
Game Playing with AI

Deterministic vs. Stochastic Games, Partially
Observable Games, Deep Learning

Lecture by Margrit Betke

Artificial Intelligence CS 640

Chess 16 pieces per player:
1 king
1 queen
2 rooks
2 bishops
2 knights
8 pawns8 x 8 board

Pawn, rook, knight, bishop, queen, king
IBM Deep Blue static evaluator:
Pawn: 1
Knight: 3, Bishop: 3.25
Rook: 5
Queen: 9
Piece count
King safety Abstract strategy two-player game

Artificial Intelligence CS 640 Image Credits: Wikipedia: Bubba73, F. Camaratta

Deterministic Games

• Chess
• Go

Can be represented by a “Deterministic Game Tree”

Minimax Procedure uses “deterministic static evaluation scores”

Artificial Intelligence CS 640

Stochastic Games

Combine luck & skill

Luck?

Probability of outcome when throwing
one die or several dice

Artificial Intelligence CS 640 Image credit: S. Green Wikipedia

Stochastic Games

Combine luck & skill

Game tree includes chance nodes
 maximizer nodes
 minimizer nodes

Minimax Procedure uses “expected static evaluation scores”

Artificial Intelligence CS 640

Chance Nodes

Example: 2 dice are used
 Die 1
 1 2 3 4 5 6
 1
 2
 Die 2 3 6x6 = 36 ways to roll two dice
 4
 5
 6

Artificial Intelligence CS 640

Chance Nodes

6 doubles: Probability = 1/36
 Die 1
 1 2 3 4 5 6
 1 (1,1)
 2 (2,2)
 Die 2 3 (3,3)
 4 (4,4)
 5 (5,5)
 6 (6,6)

Artificial Intelligence CS 640 Image credit: Battle Forge Games

Chance Nodes
Non-doubles: Probability = 2/36 = 1/18
(2,4) means the same as (4,2)
 Die 1
 1 2 3 4 5 6
 1 (1,1)
 2 (2,2) (2,4)
 Die 2 3 (3,3)
 4 (4,2) (4,4)
 5 (5,5)
 6 (6,6)

Artificial Intelligence CS 640 Image credit: Dice World

Chance Nodes
How many non-doubles?
Upper triangle
 Die 1
 1 2 3 4 5 6
 1 (1,1) (1,2) (1,3) …
 2 (2,2) …
 Die 2 3 (3,3) …
 4 (4,4) (4,5) (4,6)
 5 (5,5) (5,6)
 6 (6,6)

Artificial Intelligence CS 640

Chance Nodes
How many non-doubles?
5+4+3+2+1 = 15 rolls
 Die 1
 1 2 3 4 5 6
 1 (1,1) (1,2) (1,3) …
 2 (2,2) …
 Die 2 3 (3,3) …
 4 (4,4) (4,5) (4,6)
 5 (5,5) (5,6)
 6 (6,6)

Artificial Intelligence CS 640

Chance Nodes
Total number of distinct rolls:
6 doubles + 15 non-doubles
 Die 1
 1 2 3 4 5 6
 1 (1,1) (1,2) (1,3) …
 2 (2,2) …
 Die 2 3 (3,3) …
 4 (4,4) (4,5) (4,6)
 5 (5,5) (5,6)
 6 (6,6)

Artificial Intelligence CS 640

Chance Nodes
Probability of event space (= all rolls) must be one.
6 doubles + 15 non-doubles: Prob(all) = 1/36 *6 + 1/18 *15 = 1
 Die 1
 1 2 3 4 5 6
 1 (1,1) (1,2) (1,3) …
 2 (2,2) …
 Die 2 3 (3,3) …
 4 (4,4) (4,5) (4,6)
 5 (5,5) (5,6)
 6 (6,6)

Artificial Intelligence CS 640

Backgammon -- Setup
Two player board game. The
board is grouped into four
quadrants of six triangles each.

Artificial Intelligence CS 640

The points are numbered for either player starting in
that player’s home board.
The outermost point is the twenty-four point,
which is also the opponent’s one point.

Each player has fifteen checkers of his own color.
The initial arrangement of checkers is:
two on each player’s twenty-four point, five on each
player’s thirteen point, three on each player’s eight
point, and five on each player’s six point.

Both players have their own pair of dice and a dice
cup used for shaking.

Outer
boards

White home board

Red home
 board

Illustrations from GNU manual

Backgammon – Goal of the Game

The goal of the game is for a player
to move all of their checkers into
their own home board and then
bear them off.

The first player to bear off all their
checkers wins the game.

Artificial Intelligence CS 640

Direction of movement of White’s checkers. Red’s checkers
move in the opposite direction

Illustrations from GNU manual

Backgammon Movements

• Start: The player throwing the
higher number moves his/her
checkers according to the numbers
showing on both dice.

• A checker may be moved only to a
triangle that is unoccupied or is
occupied by one or more of the
player's own checkers (or that is
occupied by exactly one opposing
checker).

• The numbers on the two dice
constitute separate moves.

Artificial Intelligence CS 640

White opens the game with 5,3:
Two (of many) movement choices

Illustrations from GNU manual

Backgammon -- Game Tree

White’s Movement Choices:

Move 1: Move checker 1 to A

Move 2: Move checker 2 to B, and checker 3 to B

Move 3: Move checker 1 to C, and checker 3 to B

Move 4: Move checker 1 to C, and checker 4 to D

Move 5: …

Artificial Intelligence CS 640

1/36
1, 1

1/18
5, 3

1/18
1, 2

1/36
6, 6

1/36
1, 1

Move 3Move 2White Move 1 Move 4 Move ..

Checker 1A

Checker 3
Checker 2

B

CChecker 4

D1/18
1, 2

1/36
6, 6

Maximizer’s (white)
movement choices
 (say Move 2)

Minimizer’s (red)
movement choices (say Move 2:
Two checkers from F to C & E)

Minimizer (red)
casts dice (say 1,2)

Maximizer (white)
casts dice (say 5,3)

…

…

…

…

Move 2

EF

Static Values

Illustrations from GNU manual

Game Playing Algorithm for Stochastic Games

Minimax score for deterministic games
-> Expected minimax score(node) for chance games

= static value(node) if node at horizon

= max {expected minimax score(node, action)} if maximizer choice at node

= min {expected minimax score(node, action)} if minimizer choice at node

= Σ Prob(r) expected minimx score(node, r) if node is chance node

Artificial Intelligence CS 640

actions

actions

r
r represents possible dice roll (= chance event), Prob(r) = likelihood of event

.

Game Playing Algorithm for Stochastic Games

b = branching factor, n = # possible dice-roll outcomes, m = depth of tree:
Expected minimax score (node) for chance games

= static value(node) if node at horizon

= max {expected minimax score(node, action)} if maximizer choice

= min {expected minimax score(node, action)} if minimizer choice

= Σ Prob(r) expected minimx score(node, r) if node is chance node

Artificial Intelligence CS 640

actions

actions

r

O(bmnm)

.

Game Playing Algorithm for Stochastic Games

• b = branching factor, n = # possible dice-roll outcomes, m = depth of
tree:

• Game tree size explodes quickly => Small look-ahead depth used

• Can use alpha-beta pruning if lower & upper bounds on scores known
• Or: Use “Roll out” technique = Monte Carlo Simulation

Artificial Intelligence CS 640

O(bmnm)

Analysis Technique “Roll out” = “Monte Carlo
Simulation”

Produce static scores of possible board positions by preprocessing =
“Monte Carlo Simulation”
by playing thousands of games against itself

Resulting win percentage = Good approximation of value of a board
position (static score)

Artificial Intelligence CS 640

TD-GAMMON

• Gerry Tesauro, IBM, created TD-GAMMON (1992)
• Competitive with top human players
• Look-ahead depth of 2 or 3
• Static evaluator used neural nets
• 1st “real” application of Reinforcement Learning
• Learning: > 1 million training games
• TD = “temporal difference learning” = Monte Carlo sampling &

pruning

Artificial Intelligence CS 640

GNU Backgammon

More details on rules and open source code for GNU backgammon at
https://www.gnu.org/software/gnubg/manual/gnubg.pdf

GNU Backgammon is a world class opponent and rates at around 2100
on FIBS, the First Internet Backgammon Server (at its best, it is in the
top 5 of over 6000 rated players there).

GNU Backgammon can be played on numerous other on-line
backgammon servers.

Artificial Intelligence CS 640

https://www.gnu.org/software/gnubg/manual/gnubg.pdf

Famous recent AI Game Playing Events

• Go
• StarCraft

Artificial Intelligence CS 640

Go
• Deterministic game but highly challenging for

AI because of large branching factor
• 19x19 board
• Monte Carlo rollouts used
• In 2012: AI systems could only play at master

level on reduced 9x9 board
• In 2016: Google’s AlphaGo

• Defeated Korean grandmaster Lee Sedol
• 4 wins, one loss, drama in game 4
• Last game: AlphaGo made an early mistake (because human made an unlikely genius

move), had to dig out of its hole, game balanced on knife’s edge

Artificial Intelligence CS 640 Image credit: Lee Jin-man, AP

o Board:
 Chess: 8 x 8 (64 squares), Go: 19x19 (361 intersection points)
o Number of first moves:

▪ Chess: 20 white moves x 20 black moves = 400 possible first moves
▪ Go: 361 white x 360 black = 129,960 (due to symmetry, 32,490 first

moves)
o Number of possible games (i.e., leaf nodes in game tree):

▪ Chess: 10120

▪ Go: 10174

▪ Number of atoms in the universe: 1080

Chess versus Go

https://herculeschess.com/how-many-chess-games-are-possible/
https://www.quora.com/How-does-the-complexity-of-Go-compare-with-Chess

https://herculeschess.com/how-many-chess-games-are-possible/
https://www.quora.com/How-does-the-complexity-of-Go-compare-with-Chess

StarCraft
• Stochastic game with large branching factor, many local optima in search

space
• Action space: ~1026
• Moves per game: 1,000’s
• In 2015: Artificial Intelligence and Interactive Digital Entertainment

Conference (AIIDE) 3 AI bots beaten by human
• In 2017: Sejong University competition: All AI bots beaten by humans
• In 2019: AlphaStar Demonstration (by DeepMind Technologies, owned by

Alphabet/Google): Won 10 games against humans, lost one. Uses “Deep
Reinforcement Learning” and “Imitation Learning”

Artificial Intelligence CS 640

Partially Observable Games

Deterministic
Lack of access to choices made by opponent
Example: Battleships: Players can only see their own pieces
http://en.battleship-game.org

Stochastic
Missing information is generated randomly
Examples: Card games: bridge, whist, hearts, various forms of pokers

Artificial Intelligence CS 640

http://en.battleship-game.org/

Card Games

Algorithm
• Consider all possible deals of the invisible cards
• Solve each as if it were a fully observable game
• Choose the move that has the best outcome averaged over all the

deals

Artificial Intelligence CS 640

Card Games

Algorithm
• Consider all possible deals of the invisible cards
• Solve each as if it were a fully observable game
• Choose the move that has the best outcome averaged over all the

deals
• P(s) = Probability that deal s occurs
• Next move = argmax { Σ P(s) MinimaxScore(s, action) }

Artificial Intelligence CS 640

actions s

Card Games

But: Often large number of deals
• E.g., Bridge: 2 hands, 13 cards each -> 10,400,600 deals
• Use Monte Carlo = repeated random sampling
• N samples of s1, …, sN deals:

 Next move = argmax { 1/N Σ P(si) MinimaxScore(si, action) }

Artificial Intelligence CS 640

actions si = 1

N

Solving Poker: Counterfactual Regret (CFR) Minimization
• Information sets are sets of states among which the acting player cannot distinguish, i.e., states

where the opponent was dealt different private cards
• When every player is playing with a best response strategy to each of the other player’s

strategies, the combination of strategies is called a Nash equilibrium. No player can expect to
improve a play by changing strategy unilaterally.

• Regret is the loss in utility an algorithm suffers for not having selected the single best
deterministic strategy, which can only be known in hindsight (thus counterfactual).

• A regret-minimizing algorithm is one that guarantees that its regret grows sublinearly over time,
and so eventually achieves the same utility as the best deterministic strategy.

• The key insight of CFR is that instead of storing and minimizing regret for the exponential number
of deterministic strategies, CFR stores and minimizes a modified regret for each information set
and subsequent action, which can be used to form an upper bound on the regret for any
deterministic strategy.

• An approximate Nash equilibrium is retrieved by averaging each player’s strategies over all of the
iterations, and the approximation improves as the number of iterations increases.

• Deep CFR uses deep neural networks to approximate the behavior of CFR: Brown et al., ICML 2019

Artificial Intelligence CS 440/640

https://arxiv.org/pdf/1811.00164.pdf

Learning Outcomes

Being able to
• explain the difference between a deterministic, stochastic, and

partially observable game
• sketch or traverse a sample the game tree for the three types of

games
• know how to compute an expected minimax score
• define Monte-Carlo rollouts
• explain Counterfactual regret minimization (at a high level)
• discuss some of the history of AI tackling Backgammon, Go, StarCraft,

and Poker

Artificial Intelligence CS 440/640

	Game Playing with AI��Deterministic vs. Stochastic Games, Partially Observable Games, Deep Learning
	Chess
	Deterministic Games
	Stochastic Games
	Stochastic Games
	Chance Nodes
	Chance Nodes
	Chance Nodes
	Chance Nodes
	Chance Nodes
	Chance Nodes
	Chance Nodes
	Backgammon -- Setup
	Backgammon – Goal of the Game
	Backgammon Movements
	Backgammon -- Game Tree
	Game Playing Algorithm for Stochastic Games
	Game Playing Algorithm for Stochastic Games
	Game Playing Algorithm for Stochastic Games
	Analysis Technique “Roll out” = “Monte Carlo Simulation”
	TD-GAMMON
	GNU Backgammon
	Famous recent AI Game Playing Events
	Go
	Slide Number 25
	StarCraft
	Partially Observable Games
	Card Games
	Card Games
	Card Games
	Solving Poker: Counterfactual Regret (CFR) Minimization
	Learning Outcomes

