Neural Networks for
Pathology Image Classification

CS 640 Al, Fall 2023

Margrit Betke
Department of Computer Science

Boston University

, BOSTON
@J®sy Boston University Computer Science (W UNIVERSITY



Learning Outcomes

* Learn about Whole Slide Images

e Learn about pathologists’ difficulty in establishing “ground
truth”

* Learn about two Al models that interpret pathology images
1. Feature Pyramid Network with Global/Local Feature Exchange
2. Transformer with graph input and “activation map” output

Both Al models are available for you to use for your course project
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Deep learning-driven quantification of interstitial fibrosis in digitized
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Pathologists often do not agree with each other

5 Pathologists and their mutual agreement
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Overview of Our Graph Transformer Classification Model to
Distinguish Two Lung Cancer Types and Healthy Pathology

Whole Slide Image Graph Construction Graph Transformer
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Yi Zheng, Rushin H. Gindra, Emily J. Green, Eric J. Burks, Margrit Betke, Jennifer E. Bean, and Vijaya B.
Kolachalama. A graph transformer for whole slide image classification. IEEE Trans Med Imaging
41(11):3003-3015, November 2022. https://doi.org/10.1109/TMI.2022.3176598
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Data & Goal

Data: Goal:
4, 818 Whole Slide Images (WSls) to distinguish
from » adenocarcinoma (LUAD) and

* Clinical Proteomic Tumor Analysis » squamous cell carcinoma (LSCC)

Consortium (CPTAC), .
. . . * from adjacent non-cancerous
* National Lung Screening Trial tissue (normal)

(NLST),
* The Cancer Genome Atlas (TCGA)
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Creating an Undirected Graph from Image Patches

Graph

V = Patches, E = Patch Adjacency

Node representation
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Two subgraphs

Input WSI

Patch tiling and background patch removal Node representation
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Contrastive Learning Loss for Feature Extraction

Mini-batch of Pair of augmented Embedding vectors Latent vectors
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Contrastive Learning Loss for Feature Extraction

Positive examples
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Contrastive Learning Loss for Feature Extraction

Negative examples
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After Training: Use Embeddings for Patch Analysis

Mini-batch of Pair of augmented Embedding vectors Latent vectors
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Whole Slide Image GraphCAM Annotation Binarized GraphCAM TIoU
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Fig. 4: GraphCAMs and their comparison with the expert annotations. For each WSI, we generated GraphCAMs and
compared them with annotations from the pathologist. The first column contains the original WSIs, the second and third columns
contain GraphCAMs and pathologist’s annotations, respectively and the fourth column contains the binarized GraphCAMs based
on the threshold from the Intersection of Union (IoU) plot in the last column. The first row shows an LUAD case and the
second row denotes an LSCC case.
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Whole Slide Image GraphCAM from cross-validation models

Model 3 (p=0.87) Model 4 (p=0.81) Model 5 (p=0.88)
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Fig. 5: Graph class activation map performance. GraphCAMs generated on WSIs across the runs performed via 5-fold cross
validation are shown. The first column shows the original WSIs and the other columns show the GraphCAMs with prediction
probabilities on the cross-validated model runs. The first row shows a sample WSI from the LUAD class and the second row
shows an WSI from the LSCC class. The colormap represents the probability by which an WSI region is associated with the

output label of interest.
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(d) TCGA PR curves

Fig. 3: Model performance on the CPTAC and TCGA datasets. Mean ROC and PR curves along with standard deviations for the
classification tasks (normal vs. tumor; LUAD vs. others; LSCC vs. others) are shown.
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Whole Slide Image GraphCAM
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Fig. 6: GraphCAMs for failure cases. The first row shows a
sample WSI from the LUAD class where the model prediction
was LSCC, and the second row shows an WSI from the LSCC
class where the model prediction was LUAD. The first column
shows the original WSI, and the second and third columns
show the generated GraphCAMs along with prediction prob-
abilities. The bold font underneath certain GraphCAMs was
used to indicate the model predicted class label for the respec-
tive cases. Since this is a 3-label classification task (normal vs.
LUAD vs. LSCC), the LUAD and LSCC probability values do
not add up to 1.
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Learning Outcomes

* Learn about Whole Slide Images

e Learn about pathologists’ difficulty in establishing “ground
truth”

* Learn about two Al models that interpret pathology images
1. Feature Pyramid Network with Global/Local Feature Exchange
2. Transformer with graph input and “activation map” output
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