Boston University CAS CS 640: AI

1st & ½ Lecture on Computer Vision by Margrit Betke October 12 & 17, 2023

Learning Objectives for this Lecture

- Understand formats of images used as inputs to Al models: greyscale, color, medical scans
- Understand differences and similarities between pre-2012 "traditional computer vision" and post-2012 neural-network-based computer vision & see examples
- Understand why convolution is powerful
- Understand how tools from estimation theory can be used to measure recognizability of objects in images
- Learn about breakthrough dataset ImageNet
- Learn about early CNNs used in computer vision

What is an image?

Computer Science

- Images are fields of colored dots
- Each dot is called a pixel =picture cell
- Standard test image with detail, shading, texture, sharp & blurry regions:
 - Lena Soderberg '72 (controversy!)

Color Models

Computer Science

- Images can be gray scale, color, or color with an alpha (transparency) channel
- Most common color representation is RGB (Red, Green, Blue). This is the representation used to put pixels on the screen
- Other models include CMYK (used for print) and YUV (often used for input from cameras, compression, and transmission)

What is an image?

Computer Science

- Images are 2 dimensional arrays of data, with an associated width, height, and color depth.
- Images typically use one byte per color channel per pixel.
- Gray images have 1 color channel. RGB images have 3 color channels. RGBA images have 4 color channels.

Digital Image File Formats

Computer Science

Image:

Size of table, color, compression scheme

Gray-scale images: generally 1 byte per pixel Color images: 3 numbers (each 1 byte) per pixel

Medical images, e.g., CT, MRI: typically 2 bytes per voxel

Example: PGM Image

Computer Science

Image fileImage ??

Example: PGM Image

Light: Electromagnetic Waves

Computer Science

Wavelength λ

RGB Color Space

Example: PPM Image

Image ??

Image file								
P	3							
3	3	25	55					
0	0	0	255	0	0	0	0	0
0	255	0	0	0	0	255	255	0
0	0	0	0	0	255	0	0	0

Example: PPM Image

How do I get at the data?

- Some image-handling APIs have nice interfaces, but speed can be a problem.
- You will probably have to handle the bytes of data directly at some point

How do I get at the data?

Computer Science

- X = desired row
- □ Y = desired column
- □ C = color channel (red, green, blue, ...).
- Bpp = Bytes per pixel (color channels)
- Image data is normally stored in row major order
- Note that there may be multiple values associated with each x,y pixel
- Data(x,y,c) = y*(width*Bpp) + x*Bpp + c

Example of a "Traditional" Computer Vision Algorithm: Color to Gray Scale Conversion

Computer Science

Pre-NN-revolution Computer Vision: Algorithms

Example of such a pre-2012 algorithm:

Converting from color to gray scale, a very common operation

Color-to-Grayscale Conversion

Computer Science

"Quick and dirty" conversion: Grab the Green Channel

- Average R, G, B: (R+G+B)/3
- Max(R, G, B)
- □ Weigh them: 0.3*R + 0.6*G + 0.1*B

Image File Formats

- PPM / PGM is the simplest file format ever, but not supported by Photoshop or MS Image Viewer. Uncompressed.
- BMP: Microsoft's uncompressed image format
- GIF: Images are compressed using runlength encoding, and reducing the number of colors used. Licensed, not open
- JPEG: Images are compressed by throwing away high frequency information

Tools of the Trade

- OpenCV is a widely used, open-source computer vision library maintained by Intel
- Provides libraries for image I/O, movie I/O and camera capture
- Industrial strength computer vision and image processing implementations
- Quick and dirty GUI toolkit

Tools of the Trade

Computer Science

Irfanview is a freely available image viewer and possibly one of the most useful programs ever.

Common Gotcha's

Computer Science

Sometimes the mapping from a weird looking image to the actual error is not obvious

Common Gotcha's Color Order

Computer Science

RGB vs. BGR

Common Gotcha's Wrong Width

Computer Science

Incorrect width can result in an image with strong diagonal structure

Actual width: 512

This image width: 508

Common Gotcha's Wrong Color Depth

Computer Science

Mismatched color depth can result in an image with a rainbow effect

Common Gotcha's Windows line endings

Computer Science

- On Windows, it is critically important to open image files in binary mode.
- Otherwise, windows helpfully strips out any bytes with value '\r' (20).

Today's Computer Vision: Mostly Neural Networks

Computer Science

- Deep neural networks
- Convolutional neural networks
- Transformers
- Diffusion models
- + traditional computer vision algorithms, representations, geometry, and tricks

In CS 640: Both traditional & NN Computer Vision

1D Discrete Convolution

Computer Science

1D Convolution: Time signal f and shifted time signal g are multiplied and added:

$$egin{aligned} (fst g)[n] &\stackrel{ ext{def}}{=} \sum_{m=-\infty}^\infty f[m] \, g[n-m] \ &= \sum_{m=-\infty}^\infty f[n-m] \, g[m]. \end{aligned}$$

2D generalization: f = input image, g = template image (or CNN function)

2D Convolution Example

Computer Science

Image Credit: Nvidia

Computer Science

Image Credit: Madhushree Basavarajaiah

Computer Science

Why is Convolution Powerful?

Signal Processing:

Computer Science

Convolution is used to define a "matched filter" for locating "targets" in time signals

Optimal algorithm if noise is Gaussian.

1D Position Estimation: Σ object*background

Another 1D convolution example:

Computer Science

= convolution/std-devs

Betke, Makris, IJCV 2001

2D Position Estimation

Convolution of one-way sign with itself

Betke, Makris, IJCV 2001

2 D Position Estimation

Convolution of one-way sign with scene (NCC)

Peak in performance surface (= negative loss fct) at correct location

> Betke, Makris, IJCV 2001

2 D Position Estimation

Convolution of one-way sign with scene (NCC)

This performance surface is computed for correct size of one-way sign

Different surfaces for different sizes of object

Sample Performance Surfaces

complexity: 250 size: 73 × 27 max. cor. coef. 0.82 correct match

complexity: 33 size: 73 × 27 max. cor. coef. 0.64 incorrect match

RC SOL 3

(shown enlarged) complexity: 25 size: 21 × 5 max. cor. coef. 0.70 incorrect match

Multi-Resolution Matching

Computer Science

Normalized correlation coefficient over multi-resolution search space:

$$1/n \sum_{i} (s_i - mean(s)) (m_i - mean(m)) (\sigma_s \sigma_m)$$

←Template matched over all resolutions →

Finding the Face and its Movement by Locating the Best Match of a Face Template

Computer Science

(a) Input

You can apply template matching to a small version of your input image and use that search result to start searching for a match in the 2nd smallest images. Repeat until the original size is processed.

(d) Correlation

Face Detection

Computer Science

Data Variability

Shadows Cluttered background

Large Face

Small Face

Face Detection Interface

Computer Science

Object Recognition = Parameter Estimation

Computer Science

Affine parameterization **x**' = A**x** + b => estimate **a**

Likelihood function

$$P(\mathbf{I}|\mathbf{a}) = \frac{1}{(2\pi\sigma^2)^{\frac{NM}{2}}} \exp\left(-\frac{1}{2\sigma^2} \sum_{k=1}^{MN} (I_k - m_k(\mathbf{a}))^2\right)$$

CR lower bound

$$\mathsf{E}[(\widehat{\mathbf{a}} - \mathbf{a})(\widehat{\mathbf{a}} - \mathbf{a})^T] \geq \mathbf{J}^{-1}$$

Betke, Makris, IJCV 2001

Fisher Information

a₄ = s

$$J_{ij} = rac{1}{\sigma^2} \sum_{x} \sum_{y} \left(rac{\partial m(x, y, \mathbf{a})}{\partial a_i} rac{\partial m(x, y, \mathbf{a})}{\partial a_j}
ight)$$

STOP)

a₁ = x

 $a_3 = \theta$

Object Coherence

Computer Science

CRLB:
$$E[(\hat{a}_i - a_i)^2] \geq [J^{-1}]_{ii} = \frac{\sigma^2}{E} \ell_i^2$$

Energy:
$$E = \sum_{(x,y)\in O} |m(x,y;\mathbf{a})|^2$$

Coherence scale and volume:

$$\ell_i = \left([\mathbf{J}^{-1}]_{ii} \ \frac{E}{\sigma^2} \right)^{\frac{1}{2}}$$

$$V = \left(\frac{E}{\sigma^2}\right)^{\frac{n_a}{2}} |\mathbf{J}|^{-\frac{1}{2}}$$

Coherence Length Scale

Since coherence length of Stop sign < No-Entry Sign, resolving location (x-coordinate) of Stop sign is easier

Coherence Area

Computer Science

Resolving (x,y) location is easier for Stop sign

Angular Coherence Scale

Computer Science

Peaks at ~45, 90, ... degrees

> Betke, Makris, IJCV 2001

Computer Science

Image Credit: Madhushree Basavarajaiah

Conclusions on Coherence

Computer Science

- Using the Fisher Information matrix, we can compute the coherence scales of objects
- Coherence scales define the recognizability of object parameters
- Intuitively, coherence areas = "cells" = "interconnected parts" = "degrees of freedom"
- Coherence scales can be visualized with autocorrelations, i.e., "object convolution with itself"
- Neural nets compute many convolutions and memorize coherence scales of objects

Back to Neural Nets & their Success in Solving Computer Vision Problems

Large labeled datasets

Deep neural networks

GPU technology

Slide credit: Dinesh Jayaraman

Convolutional Neural Networks (CNN, ConvNet, DCN)

CNN = a multi-layer neural network with

- Local connectivity:
 - Neurons in a layer are only connected to a small region of the layer before it
- Share weight parameters across spatial positions:
 - Learning shift-invariant filter

Image credit: A. Karpathy

Jia-Bin Huang and Derek Hoiem, UIUC

LeNet [LeCun et al.]

1990: Zipcode recognition

http://yann.lecun.com/exdb/lenet/multiples.html

Gradient-based learning applied to document recognition [LeCun, Bottou, Bengio, Haffner 1998] Jia-Bin Huang and Derek Hoiem, UIUC

LeNet-1 from 1993

LeCun Interview, Oct. 5, 2023

Computer Science

https://www.rsipvision.com/ICCV2023-Thursday/

Yann LeCun

- VP and Chief AI Scientist, Facebook
- Silver Professor of Computer Science, Data Science, Neural Science, and Electrical and Computer Engineering, New York University.
- ACM Turing Award Laureate,
- Member, National Academy of Engineering

Another example of 2D Convolution

Weighted moving sum

Feature Activation Map slide credit: S. Lazebnik

Input

Feature Map

Rectified Linear Unit (ReLU)

Traditional versus NN-based Computer Vision: Engineered versus Learned Features

Convolutional filters are trained in a supervised manner by backpropagating classification error

Jia-Bin Huang and Derek Hoiem, UIUC

SIFT Descriptor

Visualizing what was learned

What do the learned filters look like?

Typical first layer filters

Image Credit: Kristen Grauman

The CNN Explainer

Thanks to CS640 classmate Mao Mao, we have a link to the *CNN Explainer*:

https://poloclub.github.i o/cnn-explainer/

by Jay Wang, Robert Turko, Omar Shaikh, Haekyu Park, Nilaksh Das, Fred Hohman, Minsuk Kahng, and Polo Chau, a result of a research collaboration between Georgia Tech and Oregon State University

ImageNet – The Data Set that Mattered and Still Matters!

IM GENET

[Deng et al. CVPR 2009]

- 14 million labeled images
- 20 thousand object classes
- Images collected from the Internet
- Human labels obtained by crowdsourcing with Amazon Turk
- Still very important in 2023 because it is used for pretraining of "backbone neural nets"

Analysis of Large Scale Visual Recognition Adapted for BU CS 440/640 by M. Betke

Fei-Fei Li and Olga Russakovsky

Olga Russakovsky, Jia Deng, Zhiheng Huang, Alex Berg, Li Fei-FeiDetecting avocados to zucchinis: what have we done, and where are we going?ICCV 2013http://image-net.org/challenges/LSVRC/2012/analysis

Backpack

Flute

Matchstick

Sea lion

Strawberry

Backpack

Traffic light

Bathing cap

Racket

Large-scale recognition

and a state of the part of the state of the state of the

Large-scale recognition

PASCAL VOC 2005-2012

20 object classes

22,591 images

Segmentation

Classification: person, motorcycle

Action: riding bicycle

Everingham, Van Gool, Williams, Winn and Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. IJCV 2010.

IM GENET Large Scale Visual Recognition Challenge (ILSVRC) 2010-2012

20 object classes 22,591 images

1000 object classes 1,431,167 images

http://image-net.org/challenges/LSVRC/{2010,2011,2012}

Variety of object classes in ILSVRC

PASCAL

bottle

car

flamingo

pill bottle

cock

ruffed grouse

ILSVRC

beer bottle wine bottle water bottle pop bottle . . .

minivan

cab

partridge

cars

birds
Variety of object classes in ILSVRC

Steel drum

Allowed system output: 5 predictions per image Goal: Get 1 of the 5 predictions correct

Steel drum

Output: Scale T-shirt Giant panda Drumstick Mud turtle

Indicator Function: 1[System output correct on this image] = 1

= 0

Steel drum

Accuracy =
$$\frac{1}{100,000} \sum_{\substack{100,000 \text{ images}}} 1[\text{correct on image i}]$$

Accuracy (5 predictions/image)

Steel drum

Steel drum

Output

Steel drum

Output (bad localization)

Output

Output (bad classification)

Steel drum

Output

Accuracy =
$$\frac{1}{100,000} \sum_{\substack{100,000 \text{ images}}} 1[\text{correct on image i}]$$

ISI=Uni. Tokyo Team

VGG=Uni. Oxford Team

SuperVision = University of Toronto Team Led by Geoffrey Hinton, Turing Award Winner

What happens under the hood?

Preliminaries:

- <u>ILSVRC-500 (2012) dataset</u>
- Leading algorithms

What happens under the hood on classification+localization?

- A closer look at small objects
- A closer look at textured objects

Olga Russakovsky, Jia Deng, Zhiheng Huang, Alex Berg, Li Fei-Fei Detecting avocados to zucchinis: what have we done, and where are we going? ICCV 2013 http://image-net.org/challenges/LSVRC/2012/analysis

ILSVRC (2012)

ILSVRC-500 (2012)

ILSVRC-500 (2012)

Object scale (fraction of image area occupied by target object)

ILSVRC-500 (2012)	500 object categories	25.3%
PASCAL VOC (2012)	20 object categories	25.2%

Level of clutter

Steel drum

- Generate candidate object regions using method of

Selective Search for Object Detection vanDeSande et al. ICCV 2011

- Filter out regions inside object

- Count regions

ILSVRC-500 (2012)	500 object categories	128 ± 35
PASCAL VOC (2012)	20 object categories	130 ± 29

SuperVision = AlexNet

Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton (Krizhevsky NIPS12)

Image classification: Deep convolutional neural networks

- 7 hidden "weight" layers, 650K neurons, 60M parameters, 630M connections
- Rectified Linear Units, max pooling, dropout trick
- Randomly extracted 224x224 patches for more data
- Trained with Stochastic Gradient Descent on two GPUs for a week, fully supervised (50x speed-up over CPU)

Localization: Regression on (x,y,w,h)

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

AlexNet

- Similar to the model proposed by LeCun in 1998 but:
 - Larger model (7 hidden layers, 650,000 units, 60,000,000 params)
 - More data (10⁶ vs. 10³ images)

A. Krizhevsky, I. Sutskever, and G. Hinton,

ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012 Jia-Bin Huang and Derek Hoiem, UIUC

Details of the Oxford VGG

This is **not** the neural net VGG but uses traditional computer vision techniques!

Karen Simonyan, Yusuf Aytar, Andrea Vedaldi, Andrew Zisserman

Image classification: Fisher vector + linear SVM (Sanchez CVPR11)

- Root-SIFT (Arandjelovic CVPR12), color statistics, augmentation with patch location (x,y) (Sanchez PRL12)
- Fisher vectors: 1024 Gaussians, 135K dimensions
- No SPM, product quantization to compress
- Semi-supervised learning to find additional bounding boxes
- 1000 one-vs-rest SVM trained with Pegasos SGD
 - 135M parameters!

Localization: Deformable part-based models (Felzenszwalb PAMI10), without parts (root-only)

http://image-net.org/challenges/LSVRC/2012/oxford_vgg.pdf

Results on ILSVRC-500

Preliminaries:

- ILSVRC-500 (2012) dataset similar to PASCAL
- Leading algorithms: Alex Net and VGG

What happens under the hood on classification+localization?

- Alex Net always great at classification, but VGG does better than Alex Net localizing small objects
- A closer look at textured objects

Olga Russakovsky, Jia Deng, Zhiheng Huang, Alex Berg, Li Fei-Fei Detecting avocados to zucchinis: what have we done, and where are we going? ICCV 2013 http://image-net.org/challenges/LSVRC/2012/analysis

Cumulative accuracy across scales

Classification-only

Classification+Localization

Cumulative accuracy across scales

Classification-only

Classification+Localization

Textured objects (ILSVRC-500)

Screwdriver Hatchet Ladybug Honeycomb High

Amount of texture

Low

Textured objects (ILSVRC-500)

Amount of texture

Low

High

	No texture	Low texture	Medium texture	High texture
# classes	116	189	143	52
Object scale	20.8%	23.7%	23.5%	25.0%

Textured objects (416 classes)

Low

Amount of texture

High

	No texture	Low texture	Medium texture	High texture
# classes	116	189 149	143 115	52 35
Object scale	20.8%	23.7% 20.8%	23.5% 20.8%	25.0% 20.8%

Localizing textured objects

(416 classes, same average object scale at each level of texture)

Conclusions on analysis of classification+localization results

- Alex Net always great at classification, but VGG does better than Alex Net localizing small objects
- Textured objects: VGG broadly successful. Alex Net better at higher textures, worse at smaller.

Olga Russakovsky, Jia Deng, Zhiheng Huang, Alex Berg, Li Fei-Fei Detecting avocados to zucchinis: what have we done, and where are we going? ICCV 2013 http://image-net.org/challenges/LSVRC/2012/analysis

ImageNet Classification Challenge

http://image-net.org/challenges/talks/2016/ILSVRC2016_10_09_clsloc.pdf

Recap of NN-based Computer Vision

Neural networks

 View of neural networks as learning hierarchy of features

Convolutional neural networks

- Architecture of network accounts for image structure
- "End-to-end" recognition from pixels
- Together with large labeled datasets and lots of computation → major success on benchmark ImageNet, i.e., object classification and localization

Learning Objectives for this Lecture

Computer Science

- Understand formats of images used as inputs to Al models: greyscale, color, medical scans
- Understand differences and similarities between pre-2012 "traditional computer vision" and post-2012 neural-network-based computer vision & see examples
- Understand why convolution is powerful
- Understand how tools from estimation theory can be used to measure recognizability of objects in images
- Learn about breakthrough dataset ImageNet
- Learn about early CNNs used in computer vision