CAS CS 640 Artificial Intelligence Lectures by Margrit Betke

Learning by Training Neural Nets Adopted from P. Winston, Artificial Intelligence, 1992

CAS CS 640 Artificial Intelligence Lectures by Margrit Betke

Learning by Training Neural Nets, Part 1 Adopted from P. Winston, Artificial Intelligence, 1992

Real Neuron

When collective input at dendrites reaches threshold, pulse travels down axon, causes excitation or inhibition of next neuron.

Real Neural Nets

- Number of neurons in human brain: ~10¹¹
- Synapses per neuron in cerebellum (motor control): ~10⁵

□ Synapses per brain: ~10¹⁶

Approximately equivalent to 300 times the characters in all books of US Library of Congress

Simulated Neural Nets

- NN consists of neurons or nodes
- NN have links simulating axon-synapsedendrite connections
- Each link has weight. Like synapse, weight determines nature & strength of connection:
 - Large positive weight \rightarrow strong excitation
 - Small negative weight \rightarrow weak inhibition
- Like dendritic mechanisms, the activation function combines input: threshold function sums input values and passes them through threshold; output is 0 or 1.

Simulated Neuron

Activation function sums n products of input x_i and weight w_i and compares result to threshold T:

"Fire" if result >= T

$$o_k = 1$$
 if $\sum_{i=1}^n x_i w_i \ge T$
 $o_k = 0$ else

Simulated Neuron: Trainable Node

Activation function sums n products of input x_i and weight w_i, passes result S into function f, and outputs f(S).

If f(S) above threshold T, output >0.5, otherwise <0.5.

$$S = \sum_{i=1}^{n} x_i w_i$$

$$O_k = f(S)$$

if f(S) >= T

$$O_k >= 0$$

2-Layer Neural Networks

Multilayer Neural Networks

Tasks for Neural Networks

- Evaluation Problem
- □ Training Problem

Single Node Neural Net

x ₁	x ₂	Computation	Output
0	0	0(1)+0(1)=0<1.5	0
0	1	0(1)+1(1)=1<1.5	0
1	0	1(1)+0(1)=1<1.5	0
1	1	1(1)+1(1)=2>1.5	1

How can we create a NN to recognize $Or(x_1,x_2)$?

x ₁	x ₂	Computation	Output
0	0	0(1)+0(1)=0 < T	0
0	1	0(1)+1(1)=1 > T	1
1	0	1(1)+0(1)=1 > T	1
1	1	1(1)+1(1)=2 > T	1

Τ?

Example of a 3-layer Net

Acquaintance or Sibling Net

Tasks for Neural Networks

Evaluation Problem

Given a neural net N and input vector X: Does N recognize X, i.e., N(X) = 1 ?

Solution: Compute output of nodes, layer by layer

Examples: "And" network "Or" network "Acquaintances/Siblings" network

Tasks for Neural Networks

Evaluation Problem

Given a neural net N and input vector X: Does N recognize X, i.e., N(X) = 1 ?

Training Problem

Given training set $X_{training}$ of input vectors: Find neural net N that recognizes inputs in training set $X_{training}$ and test set X_{test} .

- Training set X_{training} = (X_{positive}, X_{negative}) of input vectors is given
- Number of nodes is given
- Number of layers is given
- Shape of activation function is given
- Links are given

Goal: Learn weights and thresholds, such that

$$N(X_{positive, i}) = 1$$
 and $N(X_{negative, j}) = 0$
for all inputs i in $X_{positive}$ and j in $X_{negative}$

You, the designer of the AI system, must determine:

- Number of nodes
- Number of layers
- Shape of each activation function and its threshold
- Links between nodes
- Weights on connections
- Representative set X_{training}

Goal: N (
$$X_{\text{positive, i}}$$
) = 1 and N($X_{\text{negative, j}}$) = 0
where $X_{\text{positive, i}}$ and $X_{\text{negative, j}}$ in X_{test}

- Assume number of nodes, number of layers, shape of activation function, and links are given.
- Task: Learn weights and thresholds.
- 1st step: Convert thresholds into weights and avoid having to learn two kinds of parameters:

- Assume number of nodes, number of layers, shape of activation function, and links are given.
- Task: Learn weights and thresholds.
- 1st step: Convert thresholds into weights and avoid having to learn two kinds of parameters:

Single Node Neural Net

X ₁	x ₂	Computation	Output
0	0	0(1)+0(1)=0 < 0.5	0
0	1	0(1)+1(1)=1 > 0.5	1
1	0	1(1)+0(1)=1 > 0.5	1
1	1	1(1)+1(1)=2 > 0.5	1

Example:

Converting Threshold to Weight

x ₀	X ₁	x ₂	Computation	Output
-1	0	0	-1(.5)+ 0(1)+0(1)=-0.5 < 0	0
-1	0	1	-1 (.5)+0(1)+1(1)=0.5 > 0	1
-1	1	0	-1 (.5)+1(1)+0(1)=0.5 > 0	1
-1	1	1	-1 (.5)+1(1)+1(1)=1.5> 0	1

Acquaintance or Sibling Net with converted thresholds

Example:

Acquaintance/Sibling Network

After thresholds were converted to weights, the only parameters to learn are the weights.

Solution procedure: Backpropagation

□ Version 1:

Given a neural net N, X_{training}, X_{validation}, and X_{testing} : Find weights of neural net *Solution:* Backpropagation procedure

□ Version 2:

Given dataset X:

- 1. Find neural network architecture
- 2. Design training protocol with $X_{training},\,X_{validation},\,$ and $X_{testing}$
- 3. Run Backpropagation procedure

Easier Problem! Given a neural net N, X_{training}, X_{validation}, and X_{testing} Find weights of neural net Solution: Backpropagation procedure

□ Version 2:

Version 1:

Given dataset X:

- 1. Find neural network architecture
- 2. Design training protocol with X_{training}, X_{validation}, and X_{testing}
- 3. Run Backpropagation procedure

□ Version 1:

Given a neural net N, X_{training}, X_{validation}, and X_{testing} : Find weights of neural net

Solution: Backpropagation procedure

□ Version 2:

Given dataset X:

Toolbox or Research!

- 1. Find neural network architecture
- 2. Design training protocol with $X_{\text{training}}, \, X_{\text{validation}}, \,$ and X_{testing}
- 3. Run Backpropagation procedure

□ Version 1:

Given a neural net N, X_{training}, X_{validation}, and X_{testing} : Find weights of neural net

NEXT TOPIC!!!

Solution: Backpropagation procedure

□ Version 2:

Given dataset X:

- 1. Find neural network architecture
- 2. Design training protocol with X_{training}, X_{validation}, and X_{testing}
- 3. Run Backpropagation procedure

CAS CS 640 Artificial Intelligence

Learning by Training Neural Nets, Part 2 Adopted from P. Winston, Artificial Intelligence, 1992

After we've covered the Backprop Procedure

Example: Acquaintance/Sibling Network

First: Simplified Network: Acquaintance Net

Acquaintance Net

Labeled Training Data: 15

Robert	Raquel	Romeo	Joan	James	Juliet	Acquaintar
1	1	0	0	0	0	0
1	0	1	0	0	0	0
1	0	0	1	0	0	1
1	0	0	0	1	0	1
1	0	0	0	0	1	1
0	1	1	0	0	0	0
0	1	0	1	0	0	1
0	1	0	0	1	0	1
0	1	0	0	0	1	1
0	0	1	1	0	0	1
0	0	1	0	1	0	1
0	0	1	0	0	1	1
0	0	0	1	1	0	0
0	0	0	1	0	1	0
0	0	0	0	1	1	0

Acquaintance Net

Backprop for the Acquaintance Net Initial Values of 11 Weights:

Weight	Initial Value	Value after Backprop
w1	0.1	1.99
w2	0.2	4.65
w3	0.3	4.65
w4	0.4	4.65
w5	0.5	2.28
w6	0.6	5.28
w7	0.7	5.28
w8	0.8	5.28
w9	0.9	9.07
w10	1	6.27
w11	1.1	6.12

RMS error during Training of Acquaintance Net

Training may require thousands of backpropagations

- Training may require thousands of backpropagations
- □ Training can get stuck or become unstable:
 - r = 1.0 225 weight changes
 - r = 2.0 150 weight changes
 - r = 0.25 900 weight changes
 - r = 0.5 425 weight changes
 - r = 4.0 serious instability
 - r = 8.0 serious instability

Backprop can get stuck or become unstable

- Training may require thousands of backpropagations
- Training can get stuck or become unstable
 No general learning rate rule
 Rate selection is problem dependent

If learning rate too low: slow training If learning rate too high: instability

- Training may require thousands of backpropagations
- □ Training can get stuck or become unstable
- □ Training can be done in stages:
 - Later stages refine training of network in earlier stages

- Training may require thousands of backpropagations
- □ Training can get stuck or become unstable
- □ Training can be done in stages:
 - Later stages refine training of network in earlier stages
 - Example:

To train Acquaintance or Sibling Net, use the trained Acquaintance Net as the pre-trained model and extent the model by one output node

Acquaintance or Sibling Net

2-Stage Training of Ac/Sib Net

Weight	Initial Value	Value after Pretraining	Value after Sibling Training
w1	0.1	1.99	2.71
w2	0.2	4.65	6.02
w3	0.3	4.65	6.02
w4	0.4	4.65	6.02
w5	0.5	2.28	2.89
w6	0.6	5.28	6.37
w7	0.7	5.28	6.37
w8	0.8	5.28	6.37
w9	0.9	9.07	10.29
w10	1	6.27	7.04
w11	1.1	6.12	6.97
w12	1.2		-8.32
w13	1.3		-5.72
w14	1.4		-5.68

RMS Error during Two-State Training

Simultaneous Training of 14 Weights of Full Acquaintance/Sibling Net

- Training may require thousands of backpropagations
- □ Training can get stuck or become unstable
- Training can be done in stages
- □ Trained neural nets can make predictions

Labeled Dataset: 15 Samples

Robert	Raquel	Romeo	Joan	James	Juliet	Acquaintance	Sibling
1	1	0	0	0	0	0	1
1	0	1	0	0	0	0	1
1	0	0	1	0	0	1	0
1	0	0	0	1	0	1	0
1	0	0	0	0	1	1	0
0	1	1	0	0	0	0	1
0	1	0	1	0	0	1	0
0	1	0	0	1	0	1	0
0	1	0	0	0	1	1	0
0	0	1	1	0	0	1	0
0	0	1	0	1	0	1	0
0	0	1	0	0	1	1	0
0	0	0	1	1	0	0	1
0	0	0	1	0	1	0	1
0	0	0	0	1	1	0	1

We used all 15 samples for training! Nothing left for testing...

Robert	Raquel	Romeo	Joan	James	Juliet	Acquaintance	Sibling
1	1	0	0	0	0	0	1
1	0	1	0	0	0	0	1
1	0	0	1	0	0	1	0
1	0	0	0	1	0	1	0
1	0	0	0	0	1	1	0
0	1	1	0	0	0	0	1
0	1	0	1	0	0	1	0
0	1	0	0	1	0	1	0
0	1	0	0	0	1	1	0
0	0	1	1	0	0	1	0
0	0	1	0	1	0	1	0
0	0	1	0	0	1	1	0
0	0	0	1	1	0	0	1
0	0	0	1	0	1	0	1
0	0	0	0	1	1	0	1

Use 3 Samples for Testing, Train on the Remaining 12 Samples

Robert	Raquel	Romeo	Joan	James	Juliet	Acquaintance	Sibling
1	1	0	0	0	0	0	1
1	0	1	0	0	0	0	1
1	0	0	1	0	0	1	0
1	0	0	0	1	0	1	0
1	0	0	0	0	1	1	0
0	1	1	0	0	0	0	1
0	1	0	1	0	0	1	0
0	1	0	0	1	0	1	0
0	1	0	0	0	1	1	0
0	0	1	1	0	0	1	0
0	0	1	0	1	0	1	0
0	0	1	0	0	1	1	0
0	0	0	1	1	0	0	1
0	0	0	1	0	1	0	1
0	0	0	0	1	1	0	1

Testing Result:

	Acqua	intance	Sibling		
	Desired Computed Desired		Desired	Computed	
Robert/Juliet	1	0.92	0	0.06	
Romeo/Joan	1	0.92	0	0.06	
James/Juliet	0	0.09	1	0.91	

Interpretation:

Trained Acq/Sib net deals successfully with previously unseen data = it can predict!

- Training may require thousands of backpropagations
- □ Training can get stuck or become unstable
- □ Training can be done in stages
- Trained neural nets can make predictions
- Excess weights lead to overfitting

Would a net with more trainable weights do better?

Training only takes 300 cycles – the extra weights make it too easy to deal with the training set

Testing Result:

	Acqua	intance	Sibling		
	Desired Computed Desired		Desired	Computed	
Robert/Juliet	1	0.99	0	0	
Romeo/Joan	1	0.06	0	0.94	
James/Juliet	0	0.97	1	0.01	

Interpretation: Overfitting Occurred Trained Acq/Sib net does not deal successfully with previously unseen data. It cannot predict two of the three test cases correctly

Heuristic to Avoid Overfitting

Number of trainable weights influencing a particular output should be less than the number of training samples

- In Acquaintance/Sibling Network with two hidden nodes: 11 trainable weights & 12 input-output samples: a dangerously small margin!
- In Acquaintance/Sibling Network with three hidden nodes: 19 trainable weights & 12 input-output samples: 7 (>50%) more weights than i/o samples - overfitting is inevitable!

Characteristics of Back-Propagation shown for Sibling/Acquaintance Neural Net generalizes to all neural networks

- Training may require thousands of backpropagations
- □ Training can get stuck or become unstable
- □ Training can be done in stages
- □ Trained neural nets can make predictions
- Excess weights lead to overfitting

Patrick Winston (1943–2019)

"Neural-net experts are artists; they are not mere handbook users."

