
Logic and Resolution Proof

R1: IF ?x has feathers

THEN ?x is a bird

R2: IF ?x flies

?x lays eggs

THEN ?x is a bird

Predicate =

Function: Objects −→ {True, False}

Example predicates:

Feathers(x)⇒ Bird(x)

(Flies(x) ∧ LaysEggs(x))⇒ Bird(x)

¬Feathers (Suzie)

Feathers (Suzie)⇒ Bird(Suzie)

¬Feathers (Suzie) ∨ Bird(Suzie)

∀x [ Feathers(x)⇒ Bird(x) ]

Scope of variable x



Logic – Propositional Calculus

No variables allowed. Only objects, e.g., E1, E2.

Commutative Laws :

E1 ∧ E2 ⇔ E2 ∧ E1

E1 ∨ E2 ⇔ E2 ∨ E1

Distributive Laws :

E1 ∧ (E2 ∨ E3) ⇔ (E1 ∧ E2) ∨ (E1 ∧ E3)

E1 ∨ (E2 ∧ E3) ⇔ (E1 ∨ E2) ∧ (E1 ∨ E3)

Associative Laws :

E1 ∧ (E2 ∧ E3) ⇔ (E1 ∧ E2) ∧ E3

E1 ∨ (E2 ∨ E3) ⇔ (E1 ∨ E2) ∨ E3

DeMorgan′s Laws :

¬ (E1 ∧ E2) ⇔ (¬E1) ∨ (¬E2)

¬ (E1 ∨ E2) ⇔ (¬E1) ∧ (¬E2)

Double Negation Law :

¬ (¬ E1) ⇔ E1

Precedence of operators in following order:

NOT ¬, AND ∧, OR ∨, IMPLICATION ⇒.

Logic – 1st Order Predicate Calculus

Variables allowed, e.g., x. Variables cannot represent predicates P .

Existential quantifier ∃ and universal quantifier ∀.

¬ ∀xP (x) ⇔ ∃x ¬P (x)

¬ ∃xP (x) ⇔ ∀x ¬P (x)



Term

– constant

– variable

– function: term → term

Predicate

– function: term → {True, False}

Atomic formula = predicate with argument

Literal = atomic formula or negated atomic formula

Well-formed formula (wff)

– literals

– disjunction: wff ∨ wff, conjunction: wff ∧ wff, negation: ¬ wff,

implication: wff → wff

– ∀x [wff], ∃x [wff]

– clause = wff consisting of a disjunction of literals

Sentence = wff with all variables (if any) within scope

Example of sentences:

∀x [ Feathers(x)⇒ Bird(x) ]

Feathers(Albatross)⇒ Bird(Albatross) ]

Sentence?

∀x [ Feathers(x) ∨ ¬Feathers(y) ]

y is free variable



Axioms:

Feathers (Squigs)

∀x [ Feathers(x)⇒ Bird(x) ]

Theorem:

Bird (Squigs)

A proof ties axioms to consequences

A proof shows theorem is true given axioms

A proof needs inference rules to derive new expressions from axioms

A proof needs substitution rules to derive expressions from axioms

Substitution rule: Specialization

Feathers(Squigs)⇒ Bird(Squigs)

Inference rule: Modus Ponens

If axioms of form (E1 ⇒ E2) and E1 are given, then E2 is a new

true expression.

Feathers (Squigs)

Feathers(Squigs)⇒ Bird(Squigs)

Bird (Squigs)

Inference rule: Resolution



Resolution

Axiom 1 E1∨ E2

Axiom 2 ¬E2 ∨ E3

Resolvent E1∨ E3

Modus ponens is a special case of resolution:

Axiom 1 ¬E1∨ E2

Axiom 2 E1

Resolvent E2

Contradiction is a special case of resolution:

Axiom 1 ¬E1

Axiom 2 E1

Resolvent NIL

Resolution proof = proof by refutation (= show theorem is false)

Show theorem’s negation cannot be true.

Example:

Theorem: Bird(Squigs)

Proof:

Axiom 1 Feathers(Squigs)

Specialized Axiom 2 ¬ Feathers(Squigs) ∨ Bird(Squigs)

Negation of Theorem (step 3) ¬ Bird(Squigs)

Resolvent of 1 & 2 (step 4) Bird(Squigs)

Resolvent of steps 3 & 4 NIL



To prove a theorem using resolution:

– Negate theorem

– Add negated theorem to list of axioms

– Transform axioms into clause form

– REAT UNITL there is no resolvable pair of clauses:

* Find resolvable clauses and resolve them

* Add results to list of clauses

* If NIL produced, STOP. Report theorem is TRUE.

– STOP. Report theorem is FALSE.

Strategies to search for resolvable clauses:

– Unit-preference strategy: Clauses with smallest # of literals first

– Set-support strategy: Only work with resolutions involving negated

theroem or clauses derived from it

– Breadth-first strategy: First reduce all possible pairs of initial

clauses then all pairs of resulting sets with initial set, level by level

Exponential explosion problem

Halting problem:

Completion of proof procedures is “semidecidable” =

* Guaranteed to find proof if theorem logically follows from axioms

* Search is not guaranteed to terminate unless there is a proof

Informally: “While the search is going on, we don’t know if it hasn’t

found the proof yet, or there is no proof.”



Prolog

Programming in logic

Early 1970s in Marseille, France

Late 1970s in Edinburgh, UK, Warren and Pereira

Declarative programming:

– What is true ?

– What needs to be done ?

(versus procedural programming – how to do it)

Based on 1st-order predicative calculus

Syntax, Semantics

Method of computing: resolution

Not covered in 2023



Transformation Example

Axiom:

∀x [Brick(x)⇒ (∃y [On(x, y) ∧ ¬Pyramid(y)] ∧
¬∃y [On(x, y) ∧On(y, x)] ∧

∀y [¬Brick(y)⇒ ¬Equal(x, y)] )]

1. Eliminate implications: Use (E1 ⇒ E2)⇔ (¬E1 ∨ E2).

∀x [¬Brick(x) ∨ (∃y [On(x, y) ∧ ¬Pyramid(y)] ∧
¬∃y [On(x, y) ∧On(y, x)] ∧

∀y [¬¬Brick(y) ∨ ¬Equal(x, y)] )]

2. Move negations down to atomic formulas:

∀x [¬Brick(x) ∨ (∃y [On(x, y) ∧ ¬Pyramid(y)] ∧
∀y [¬On(x, y) ∨ ¬On(y, x)] ∧
∀y [Brick(y) ∨ ¬Equal(x, y)] )]

3. Eliminate existential quantifiers using Skolem functions:

∀x [¬Brick(x) ∨ (On(x, Support(x)) ∧ ¬Pyramid(Support(x)) ∧
∀y [¬On(x, y) ∨ ¬On(y, x)] ∧
∀y [Brick(y) ∨ ¬Equal(x, y)] )]

4. Rename variables:

∀x [¬Brick(x) ∨ (On(x, Support(x)) ∧ ¬Pyramid(Support(x)) ∧
∀y [¬On(x, y) ∨ ¬On(y, x)] ∧
∀z [Brick(z) ∨ ¬Equal(x, z)] )]

Not covered in 2023



4. Rename variables:

∀x [¬Brick(x) ∨ (On(x, Support(x)) ∧ ¬Pyramid(Support(x)) ∧
∀y [¬On(x, y) ∨ ¬On(y, x)] ∧
∀z [Brick(z) ∨ ¬Equal(x, z)] )]

5. Move universal quantifiers to left:

∀x∀y∀z [¬Brick(x) ∨ (On(x, Support(x)) ∧ ¬Pyramid(Support(x))

∧ (¬On(x, y) ∨ ¬On(y, x))

∧ (Brick(z) ∨ ¬Equal(x, z)) )]

6. Move disjunctions down to literals: Use E1∨(E2∧E3)⇔ (E1∨E2)∧(E1∨E3).

∀x∀y∀z [(¬Brick(x)∨ (On(x, Support(x)) ∧ ¬Pyramid(Support(x))))

∧(¬Brick(x)∨ (¬On(x, y) ∨ ¬On(y, x)))

∧(¬Brick(x)∨ (Brick(z) ∨ ¬Equal(x, z)) )]

∀x∀y∀z [ (¬Brick(x) ∨On(x, Support(x)))

∧(¬Brick(x) ∨ ¬Pyramid(Support(x)))

∧(¬Brick(x) ∨ ¬On(x, y) ∨ ¬On(y, x))

∧(¬Brick(x) ∨Brick(z) ∨ ¬Equal(x, z)) ]

7. Eliminate conjunctions:

∀x [ ¬Brick(x) ∨On(x, Support(x))]

∀x [ ¬Brick(x) ∨ ¬Pyramid(Support(x))]

∀x∀y [ ¬Brick(x) ∨ ¬On(x, y) ∨ ¬On(y, x)]

∀x∀z [ ¬Brick(x) ∨Brick(z) ∨ ¬Equal(x, z)) ]

Not covered in 2023



7. Eliminate conjunctions:

∀x [ ¬Brick(x) ∨On(x, Support(x))]

∀x [ ¬Brick(x) ∨ ¬Pyramid(Support(x))]

∀x∀y [ ¬Brick(x) ∨ ¬On(x, y) ∨ ¬On(y, x)]

∀x∀z [ ¬Brick(x) ∨Brick(z) ∨ ¬Equal(x, z)) ]

8. Rename variables:

∀x [ ¬Brick(x) ∨On(x, Support(x))]

∀w [ ¬Brick(w) ∨ ¬Pyramid(Support(w))]

∀u∀y [ ¬Brick(u) ∨ ¬On(u, y) ∨ ¬On(y, x)]

∀v∀z [ ¬Brick(v) ∨Brick(z) ∨ ¬Equal(v, z)) ]

9. Eliminate universal quantifiers:

¬Brick(x) ∨On(x, Support(x))

¬Brick(w) ∨ ¬Pyramid(Support(w))

¬Brick(u) ∨ ¬On(u, y) ∨ ¬On(y, x)

¬Brick(v) ∨Brick(z) ∨ ¬Equal(v, z))

Not covered in 2023



Planning using Situation Variables

Traditional logic: Predicate On(A,B) either true or false.

Here time dependency on value of On(A,B, s) where s describes the

situation.

Initial situation:

On(B,A, S) ∧ On(A,Table, S)

Goal situation:

∃sf [On(B,Table, sf)]

STORE(x, si) puts object x on table and creates situation si+1. It

is a function with output si+1; not a predicate with output true or

false.

Definition of STORE:

∀s∀x [¬On(x,Table, s)⇒ On(x,Table, STORE(x, s))]

Axiom about something not on table:

∀s∀y∀z [On(y, z, s) ∧ ¬Equal(z,Table)⇒ ¬On(y,Table, s)]

Is there a way to move B onto table? → Turn “resolution crank.”



List of Axioms:

On(B,A, S) ∧ On(A,Table, S)

∀s∀x [¬On(x,Table, s)⇒ On(x,Table, STORE(x, s))]

∀s∀y∀z [On(y, z, s) ∧ ¬Equal(z,Table)⇒ ¬On(y,Table, s)]

Negation of Theorem:

¬ ∃sf [On(B,Table, sf)]

—————————————————————————————

After Transformation into Clause Form:

On(B,A, S) (1)

On(A,Table, S) (2)

On(x,Table, s3) ∨On(x,Table, STORE(x, s3)) (3)

¬On(y, z, s4) ∨ Equal(z,Table) ∨ ¬On(y,Table, s4) (4)

¬Equal(B,A) (5)

¬Equal(B,Table) (6)

¬Equal(A,Table) (7)

¬On(B,Table, sf) (8)



Resolution Proof:

(8)

¬On(B,Table, sf)

↓
(3)

On(x,Table, s3) ∨
On(x,Table, STORE(x, s3)) −→ (9)

On(B,Table, s9)

↓
(4)

¬On(y, z, s4) ∨
Equal(z,Table) ∨
¬On(y,Table, s4) −→

(10)

¬On(B,w, s10) ∨
Equal(w,Table)

↓
(7)

¬Equal(A,Table) −→ (11)

¬On(B,A, s11)

↓
(1)

On(B,A, S) −→ (12)

NIL



How to get to goal situation sf?

Trace situation history.

sf → STORE(B, s3)

s3 → s9

s9 → s10

s10 → s11

s11 → S

Tedious ⇒
Green’s trick: Add extra “Answer” term. Not covered in 2023



Resolution Proof with Green’s Trick:

(8)

¬On(B,Table, sf) ∨ Answer(sf)

↓
(3)

On(x,Table, s3) ∨
On(x,Table, STORE(x, s3)) −→ (9)

On(B,Table, s9)

∨Answer(STORE(B, s9))

↓
(4)

¬On(y, z, s4) ∨
Equal(z,Table) ∨
¬On(y,Table, s4) −→

(10)

¬On(B,w, s10) ∨
Equal(w,Table)

∨Answer(STORE(B, s10))

↓
(7)

¬Equal(A,Table) −→ (11)

¬On(B,A, s11)

∨Answer(STORE(B, s11))

↓
(1)

On(B,A, S) −→ (12)

Answer(STORE(B, S))

Not covered in 2023



New goal situation:

∃sf [On(B,Table, sf) ∧ On(A,Table, sf)]

Transformation of negated theorem into clause form:

¬ ∃sf [ On(B,Table,sf) ∧ On(A,Table,sf)]

∀sf [ ¬( On(B,Table,sf) ∧ On(A,Table,sf))]

∀sf [ ¬ On(B,Table,sf) ∨ ¬ On(A,Table,sf)]

¬ On(B,Table,sf) ∨ ¬ On(A,Table,sf)

List of axioms and negated theorem in clause form:

On(B,A, S)

On(A,Table, S)

On(x,Table, s3) ∨On(x,Table, STORE(x, s3))

¬On(y, z, s4) ∨ Equal(z,Table) ∨ ¬On(y,Table, s4)

¬Equal(A,B)

¬Equal(B,Table)

¬Equal(A,Table)

¬On(B,Table, sf) ∨ ¬On(A,Table, sf)

Resolution Proof:

(8)

¬On(B,Table, sf)

∨¬On(A,Table, sf)

↓
(3) On(x,Table, s3) ∨

On(x,Table, STORE(x, s3)) −→ (9)

On(B,Table, s9)

∨¬On(A,Table, STORE(B, s9))

Not covered in 2023



Resolution procedure gets stuck:

(8)

¬On(B,Table, sf)

∨¬On(A,Table, sf)

↓
(3) On(x,Table, s3) ∨

On(x,Table, STORE(x, s3)) −→ (9)

On(B,Table, s9)

∨¬On(A,Table, STORE(B, s9))

↓
(4) ¬On(y, z, s4) ∨
Equal(z,Table) ∨ (10)

¬On(y,Table, s4) −→ ¬On(B,w, s10)

∨Equal(w,Table)

∨¬On(A,Table, STORE(B, s10))

↓
(7) ¬Equal(A,Table) −→ (11)

¬On(B,A, s11)

∨¬On(A,Table, STORE(B, s11))

↓
(1) On(B,A, S) −→ (12)

¬On(A,Table, STORE(B, S))

Cannot make step :

↓
(2) On(A,Table, S) −→ NIL

Not covered in 2023



Solution:

Frame axioms = statements about how predicates “survive”

operations

If x is on y before STORE operation, then x remains on y afterward,

as long as x was not the object put on the table:

∀s∀x∀y∀z[On(x, y, s) ∧ ¬Equal(x, z)⇒ On(x, y, STORE(z, s))]

Convert to frame axiom:

¬On(p, q, s0) ∨ Equal(p, r) ∨On(p, q, STORE(r, s0))

Previously stuck at (12):

¬On(A,Table, STORE(B, S))

Resolve (12) with frame axiom:

¬On(A,Table, S) ∨ Equal(A,B) (13)

Resolve (13) with (5) ¬Equal(A,B):

¬On(A,Table, S) (14)

Resolve (14) with (2) On(A,Table, S):

NIL

Not covered in 2023


