performthe integrationof the handshape,
position, orientation,and movementaspectsat a higher level than the HMMs. The
sequentialaspectsof signlanguagealsomanifestthemselvesonly at thathigherlevel.

C. VoglerandD. MetaxasuseHMMs for continuousASL recognitionwith avocab-
ulary of 53 signsanda completelyunconstrainedsentencestructure[14, 15]. In [15]
they usewhole-word context-dependentmodelingfor the HMMs, which segmentthe
inputstreamimplicitly. They couplethisapproachwith apurelycomputer-visionbased
analysisthatsegmentstheinput streamexplicitly andextractsits geometricproperties
to backup theHMM modeling.In [14] they dropwhole-wordcontext-dependentmod-
eling in favor of modelingtransitionsbetweensignsexplicitly. Thesetransitionsare
known asmovementepenthesisandareanintegralpartof ASL phonology. However,
they still usewholesignsasthesmallestunitsof ASL.

This paperis an extensionof the work donein [14]. Our goal is to abandonthe
notionof wholesignsasthesmallestunits of ASL andreplacethemwith phonemes.
We strive to treattheaspectsof ASL phonologyat theHMM level ascomprehensively
aspossible,includingthesequentialaspects.Wenow summarizetherelevantlinguistic
researchin ASL.

3 American Sign Language Phonology
Beforewereview whatis knownaboutASL phonology, aquicknoteaboutterminol-

ogy. Althoughsignlanguagesappearto beradicallydifferentfrom spokenlanguages,
thedifferencesarelargely in appearance,ratherthanin theunderlyingconcepts.Most
conceptsfrom spokenlanguagelinguisticsreadilycarryover to signlanguagelinguis-
tics. For this reasonwe follow theestablishedterminologyof spokenlanguagelinguis-
tics.

A phonemeis definedto be the smallestcontrastive unit in a language;that is, a
unit thatdistinguishesoneword from another. In ASL, anexampleof sucha phoneme
would be the downward movementin the sign for “good.” Phonemesareespecially
interestingfor recognitionpurposes,becausetheir numberis limited in any language,
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asopposedto anunlimitednumberof wordsthatcanbebuilt from thephonemes.This
limitedsetof phonemeshelpskeepingspeechrecognitiontractable.Weattempttoshow
thatthey canalsohelpkeepASL recognitiontractable.

3.1 Stokoe’s system
W. Stokoe realizedthat signscan indeedbe broken down into smallerparts[12].

Heusedthis observationfor devisinga transcriptionsystem.This transcriptionsystem
assumesthatsignscanbebrokendown into threeparameters(phonemes),whichconsist
of thelocationof thesign(tabula or tab), thehandshape(designatoror dez), andthe
movement(signationor sig).

A fundamentalassumptionof this systemis that the tab,dez,andsig contrastonly
simultaneously. That is, variationsin the sequenceof theseparameterswithin a sign
areconsiderednot to besignificant.Many othertranscriptionsystemsarebasedon the
Stokoesystem,suchas[9].

3.2 Segmental Models
S. Liddell and R. Johnsonarguedconvincingly againstStokoe’s assumptionthat

therewasno sequentialcontrastin ASL. They wentevenfurtherandmadesequential
contrastthebasisof ASL phonology[7]; thatis, insteadof emphasizingthesimultane-
ousoccurrenceof phonemesin ASL, they emphasizedsequencesof phonemes.Such
modelsarecalledsegmentalmodels.

S. Liddell and R. Johnsondescribe two major classesof segments in their
Movement-Holdmodel in [7], which they call movementsand holds. Movements
aredefinedasthosesegmentsduringwhich someaspectof the signer’s configuration
changes,suchasa changein handshape,a handmovement,or a changein handori-
entation.Holdsaredefinedasthosesegmentsduringwhich all aspectsof thesigner’s
configurationremainstationary;that is, thehandsremainstationaryfor a brief period
of time.

Signsaremadeupof sequencesof movementsandholds.Somecommonsequences
areHMH (a hold followedby a movementfollowedby anotherhold,suchas“good”),
MH (a movementfollowed by a hold, suchas“sit”), andMMMH (threemovements
followedby a hold, suchas“chair”). Attachedto eachsegmentis a bundle of articu-
latory featuresthatdescribethehandconfiguration,orientation,andlocation. In ad-
dition, movementsegmentshave featuresthatdescribethetypeof movement(straight,
round,sharplyangled),aswell astheplaneandintensityof movement.

AlthoughtheMovement-Holdmodelhassomeshortcomings,suchastheabsenceof
nonmanualfeaturesandthepresenceof redundancy, its basicsequentialstructurehas
beenaccepted[2]. In addition,a sequentialphonologicalmodelis ideally suitedfor a
HiddenMarkov Model recognitionframework, seeSection4.

In this paperwe follow the ideasof theMovement-Holdmodel,but focusonly on
themovementtypesandthelocationalfeatures.We alsoaddwrist rotationmovements
andthedirectionsin which themovementstake placeto thedescriptionof themove-
menttypes.In theMovement-Holdmodelwrist rotationsanddirectionsof movement
areimplicit in thearticulatorybundles;however we foundit impracticalto modelour
recognitionframework in thisway.
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In Table1 andFigure1 we give a partial overview of the differentdescriptionsof
movementsandlocationsthatweused.In addition,thelocationscanbemodifiedwith
thedistancefrom thebody, andwith theverticalandhorizontaldistancefrom thebasic
location.

If a locationdoesnot touchthebody, it canbeprefixedwith oneof thesedistance
markers:p (proximal),m (medial),d (distal),or e (extended),in orderof distanceto the
body. If a locationis centeredin front of thebody, thedistancemarker is suffixedwith
a 0. If the locationis at thesideof thechest,thedistancemarker is suffixedwith a 1,
andif thelocationis to theright (or left) of theshoulder, thedistancemarker is suffixed
with a 2. For example,d-1-TR meansa locationa comfortablearm’s lengthaway from
the right sideof the trunk (torso). Furthermarkersdescribethe vertical offset to the
basiclocationandwhetherthelocationis on thesamesideor oppositesideof thebody
asthehand.Thesearedescribedin detailin [7].

Movement Transcriptionsused
straight ���������	��
 , ����������	����� , ������������� , ��������� , �������� ��! , ������"�#%$�&�! ,�������'�����(���	��
 , �)����'�����("�#*$+&�!,���	��

shortstraight �����-.&�����!/��� , �����-.&�����!,�'�����
circle in vertical
plane

��0	1.243

wrist rotation �65�� ���	��
 , �65�� �7���	�+�8� , �65�� ��� , ��5�� �������

Table1: Partial list of movements.Notethatthedescriptionof themovementsdeviatesfrom the
approachusedby theMovement-Holdmodel.

MO

CN

NS

FHiFH %iFH

%iCNiCN

CH

ST

TR

AB
ABu

%iST

Figure1: Partial list of bodylocationsusedin theMovement-HoldModel
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3.3 Phonological Processes
S.Liddell andR. Johnsonalsodescribeseveralphonologicalprocessesin ASL [7].

A phonologicalprocesschangesthe appearanceof an utterancethroughwell-defined
rules in phonology, but doesnot changethe meaningof the utterance. In order to
achieverobustness,a recognitionsystemmustbeableto copewith suchprocesses.

The mostbasic,andat the sametime alsomostimportantphonologicalprocessis
calledmovementepenthesis. It consistsof theinsertionof extra movementsbetween
two adjacentsigns,andit is causedby the physicalcharacteristicsof sign languages.
For example,in the sequence“f atherread,” the sign for “f ather” is performedat the
forehead,and the sign for “read” is performedin front of the trunk. Thus,an extra
movementfrom theforeheadto thetrunk is insertedthatdoesnot exist in eitherof the
two signs’lexical forms(Figure2).

Figure2: Movementepenthesis.Thearrow in themiddlepictureindicatesanextra movement
betweenthesignsfor “FATHER” and“READ” thatis notpresentin their lexical forms.

Movementepenthesisposesaproblemfor ASL recognizers,becausetheappearance
of themovementdependsonwhichtwo signsappearin sequence.Wehandlethisprob-
lem by modelingsuchmovementsexplicitly. Ideally, thesemovementsshouldbecap-
turedby thesamephonemesasweusefor themovementswithin signs.Unfortunately,
epenthesismovementsarenot aswell-definedandresearchedasthe movementsthat
constitutetheactualsigns.Therefore,we chooseto modeleachepenthesismovement
asa separatephonemefor thetimebeing.We donotyet modelany otherphonological
processesin ASL, suchashold deletionandmetathesis(which allows for swappingof
theorderof segmentsundercertaincircumstances).

We now coverbriefly how to modelASL phonemeswith HiddenMarkov Models.

4 Hidden Markov Models
Therearealwaysstatisticalvariationsin theway thathumansperformmovements,

even if they performtwo identicalsignssuccessively. A recognitionsystemmustbe
able to handlethesevariations. Hidden Markov Models (HMMs) are a state-based
statisticalmodelespeciallysuitablefor modelinga signalover time. They have been
usedsuccessfullyin speechrecognition,andmorerecentlyin gestureandsignlanguage
recognition.

The underlyingideais to have a distinct HMM for eachphoneme.TheseHMMs
aretrainedto yield themaximumprobabilityfor thesignalrepresentingtheirrespective
phoneme.For the recognitiontask,computethe probabilitiesthat partsof the input
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signal could have beengeneratedby the HMMs and pick the most probableHMM
asthe recognizedphoneme.For a thoroughdiscussionof HMM theorysee[10], and
for a thoroughdiscussionof thedetailsof usingHMMs for signlanguagerecognition,
see[13, 14].

4.1 Phoneme Modeling with HMMs
Training HMMs that representmovementandhold phonemesis a straightforward

process.However, from lookingat thephonetictranscriptionsof ASL signs,it becomes
clear that many signsstartwith a movementphoneme(that is, they follow the MH,
MMMH, or MHMH pattern).Sinceweclassifymovementphonemesonly by their type
anddirectionof movement,whichcantakeplaceanywherein thesigningspace,wedo
not geta goodestimateof a sign’s locationuntil we encounterthefirst hold segment.
Particularly for the MMMH pattern,this canleadto unnecessaryclassificationerrors
for thesign’s location.

Thisproblemcanbealleviatedby addingHMMs thatdonothavea phoneticequiv-
alentin theMovement-Holdmodel. Their solepurposeis to obtainanestimateof the
locationat thebeginningof signsthatbegin with amovementsegment.They arediffer-
ent from hold modelsin that they do not requirethehandto remainstationaryfor any
lengthof time.

TrainingtheHMMs representingtheepenthesisphonemesis morecomplicatedthan
training the movementand hold HMMs. The reasonis that there are many more
epenthesismodelsthan modelsof any other kind of phonemes.In the worst case,
theremustbeanepenthesisphonemefrom every locationin thesigningspaceto every
otherlocationin thesigningspace.Justfor the20 majorbodylocationsdefinedby the
Movement-Holdmodel,thiswouldyield 9(:<;>=@?A:B: phonemes.

Fortunately, wecanreducethenumberof epenthesismodelsby takingadvantageof
thesimilaritiesbetweenmany of theepenthesisphonemes.For example,for practical
purposes,thereis no differencebetweena movementfrom the side of the forehead
to the chest,andthe centerof the foreheadto the chest(iFH to CH, andFH to CH,
respectively). Thus,thesetwo phonemescanbecoveredby a singlemodel. Applying
suchoptimizationsallowedusto cut thenumberof epenthesismodelsinto half. Future
work shouldexpressepenthesismodelscompletelyin termsof the movementsthat
alreadyexist in ASL, soasto amelioratethisproblemevenmore.

The single greatestadvantageof breaking down the signs into the individual
phonemesis that it limits thenumberof HMMs thatneedto be trained.Thereis only
a finite numberof distinctphonemes,whereasthenumberof possibilitiesto combine
theminto wordsis practicallyunlimited.Althoughthereis no realbenefitin modeling
phonemesasopposedto wholesignsfor small-scaleapplications,it is theonly way to
makelarge-scaleapplicationspossible.Thebenefitsbecomeparticularlyobviouswhen
context-dependentHMMs areused.Usinga HMM for everypossiblesequenceof two
phonemesis tractable.Usinga HMM for every possiblesequenceof two signsis not,
evenif thevocabulary is assmallas150signs,becausethenumberof requiredmodels
is thesquareof thevocabularysize.
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4.2 Local Features and Global Features
Recognitionperformancedependssignificantly on the featuresthat are extracted

from the input signal. Somefeaturesthatwe useareextremelylocalized;that is they
characterizethesignalonly in the immediatevicinity of a specificpoint in time. Both
thepositionof thehandsin thesigningspaceandthevelocitiesof thehandsareexam-
plesof local features.They do not revealanythingaboutthebehavior of thesignaljust
ahundredmillisecondsfrom thetimeatwhich they aresampled.

But particularlyASL movementphonemesdescribegeometricpropertiesof thesig-
nal on a moreglobal level, suchasmovementsalonga straightline, or alongan arc.
Thus,it is desirableto havea quantitativemeasureof someof thesignal’sglobalprop-
erties.An exampleof suchameasureis how well thesignalfits a line or aplanewithin
aspecifictime interval.

This measurecanbeeasilycomputedby estimatingthecovariancematrix over the
pointsin the time interval andtaking its eigenvalues. If the largesteigenvalueis sig-
nificantly larger thanthe othertwo eigenvalues,the signalfits a line well. If the two
largesteigenvaluesarenearlyequallylarge,andsignificantlylarger thanthe smallest
eigenvalue,thesignalfits a planewell. Theserelationshipscanbequantifiedwith two
numbersby taking the squareroots of the two largesteigenvalues,and normalizing
themsuchthatthesumof thesquarerootsof all threeeigenvaluesis 1.

5 Experiments
We designedseveralexperimentsto verify thatbreakingdown signsinto phonemes

is a viable approachin ASL recognition. Our vocabulary consistedof 22 signswith
the phonetictranscriptionslisted in Table3 in AppendixA. Note that the phonemes
beginningwith an“M” aremovementphonemes,phonemesbeginningwith an“H” are
hold phonemes,and“phonemes”beginningwith an“S” denotetheadditionalHMMs
mentionedin Section4.1alongwith thelocationsthey areto estimate.

We collected499 sentencesof different length, with 1610 signsoverall, with an
AscensionTechnologiesMotionStarTM magnetictrackingsystem.This systemgave us
three-dimensionalpositionsandorientationsof the handsandotherbody partsat 60
framespersecond.

We split the 499sentencesinto 400 trainingexampleswith 1292signsand99 test
exampleswith 318 signs. No part of the testexampleswasusedfor any part of the
trainingof theHMMs. Weconductedthreedifferenttypesof experiments,oneof which
wasa control experimentthat measuredthe performanceof word-level HMMs along
with movementepenthesismodeling. This control experimentwassimilar to the one
conductedin [14]. Theothertwo experimentstestedtheperformanceof thephoneme-
level HMMs, onewithoutglobalfeatures,andonewith globalfeatures.

To keeptheexperimentssimple,we lookedonly at featuresextractedfrom theright
hand. In all cases,the local featureswerethe right hand’s positionin space,relative
to the signer’s baseof the spine,andthe right hand’s velocities. The global features
consistedof the two largestnormalizedeigenvalues,asdescribedin Section4.2. The
resultsaregiven in Table2. We useword accuracy asour evaluationcriterion. It is
computedby subtractingthe numberof insertionerrorsfrom the numberof correctly
spottedsigns.
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The resultsindicatethat the phoneme-level HMMs did not perform significantly
worsethantheword-levelHMMs. They alsoindicatethatglobalfeaturesareavaluable
characterizationof the signal. Both the breakdown of signsinto movementandhold
phonemes,andtheresearchonglobalfeatureslook promising.

Typeof experiment Wordacc. Details
word-level 91.82% H=296,D=10,S=12,I=4 N=318
phoneme-level, local features 88.36% H=286,D=14,S=18,I=5, N=318
phoneme-level,globalfeatures 91.19% H=294,D=8, S=16,I=4, N=318

Table2: Resultsof recognitionexperiments. H denotesthe numberof correctsigns,D the
numberof deletionerrors,S thenumberof substitutionerrors,I thenumberof insertionerrors,
andN thetotalnumberof signsin thetestset.

6 Discussion and Future Work
We showedthatit is possiblefor phoneme-level HMMs to achieveASL recognition

performancecomparableto word-level HMMs. However morework needsto bedone
to establishthevalidity of theresults,they arealreadyvery important.Theentireques-
tion of whetherit is possibleto scaleASL recognitionto largevocabularieshingeson
this result. We alsoshowedthatanalyzingtheinput streamfor global featureshasthe
potentialto makea largeimpacton recognitionperformance.

Thereare,however, many questionsthatstill needto beresolved.In theexperiments
describedin this paper, we have looked only at the right hand. The left handshould
remainas independentfrom the right handas possible,both from a linguistic point
of view anda technicalpoint of view. Liddell andJohnsonarguethat the two hands
aremoreor lessindependentfrom eachother, aswell asthat thearticulatorybundles
arerelatively independentfrom eachother[7]. Froma technicalpoint of view, if the
two handsweredependenton eachother, it would causea combinatorialexplosionof
differentphonemes.It seemsthat the answerto thesequestionslies in usingseveral
HMMs in parallel, either independently, or as CoupledHiddenMarkov Models [1].
Thehandconfigurationandorientationfeaturescouldbeincorporatedin asimilarway.

Futureresearchshouldalsolookatwaystoexpresstheepenthesisphonemesin terms
of phonemesthatoccurduringregularsigns,soasto cutdownonthenumberof distinct
phonemes.Finally, trainingbiphoneor triphonecontext-dependentHMMs, analogous
to speechrecognition,mightbeawayto improverecognitionperformanceevenfurther.
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A Phonetic Transcriptions

Sign Transcription
I S- C p-0-CH D M- C ����� �7���	���8� D H- C CH D
man H- C FH D M- C ����� ������� D M- C ����� �����	����� D H- C CH D
woman H- C CN D M- C ����� ������� D M- C ����� �����	����� D H- C CH D
father S- C p-0-FH D M- C �������7���	���8� D M- C ���������	��
 D M- C ����������	����� D

H- C FH D
mother S- C p-0-CN D M- C �������7���	���8� D M- C ���������	��
 D M- C ����������	����� D

H- C CN D
interpreter S- C m-1-CH D M- C �65�� �'����� D M- C �65������ D M- C �65�� �'����� D S- C p-

1-CH D M- C ������������� D H- C m-1-TR D
teacher S- C m-1-CH D M- C �65�� ���	��
 D M- C �65�� �7���	����� D M- C �65�� ���	��
 D S-

C p-1-CH D M- C ������������� D H- C m-1-TR D
chair S- C m-1-TR D M- C ����� -A&�����!,������� D M- C �)��� -.&����!/��� D M-

C ����� -A&�����!,������� D H- C m-1-TR D
try S- C p-1-TR D M- C ����� �'�����B"�#*$+&�!,���	��
 D H- C d-2-AB D
inform H- C iFH D M- C ����� �'�����("�#%$�&�!,���	��
 D H- C d-2-TR D
sit S- C m-1-TR D M- C ����� -.&�����!,�'����� D H- C m-1-TR D
teach S- C m-1-CH D M- C ��5�� ���	�+
 D M- C ��5�� �7���	���8� D M- C �65�� ���	��
 D

H- C m-1-CH D
interpret S- C m-1-CH D M- C ��5�� ������� D M- C �65������ D M- C �65�� �'����� D H-

C m-1-CH D
get S- C d-0-CH D M- C �������7���	���8� D H- C p-0-CH D
lie S- C iCN D M- C ��������� ��! D H- C %iCN D
relate S- C m-1-TR D M- C ��������� ��! D H- C m-0-TR D
dont-mind H- C NS D M- C ������'�����B"�#*$+&�!,���	��
 D H- C m-1-TR D
good H- C MO D M- C ����� �'�����(���	��
 D H- C m-0-CH D
gross S- C ABu D M- C ��0	1 243 D M- C ��0	1 243 D H- C ABu D
sorry S- C %iSTu D M- C ��0	1 2E3 D M- C ��0	1 2E3 D H- C %iSTu D
stupid S- C p-0-FH D M- C ����� �7���	���8� D H- C FH D
beautiful S- C p-0-FH D M- C ��0	1 2E3 D H- C p-0-iFH D

Table3: Phonetictranscriptionsof the22 signvocabulary. Thephonemesbeginningwith “M”
denotemovements,thephonemesbeginningwith “M” denoteholds,andthephonemesbeginning
with “S” denotespecialHMMs designedto estimatelocationsat thebeginningof asign.
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B Additional Notes
Thefollowing pointscameup aftertheoriginalpaperdeadline,andasa consequencedid not

make it into thepaperitself:

F Thetranscriptionsfor “teacher”and“interpreter”in AppendixA areincorrect.TheS- G p-
1-CH H segmentsshouldbereplacedwith S- G m-1-CH H . Thischangeimprovedrecognition
accuracy from 91.19%to 91.82%,whichis identicalto theaccuracy achievedby theword-
level HMMs.

F As describedin Section4.1,wehadto addsegmentsthatarenot in theoriginaldescription
of theMovement-Holdmodel.In AppendixA thesearedenotedby theletter“S.” It seems
that thesesegmentsarevery similar in function to the “X” segmentsthat appearin the
latest,asof yetunpublished,descriptionof theMovement-Holdmodel.
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