More on Hidden Markov Models and their Applications

Lecture by Margrit Betke

Reading: Rabiner'89, Vogler'98

Four Classes of HMM Outputs

$\mathrm{b}_{\mathrm{j}}(0)$	Scalar Output	Vector Output
Symbols: Discrete Event Space	e.g., word $\mathrm{b}_{\mathrm{j}}($ "baby")	e.g., weather info $\mathrm{b}_{\mathrm{j}}([$ sunny, windy $])$
Numerical Measurements: Continuous Event Space	e.g., temperature $\mathrm{b}_{\mathrm{j}}(60 \mathrm{~F})$	e.g., 3 D position $\mathrm{b}_{\mathrm{j}}([\mathrm{x}, \mathrm{y}, \mathrm{z}])$

Last class: Discrete Scalar Output

$b_{j}(0)$	Scalar Output	Vector Output
Symbols: Discrete Event Space	e.g., word $b_{j}($ "baby" $)$	e.g., weather info $b_{j}([$ sunny, windy $])$
Numerical Measurements: Continuous Event Space	e.g., temperature $b_{j}(60 F)$	e.g., $3 D$ position $b_{j}([x, y, z])$

Today: Continuous Output

$\mathrm{b}_{\mathrm{j}}(0)$	Scalar Output	Vector Output
Symbols: Discrete Event Space	e.g., word $\mathrm{b}_{\mathrm{j}}($ "baby")	e.g., weather info $\mathrm{b}_{\mathrm{j}}([$ sunny, windy $])$
Numerical Measurements: Continuous Event Space	e.g., temperature	
$\mathrm{b}_{\mathrm{j}}(60 \mathrm{~F})$		

Today: Continuous Output

$\mathrm{b}_{\mathrm{j}}(0)$	Scalar Output	Vector Output		
Symbols: Discrete Event Space	e.g., word $\mathrm{b}_{\mathrm{j}}($ "baby")	e.g., weather info $\mathrm{b}_{\mathrm{j}}([$ sunny, windy $])$		
	e.g., temperature			
$\mathrm{b}_{\mathrm{j}}(60 \mathrm{~F})$			\quad	e.g., 3D position
:---:				
$\mathrm{b}_{\mathrm{j}}([\mathrm{x}, \mathrm{y}, \mathrm{z}])$				

Mini-Intro to Estimation

Why needed?

We need to estimate the output probabilities when we train a hidden Markov model.

Scalar world: Given x_{1}, \ldots, x_{n} measurements (= samples)
Average $\bar{x}=1 / T\left(x_{1}+\ldots+x_{n}\right)$ called "sample mean"
Sample variance: $\quad s^{2}=1 / T \Sigma_{t=1 \text { ton }}\left(x_{t}-\bar{x}\right)^{2}$
$\left(\bar{x}, \mathrm{~s}^{2}\right)$ are good estimates for (μ, σ^{2}) of a normal density function (Gaussian) N

Mini-intro to Estimation

Vector World:
Sample mean: $\overline{\mathbf{x}}=1 / T\left(\mathbf{x}_{1}+\ldots+\mathbf{x}_{\mathrm{n}}\right)$
Sample variance: $s^{2}=1 / T \Sigma_{t=1 \text { to }}\left(\overline{\mathbf{x}}_{\mathrm{t}}-\mathbf{x}\right)\left(\overline{\mathbf{x}}_{\mathrm{t}}-\mathbf{x}\right)^{\top}$
$\left(\overline{\mathbf{x}}, \mathrm{s}^{2}\right)$ are good estimates for (μ, U) of a normal density function (Gaussian) N

Bivariate Gaussian

- https://en.wikipedia.org/wiki/Multivariate normal distribution

Vogler \& Metaxas

- 53 sign vocabulary, e.g., college, friend, name, I, you , what, why, have, give, win, deaf, happy, if, for
- Features: 3D wrist position, wrist orientation, velocities

Isolated Word recognition with HMMs:
10,000 experiments, $3 / 4$ training, $1 / 4$ testing per sign (178 examples)

Using 3D wrist position only: $98.4 \%(+/-1 \%)$ mean performance Adding wrist orientation: 98.2% (+/- 0.1\%)
Using just velocities: 96.9% (+/-1.2\%)

Vogler \& Metaxas

Continuous ASL Recognition:

- 486 ASL sentences: 389 training, 97 testing
- Recognition rate: 87%

Left-to-right HMMs: Transitions occur only left to right, never backward

Output probabilities b:
Single Gaussians (= no mixtures) with diagonal covariance matrices

Vogler \& Metaxas

Difficulties:

Feature selection: Variability, reliability, information content
Intra and inter signer variability (e.g., length of sign)
Gaussian densities sometimes not good model

Speed up of Recognition:
Add "Beam searching" to Viterbi Algorithm:
Threshold on $d_{\mathrm{t}}(\mathrm{i})$. If too low, partial path probability too low. Probably does not contribute to most likely path
-> Set to zero.

