Adversarial Search for Games

CS 640 Lecture Notes

Slides by Margrit Betke and Zheng Wu, based on materials from Patrick Winston's book Artificial Intelligence, and Wikipedia pages

Chess World Championship, November 9, 1985

\% fide_chess • Follow

녕 fide_chess 35 years ago, on November 9, 1985, Garry Kasparov won the 24th game of his second match against Anatoly Karpov and, at the age of 22, became the youngest-ever world chess champion.

Commemorating this day, the 13th world chess champion shared a great memory on his Twitter Kasparov63, he wrote:
"A short story about the night before this fateful game that made me the world champion 35 years ago today. The evening of November 8, I received two phone calls from two former world champions, both named Mikhail.
Mikhail Botvinnik, my old teacher, the Patriarch of Soviet chess was tvnicallv

Liked by imperator.rima and others 49 minutes AGo

16 pieces per player:

Chess

1 king
1 queen
2 rooks
2 bishops
8×8 board
2 knights
8 pawns

Pawn, rook, knight, bishop, queen, king

Abstract strategy two-player game

Initial Board and Moves of Pieces

Chess starting position. Squares are referenced using algebraic notation.

The black knight may move to any of eight squares (black dots). The white knight in this case is limited to two squares (white dots).

Chest History

- 1400 years ago from India \& Persia; through Arabia to Europe to US
- "Chaturanga" = army
- 1886: $1^{\text {st }}$ World Championship
- Current Champion: Magnus Carlsen of Norway
- Gary Kasparov was ranked world No. 1 for 255 months overall in his career (1985-2005)

Chess History \& AI

- In 1997 Gary Kasparov became the first world champion to lose a match to a computer under standard time controls, when he lost to the IBM supercomputer Deep Blue in a highly publicized match.

1996: Kasparov vs IBM DeepBlue

The 1996 match						
Game \#	White	Black	Result	Comment		
1	Deep Blue	Kasparov	$1-0$			
2	Kasparov	Deep Blue	$1-0$			
3	Deep Blue	Kasparov	$1 / 2-1 / 2$	Draw by mutual agreement		
4	Kasparov	Deep Blue	$1 / 2-1 / 2$	Draw by mutual agreement		
5	Deep Blue	Kasparov	$0-1$	Kasparov offered a draw after the 23rd move.		
6	Kasparov	Deep Blue	$1-0$			
	Result: Kasparov-Deep Blue: 4-2					

1997: Kasparov vs IBM DeepBlue

The 1997 rematch

Game \#	White	Black	Result	Comment
1	Kasparov	Deep Blue	1-0	
2	Deep Blue	Kasparov	1-0	
3	Kasparov	Deep Blue	$1 / 2-1 / 2$	Draw by mutual agreement
4	Deep Blue	Kasparov	$1 / 2-1 / 2$	Draw by mutual agreement
5	Kasparov	Deep Blue	$1 / 2-1 / 2$	Draw by mutual agreement
6	Deep Blue	Kasparov	1-0	
Result: Deep Blue-Kasparov: $3^{11 / 2-21 / 2}$				

1997: Kasparov vs IBM DeepBlue

Three matches ended in draws, with Kasparov appearing to weaken psychologically. Deep Blue went on to win the decisive sixth game, marking the first time in history that a computer defeated the World Champion in a match of several games. From this experience, particularly the second game of the match, Kasparov accused the IBM team of cheating. He suspected that a human player was used during the games to improve the strategic strength of the computer.

2016 Podcast with Kasparov: Change of

 heart in his views of this match"I did a lot of research - analysing the games with modern computers, also soul-searching and I changed my conclusions. I am not writing any love letters to IBM, but my respect for the Deep Blue team went up, and my opinion of my own play, and Deep Blue's play, went down. Today you can buy a chess engine for your laptop that will beat Deep Blue quite easily."

Famous AI Chess Programs

- IBM Deep Blue:
- IBM dismantled DeepBlue due to dispute
- Evaluation function: 8,000 parts
- Opening: 4,000 positions from 700,000 grand master games
- End game: 6 pieces left; dedicated database
- IBM did not let Kasparov know about database of games to study opponent
- Deep Fritz:
- httos://en.wikipedia.org/wiki/Fritz (chess)
- In 1995, Fritz 3 won the World Computer Chess Championship in Hong Kong
- March 2022: Fritz 18 Neuronal release

Machine vs. Human Chess Champions

https://srconstantin.wordpress.com/2017/01/28/performance-trends-in-ai/

State of the Art in 2023: Alpha-beta technique

- Stockfish (strongest CPU chess engine in the world) Rating: 3546
Open-source engine available for various desktop and mobile platforms. It is based on another open-source chess engine named Glaurung and uses the alpha-beta procedure.
- Hannibal

Rating: 3229
Hannibal is a Universal Chess Interface (UCI) engine that incorporates ideas from earlier engines, Twisted Logic, and LearningLemming. It uses the alpha-beta technique with many other chess specific heuristics and relies on a selective search method.

Board Games like Chess

Al system evaluates board configurations with a Static Evaluator :
Compute a number = Static Evaluation Score

The static evaluator checks the merit of a move by looking ahead (potentially several moves)

Minimax Procedure

- Static Evaluation Score reflects board quality in a single number
- $1^{\text {st }}$ player is the Maximizer: Player aiming for maximum score
- $2^{\text {nd }}$ player is the Minimizer: Player aiming for minimum score
- Game Tree: nodes, branches, depth
- Game = Path through Game Tree

16 pieces per player:

Chess

1 king
1 queen
2 rooks
2 bishops
8×8 board
2 knights
8 pawns

Abstract strategy two-player game

Pawn, rook, knight, bishop, queen, king IBM Deep Blue static evaluator: Pawn: 1
Knight: 3, Bishop: 3.25
Rook: 5
Queen: 9
Piece count
King safety

Minimax Procedure

- If at Look-ahead Depth:

Compute \& report static value

- Otherwise:
* If choice of minimizer: Recursive call on children \& Report minimum
* If choice of maximizer: Recursive call on children \& Report maximum

Examples on Black Board

a
 maximizer choice

				c	
d	e	f	g		
2	7	1	8	static values	

Lookahead depth: maximizer 2, minimizer 1

Examples on Black Board

			a			
				maximizer choice		
b		c		minimizer choice		
d	e	f	g			
2	7	1	8	static values		

Lookahead depth: maximizer 2, minimizer 1

Examples on Black Board

a
b c minimizer choice
d e f g maximizer choice
$\begin{array}{lllll}2 & 7 & 1 & 8 & \text { static values }\end{array}$
hi jk

20198
maximizer choice
static values

Lookahead depth: maximizer 2, minimizer 2

Examples on Black Board

a

b		c	minimizer choice		
d	e	f	g	maximizer choice	
z	7	1	8	static values	
h i	j k				
20	1	9	8		
static values					

Lookahead depth: maximizer 2, minimizer 2

Examples on Black Board

a

b
d $\quad \mathbf{e} \quad \mathrm{g}$
hileminimizer choice
maximizer choice
minimizer choice
maximizer choice

Examples on Black Board

a

b c minimizer choice
d $\quad \mathbf{e} \quad \mathrm{g}$
hi j m minimizer choice
maximizer choice
maximizer choice

Examples on Black Board

a

b c minimizer choice
d $\quad \mathbf{e} \quad \mathrm{g}$
hi j k minimizer choice

maximizer choice
maximizer choice

Opportunity to prune since $2<5$

Alpha-Beta Procedure

- Principle

If you have an idea that is surely bad, do not take time to see how truly awful it is

- Key idea

The best move score at some child node provides a bound at parent node, which can be used to possibly prune other children branches

Alpha-Beta Procedure

- Use alpha to keep track of the lower bound for the maximizer
- Use beta to keep track of the upper bound for the minimizer
- For the maximizing level, the node might update its alpha, and return its alpha
- For the minimizing level, the node might update its beta, and return its beta
- The alpha and beta can be interpreted as the minimum risk for the maximizer and minimizer, respectively

void Alpha_Beta_Procedure(alpha, beta, \&score)

1. If at the root, set alpha $=-\infty$, beta $=\infty$
2. If at the leaf, *score = static_evaluator(current_board, role); return
3. If at a minimizing level, until all children are examined or alpha $>=$ beta,
(a) Recursive call Alpha_Beta_Procedure on a child;
(b) If *score $<$ beta, beta $=$ *score; // update upper bound *score = beta;
4. Else if at a maximizing level, until all children are examined or alpha $>=$ beta,
(a) Recursive call Alpha_Beta_Procedure on a child;
(b) If *score $>$ alpha, alpha $=$ *score; // update lower bound *score = alpha;

Example from Patrick Winston's AI book

Maximizing Level

Minimizing Level

void Alpha_Beta_Procedure(alpha, beta, \&score)

1. If at the root, set alpha $=-\infty$, beta $=\infty$
2. If at the leaf, *score = static_evaluator(current_board, role); return
3. If at a minimizing level, until all children are examined or alpha $>=$ beta,
(a) Recursive call Alpha_Beta_Procedure on a child;
(b) If *score $<$ beta, beta $=$ *score; // update upper bound *score = beta;
4. Else if at a maximizing level, until all children are examined or alpha $>=$ beta,
(a) Recursive call Alpha_Beta_Procedure on a child;
(b) If *score $>$ alpha, alpha $=$ *score; // update lower bound *score = alpha;

Maximizing Level

Step 1

Minimizing Level

void Alpha_Beta_Procedure(alpha, beta, \&score)

1. If at the root, set alpha $=-\infty$, beta $=\infty$
2. If at the leaf, *score = static_evaluator(current_board, role); return
3. If at a minimizing level, until all children are examined or alpha $>=$ beta,
(a) Recursive call Alpha_Beta_Procedure on a child;
(b) If *score $<$ beta, beta $=$ *score; // update upper bound *score = beta;
4. Else if at a maximizing level, until all children are examined or alpha $>=$ beta,
(a) Recursive call Alpha_Beta_Procedure on a child;
(b) If *score > alpha, alpha $=$ *score; // update lower bound *score = alpha;

Maximizing Level
Step 2
Minimizing Level

void Alpha_Beta_Procedure(alpha, beta, \&score)

1. If at the root, set alpha $=-\infty$, beta $=\infty$
2. If at the leaf, *score = static_evaluator(current_board, role); return
3. If at a minimizing level, until all children are examined or alpha $>=$ beta,
(a) Recursive call Alpha_Beta_Procedure on a child;
(b) If *score $<$ beta, beta $=$ *score; // update upper bound *score $=$ beta;
4. Else if at a maximizing level, until all children are examined or alpha $>=$ beta,
(a) Recursive call Alpha_Beta_Procedure on a child; In loop
(b) If *score > alpha, alpha $=$ *score; // update lower bound *score = alpha;

Maximizing Level
Step 3
Minimizing Level

Maximizing Level
Step 4
Minimizing Level

Maximizing Level
Step 5
Minimizing Level

void Alpha_Beta_Procedure(alpha, beta, \&score)

1. If at the root, set alpha $=-\infty$, beta $=\infty$
2. If at the leaf, *score = static_evaluator(current_board, role); return
3. If at a minimizing level, until all children are examined or alpha $>=$ beta,
(a) Recursive call Alpha_Beta_Procedure on a child; (second child)
(b) If *score $<$ beta, beta $=$ *score; // update upper bound *score = beta;
4. Else if at a maximizing level, until all children are examined or alpha $>=$ beta,
(a) Recursive call Alpha_Beta_Procedure on a child;
(b) If *score $>$ alpha, alpha $=$ *score; // update lower bound *score = alpha;

Maximizing Level
Step 6
Minimizing Level

Maximizing Level

Step 7

Minimizing Level

void Alpha_Beta_Procedure(alpha, beta, \&score)

1. If at the root, set alpha $=-\infty$, beta $=\infty$
2. If at the leaf, *score = static_evaluator(current_board, role); return
3. If at a minimizing level, until all children are examined or alpha $>=$ beta,
(a) Recursive call Alpha_Beta_Procedure on a child;
(b) If *score $<$ beta, beta $=$ *score; // update upper bound *score = beta;
4. Else if at a maximizing level, until all children are examined or alpha $>=$ beta,
(a) Recursive call Alpha_Beta_Procedure on a child;
(b) If *score $>$ alpha, alpha $=$ *score; // update lower bound *score = alpha;

Maximizing Level

Step 8

Minimizing Level

void Alpha_Beta_Procedure(alpha, beta, \&score)

1. If at the root, set alpha $=-\infty$, beta $=\infty$
2. If at the leaf, *score = static_evaluator(current_board, role); return
3. If at a minimizing level, until all children are examined or alpha $>=$ beta, PRUNE now
(a) Recursive call Alpha_Beta_Procedure on a child;
(b) If *score $<$ beta, beta $=$ *score; // update upper bound *score = beta;
4. Else if at a maximizing level, until all children are examined or alpha $>=$ beta,
(a) Recursive call Alpha_Beta_Procedure on a child;
(b) If *score $>$ alpha, alpha $=$ *score; // update lower bound *score = alpha;

Maximizing Level
Step 9
Minimizing Level

2

void Alpha_Beta_Procedure(alpha, beta, \&score)

1. If at the root, set alpha $=-\infty$, beta $=\infty$
2. If at the leaf, *score = static_evaluator(current_board, role); return
3. If at a minimizing level, until all children are examined or alpha $>=$ beta,
(a) Recursive call Alpha_Beta_Procedure on a child;
(b) If *score $<$ beta, beta $=$ *score; // update upper bound *score = beta;
4. Else if at a maximizing level, until all children are examined or alpha $>=$ beta,
(a) Recursive call Alpha_Beta_Procedure on a child;
(b) If *score $>$ alpha, alpha $=$ *score; // update lower bound *score = alpha;

Maximizing Level
Step 10
Minimizing Level

2

Maximizing Level
Step 11
Minimizing Level

Maximizing Level
Step 12
Minimizing Level

Maximizing Level
Step 13
Minimizing Level

void Alpha_Beta_Procedure(alpha, beta, \&score)

1. If at the root, set alpha $=-\infty$, beta $=\infty$
2. If at the leaf, *score = static_evaluator(current_board, role); return
3. If at a minimizing level, until all children are examined or alpha $>=$ beta,
(a) Recursive call Alpha_Beta_Procedure on a child;
(b) If *score $<$ beta, beta $=$ *score; // update upper bound *score = beta;
4. Else if at a maximizing level, until all children are examined or alpha $>=$ beta,
(a) Recursive call Alpha_Beta_Procedure on a child;
(b) If *score $>$ alpha, alpha $=$ *score; // update lower bound *score = alpha;

Maximizing Level
Step 14
Minimizing Level

void Alpha_Beta_Procedure(alpha, beta, \&score)

1. If at the root, set alpha $=-\infty$, beta $=\infty$
2. If at the leaf, *score = static_evaluator(current_board, role); return
3. If at a minimizing level, until all children are examined or alpha $>=$ beta,
(a) Recursive call Alpha_Beta_Procedure on a child;
(b) If *score $<$ beta, beta $=$ *score; // update upper bound *score = beta;
4. Else if at a maximizing level, until all children are examined or alpha $>=$ beta,
(a) Recursive call Alpha_Beta_Procedure on a child;
(b) If *score $>$ alpha, alpha $=$ *score; // update lower bound *score = alpha;

Maximizing Level
Step 15
Minimizing Level

void Alpha_Beta_Procedure(alpha, beta, \&score)

1. If at the root, set alpha $=-\infty$, beta $=\infty$
2. If at the leaf, *score = static_evaluator(current_board, role); return
3. If at a minimizing level, until all children are examined or alpha $>=$ beta,
(a) Recursive call Alpha_Beta_Procedure on a child;
(b) If *score $<$ beta, beta $=$ *score; // update upper bound *score = beta;
4. Else if at a maximizing level, until all children are examined or alpha $>=$ beta,
(a) Recursive call Alpha_Beta_Procedure on a child;
(b) If *score $>$ alpha, alpha $=$ *score; // update lower bound *score = alpha;

Maximizing Level
Step 16
Minimizing Level

Maximizing Level
Step 17
Minimizing Level

Maximizing Level
Step 18
Minimizing Level

Maximizing Level
Step 19
Minimizing Level

Maximizing Level
Step 20
Minimizing Level

Maximizing Level
Step 21
Minimizing Level

Maximizing Level
Step 22
Minimizing Level

Maximizing Level
Step 23
Minimizing Level

Maximizing Level
Step 24
Minimizing Level

Maximizing Level
Step 25
Minimizing Level

Maximizing Level
Step 26
Minimizing Level

Maximizing Level
Step 27
Minimizing Level

Maximizing Level
Step 28
Minimizing Level

Maximizing Level
Step 29
Minimizing Level

Maximizing Level
Step 30
Minimizing Level

Maximizing Level
Step 31
Minimizing Level

Maximizing Level
Step 32
Minimizing Level

Maximizing Level
Step 33
Minimizing Level

Maximizing Level
Step 34
Minimizing Level

Maximizing Level
Step 35
Minimizing Level

Maximizing Level
Step 36
Minimizing Level

Maximizing Level
Step 37
Minimizing Level

Maximizing Level
Step 38
Minimizing Level

Maximizing Level
Step 39
Minimizing Level

void Alpha_Beta_Procedure(alpha, beta, \&score)

1. If at the root, set alpha $=-\infty$, beta $=\infty$
2. If at the leaf, *score = static_evaluator(current_board, role); return
3. If at a minimizing level, until all children are examined or alpha $>=$ beta,
(a) Recursive call Alpha_Beta_Procedure on a child;
(b) If *score $<$ beta, beta $=$ *score; // update upper bound *score = beta;
4. Else if at a maximizing level, until all children are examined or alpha $>=$ beta,
(a) Recursive call Alpha_Beta_Procedure on a child;
(b) If *score $>$ alpha, alpha $=$ *score; // update lower bound *score = alpha;

Critique of $\alpha-\beta$ Procedure

- Worst Case
$=$ Minimax $=$ Exhaustive search to look ahead depth d with branching factor b \# static evaluations $s=b^{d}$
- Best Case
(Assume the best move happens to be on the left most)

Best case: 11 Worst case: $3^{\wedge} 3=27$

Critique of $\alpha-\beta$ Procedure

- Worst Case

$$
s=b^{d}
$$

- Best Case

$$
s=\left\{\begin{array}{l}
b^{\frac{d+1}{2}}+b^{\frac{d-1}{2}}-1, \text { if } d \text { is odd } \\
2 b^{\frac{d}{2}}, \text { if } d \text { is even }
\end{array}\right.
$$

Proof by Induction
Best case analysis provides lower bound on \# evaluations in real game

- In real game

$$
2 b^{\frac{d}{2}} \leq s \leq b^{d}
$$

Critique of $\alpha-\beta$ Procedure

- Worst Case

$$
s=b^{d}
$$

$$
3^{3}=27
$$

- Best Case

$$
s= \begin{cases}b^{\frac{d+1}{2}}+b^{\frac{d-1}{2}}-1, \text { if } d \text { is odd } & 3^{(3+1) / 2} \\ & +3^{(3-1) / 2} \\ 2 b^{\frac{d}{2}}, \text { if } d \text { is even } & -1 \\ =9+3-1 \\ & =11\end{cases}
$$

Proof by Induction
Best case analysis provides lower bound on \# evaluations in real game

- In real game

$$
2 b^{\frac{d}{2}} \leq s \leq b^{d}
$$

$$
\begin{aligned}
& 2 \times 3^{3 / 2}=11 \\
& <=S<= \\
& 3^{3}=27
\end{aligned}
$$

Static evaluations

The ALPHA-BETA procedure reduces the rate of explosive growth but does not prevent it. The branching factor here is assumed to be 10.

Heuristic Methods

- The goal is to reduce $s=b^{d}$
$b \rightarrow$ prune children
$d \rightarrow$ reduce lookahead depth
- Minimax/Alpha-Beta

1) compute static value at leaves of game tree
2) pass up value to parents and make decision at root
3) prune branches (i.e. when alpha >= beta)

- Whether or not Alpha-Beta can prune depends on game situation
- If time limits on moves (e.g. chess), a conservative d may waste time

Heuristic Methods

- Progressive Deepening
- Continuation Heuristic

Search-until-quiescent Heuristic
Singular-extension Heuristic

- Tapered Search

Progressive Deepening

- Analyze game situation to $d=1, d=2, d=3, \ldots$ until time is up
- Choice is determined by the analysis at one level less deep than the one in progress when time runs out

Progressive Deepening

- Analyze game situation to $d=1, d=2, d=3, \ldots$ until time is up
- Choice is determined by the analysis at one level less deep than the one in progress when time runs out

Progressive Deepening

- Analyze game situation to $d=1, d=2, d=3, \ldots$ until time is up
- Choice is determined by the analysis at one level less deep than the one in progress when time runs out
- Lots of extra work ? Not really

Progressive Deepening

Non-leaf nodes:
$b^{0}+b^{1}+b^{2}+\ldots+b^{d-1}=\frac{b^{d}-1}{b-1}$
leaf nodes: b^{d}

Progressive Deepening

Non-leaf nodes:

$$
b^{0}+b^{1}+b^{2}+\ldots+b^{d-1}=\frac{b^{d}-1}{b-1}
$$

leaf nodes: b^{d}

$$
\frac{\text { \#leaves }}{\# \text { non-leaves }}=\frac{b^{d}}{\frac{b^{d}-1}{b-1}} \approx b-1 \quad \begin{aligned}
& => \\
& \begin{array}{l}
\text { Overhead of progressive } \\
\text { deepening is only a factor of b-1 }
\end{array}
\end{aligned}
$$

Continuation Heuristics handle Horizon Effect

Horizon Effect:

Continuation Heuristic

- Search-until-quiescent Heuristic

Stop search only if a capture (you or your opponent captures a piece) is not imminent.

- Singular-extension Heuristic

Search as long as one move's static value is much better than the rest. This move would "force" decision, but could be wrong!

Heuristic Pruning

- Principle: prune apparently "bad" moves and spend time on more promising moves
- Tapered Search

1) Rank each child by using a fast static evaluator
2) Compute \# of branches to explore at each child based on its rank,
i.e. \# branches at child = \# children - rank(child)

Summary of Learning Goals

You should know about:

- Chess
- Some of the history of AI tackling chess
- Static Evaluator
- Minimax Procedure
- Alpha-beta Procedure \rightarrow prune branches
- Progressive Deepening \rightarrow reduce depth
- Continuation Heuristic \rightarrow look deeper

Search-until-quiescent Heuristic
Singular-extension Heuristic

- Tapered Search \rightarrow prune branches

