More on Hidden Markov Models and their Applications

Lecture by Margrit Betke

Reading: Rabiner'89, Vogler'98

Artificial Intelligence CS 440/640

Four Classes of HMM Outputs

b _j (0)	Scalar Output	Vector Output
Symbols:	e.g., word	e.g., weather info
Discrete Event Space	b _j ("baby")	b _j ([sunny, windy])
Numerical Measurements:	e.g., temperature	e.g., 3D position
Continuous Event Space	b _j (60 F)	b _j ([x,y,z])

Last class: Discrete Scalar Output

b _j (0)	Scalar Output	Vector Output
Symbols:	e.g., word	e.g., weather info
Discrete Event Space	b _j ("baby")	b _j ([sunny, windy])
Numerical Measurements:	e.g., temperature	e.g., 3D position
Continuous Event Space	b _j (60 F)	b _j ([x,y,z])

Today: Continuous Output

b _j (0)	Scalar Output	Vector Output
Symbols:	e.g., word	e.g., weather info
Discrete Event Space	b _j ("baby")	b _j ([sunny, windy])
Numerical Measurements:	e.g., temperature	e.g., 3D position
Continuous Event Space	b _j (60 F)	b _j ([x,y,z])

Today: Continuous Output

b _j (0)	Scalar Output	Vector Output
Symbols: Discrete Event Space	e.g., word b _j ("baby")	e.g., weather info b _j ([sunny, windy])
Numerical Measurements: Continuous Event Space	e.g., temperature b _j (60 F) Density Function, e.g., Normal/Gaussian: N(rand. variable,mean,variance)	e.g., 3D position b _j ([x,y,z]) N(rand. variable, mean, variance matrix)

Mini-Intro to Estimation

Why needed?

We need to estimate the output probabilities when we train a hidden Markov model.

Scalar world: Given x_1 , ..., x_n measurements (= samples) Average $\bar{x} = 1/T (x_1 + ... + x_n)$ called "sample mean" Sample variance: $s^2 = 1/T \Sigma_{t=1 \text{ to } n} (x_t - \bar{x})^2$

(\bar{x} , s^2) are good estimates for (μ , σ^2) of a normal density function (Gaussian) N

Mini-intro to Estimation

Vector World: Sample mean: $\bar{\mathbf{x}} = 1/T (\mathbf{x}_1 + ... + \mathbf{x}_n)$ Sample variance: $s^2 = 1/T \Sigma_{t=1 \text{ to } n} (\bar{\mathbf{x}}_t - \mathbf{x}) (\bar{\mathbf{x}}_t - \mathbf{x})^T$

 $(\bar{\textbf{x}},\,s^2\,)\,$ are good estimates for $(\mu,\,U)$ of a normal density function (Gaussian) N

Bivariate Gaussian

<u>https://en.wikipedia.org/wiki/Multivariate_normal_distribution</u>

Artificial Intelligence CS 440/640

Image credit: User Bscan, Wikipedia

Vogler & Metaxas

- 53 sign vocabulary, e.g., college, friend, name, I, you, what, why, have, give, win, deaf, happy, if, for
- Features: 3D wrist position, wrist orientation, velocities

Isolated Word recognition with HMMs:

10,000 experiments, ³/₄ training, ¹/₄ testing per sign (178 examples)

Using 3D wrist position only: 98.4% (+/- 1%) mean performance Adding wrist orientation: 98.2% (+/- 0.1%) Using just velocities: 96.9% (+/-1.2%)

Vogler & Metaxas

Continuous ASL Recognition:

- 486 ASL sentences: 389 training, 97 testing
- Recognition rate: 87%

Left-to-right HMMs: Transitions occur only left to right, never backward

Output probabilities b:

Single Gaussians (= no mixtures) with diagonal covariance matrices

Vogler & Metaxas

Difficulties:

Feature selection: Variability, reliability, information content Intra and inter signer variability (e.g., length of sign) Gaussian densities sometimes not good model

Speed up of Recognition:

Add "Beam searching" to Viterbi Algorithm:

Threshold on $d_t(i)$. If too low, partial path probability too low. Probably does not contribute to most likely path

-> Set to zero.

