
Markov Decision Processes and
Reinforcement Learning

Two Lectures by Margrit Betke
November 9 & 14, 2023

Unless noted otherwise, the slides were created by Dan Klein and Pieter Abbeel
with illustrations by Ketrina Yim, for CS188, Intro to AI, University of California,
Berkeley, 2014, http://ai.berkeley.edu. All materials are used with permission.

Artificial Intelligence, CS 640, Boston University

Learning Outcomes
You should be able to explain:
 MDPs vs RL
 Planning (Offline) vs Learning (Online)
 RL
 Model-based (sample actions to learn T and R)
 Model-free

 Passive: Policy evaluation (direct evaluation vs. TD learning)
 Active: Q-learning (converges to optimal policy, but agent needs to explore enough)

 Exploration vs. Exploitation
 Explore: ε-greedy, exploration function

 Approximate Q-learning with linear value functions
 Policy Search

CS 188: Artificial Intelligence
Reinforcement Learning

Instructors: Dan Klein and Pieter Abbeel

University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reinforcement Learning

Reinforcement Learning

Basic idea:
 Receive feedback in the form of rewards
 The agent’s utility at a state is defined by the sum of rewards agent obtained

when at that state
 Agent must learn to act so as to maximize expected rewards
 All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r

Slide additions by Betke

Chapter 22 – Reinforcement Learning
Sections 22.1-22.5

Chapter 17.3 – Bandit Problems

AIMA

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Initial
[Video: AIBO WALK – initial][Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Training
[Video: AIBO WALK – training][Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Finished
[Video: AIBO WALK – finished][Kohl and Stone, ICRA 2004]

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER – 40s]

The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]

Video of Demo Crawler Bot

CS 188: Artificial Intelligence
Markov Decision Processes

Instructors: Dan Klein and Pieter Abbeel

University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Non-Deterministic Search

Example: Grid World

 A maze-like problem
 The agent lives in a grid
 Walls block the agent’s path

 Noisy movement: actions do not always go as planned
 80% of the time, the action North takes the agent North

(if there is no wall there)
 10% of the time, North takes the agent West; 10% East
 If there is a wall in the direction the agent would have

been taken, the agent stays put

 The agent receives rewards each time step
 Small “living” reward each step (can be negative)
 Big rewards come at the end (good or bad)

 Goal: maximize sum of rewards

Grid World Actions
Deterministic Grid World Stochastic Grid World

Markov Decision Processes

 An MDP is defined by:
 A set of states s ∈ S
 A set of actions a ∈ A
 A transition function T(s, a, s’)

 Probability that a from s leads to s’, i.e., P(s’| s, a)
 Also called the model or the dynamics

 A reward function R(s, a, s’)
 Sometimes just R(s) or R(s’)

 A start state
 Maybe a terminal state

 MDPs are non-deterministic search problems

What is Markov about MDPs?

 “Markov” generally means that given the present state, the
future and the past are independent

 For Markov decision processes, “Markov” means action
outcomes depend only on the current state

 The successor function only depends on the current state, not
the history

Andrey Markov
(1856-1922)

MDP Search Trees

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a q-
state

Example: Racing

Example: Racing
 A robot car wants to travel far, quickly
 Three states: Cool, Warm, Overheated
 Two actions: Slow, Fast
 Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Racing Search Tree

Utilities of Sequences

Utilities of Sequences

What preferences should an agent have over reward sequences?

 More or less?

 Now or later?

Discounting

 It’s reasonable to maximize the sum of rewards
 It’s also reasonable to prefer rewards now to rewards later
 One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

 How to discount?
 Each time we descend a level, we

multiply in the discount once

 Why discount?
 Sooner rewards probably do have

higher utility than later rewards

 Example: discount of 0.5
 U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 U([1,2,3]) < U([3,2,1])

Stationary Preferences

 Theorem: if we assume stationary preferences:

 Then: there are only two ways to define utilities

 Additive utility:

 Discounted utility:

Example: Grid World

 A maze-like problem
 The agent lives in a grid
 Walls block the agent’s path

 Noisy movement: actions do not always go as planned
 80% of the time, the action North takes the agent North

(if there is no wall there)
 10% of the time, North takes the agent West; 10% East
 If there is a wall in the direction the agent would have

been taken, the agent stays put

 The agent receives rewards each time step
 Small “living” reward each step (can be negative)
 Big rewards come at the end (good or bad)

 Goal: maximize sum of rewards
Action: N

0.8

0.1 0.1

Action: E

0.1

0.1

0.8

Policies

 In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

 For MDPs, we want an optimal policy π*: S → A
 A policy π gives an action for each state
 An optimal policy is one that maximizes

expected utility if followed

Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Optimal Policy
R(s) = -0.01

R(s) is the “living reward” – each time the agent makes a step, it costs 0.01.

Here, the agent tries to avoid falling into the terminal state with the “-1”
reward.

When following the action arrows in each of the non-terminal grid states,
there is NO risk of ever falling into the “-1” end state.

When next two the “-1” end state, the agent heads in the opposite direction,
even if the likelihood of banging against the wall that is directly ahead is 80%.

1 2 3 4

3

2

1

Slide by Betke

Optimal Policy
R(s) = -0.01

R(s) is the “living reward” – each time the agent makes a step, it costs 0.01.

Here, the agent tries to avoid falling into the terminal state with the “-1”
reward.

When following the action arrows in each of the non-terminal grid states,
there is NO risk of ever falling into the “-1” end state.

When next two the “-1” end state, the agent heads in the opposite direction,
even if the likelihood of banging against the wall that is directly ahead is 80%.

[3,2]

 [3,1] [3,2] [3,3]

[3,1][2,1][3,2] [3,1],[3,2][3,3] [3,3] [4,3][3,2]
 … … … …

1 2 3 4

3

2

1

Sum of rewards of all 2-step
state sequences starting at [3,2]:
-0.01-0.01
Except:
-0.01-0.01+1

Slide by Betke

Policy would not be optimal if:
R(s) = -0.01

R(s) is the “living reward” – each time the agent makes a step, it costs 0.01.

Here, the agent tries to avoid falling into the terminal state with the “-1”
reward.

When following the action arrows in each of the non-terminal grid states,
there is NO risk of ever falling into the “-1” end state.

When next two the “-1” end state, the agent heads in the opposite direction,
even if the likelihood of banging against the wall that is directly ahead is 80%.

[3,2]

 [4,2] [3,2] [3,3]

 [3,1],[3,2][3,3] [3,3] [4,3][3,2]
 … … …

1 2 3 4

3

2

1

Sum of rewards of all 2-step
state sequences starting at [3,2]:
-0.01-0.01=-0.02
Except:
-0.01-0.01+1 = 0.98

Now also 1 step sequence ending
in [4,2]:
-0.01-1 = -1.01

10% 80%
10%

10%

Slide by Betke

Optimal Policy

R(s) = -2.0

Life is so dreadfully expensive that the agent heads to the nearest exit from
all tiles, even if the nearest exit is [4,2], which will cost -1.

Slide additions by Betke

Optimal Policy

R(s) = -0.4

Agent’s life is quite unpleasant: Each step costs 0.4.

Agent is willing to take the risk of falling into [4,2] from [3,2].

Agent tries to reach [4,3] on a shortest path from all grid tiles,
even taking the shortcut from [3,1] to [3,2] (rather than keeping
away from grid tiles neighboring [4,2].

Slide by Betke

For different R(s): Different Optimal Policy

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Slide additions by Betke

For different R(s): Different Optimal Policy

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Slide additions by Betke

How can
we
determine
the optimal
policy?

That is:
Which
direction
to move at
each tile?

Utility of States, given Policy π

Uπ(s) = E [Σt=0 γt R(st) | π, s0 = s]
If agent executes optimal policy π*: Utility of a state U(s) = Uπ*(s)

Slide by Betke

∞

0.812

0.6110.655

0.762

0.705 0.388

0.660

0.868 0.918

γ = 1R(s) = -0.04

R(s) = -0.04

Utility of States, given Policy π

Uπ(s) = E [Σt=0 γt R(st) | π, s0 = s]
If agent executes optimal policy π*: Utility of a state U(s) = Uπ*(s)

Slide by Betke

∞

0.812

0.6110.655

0.762

0.705 0.388

0.660

0.868 0.918

γ = 1R(s) = -0.04

π* (s) = argmaxa Σ s’ T(s,a,s’) U(s’)

Choose action that maximizes the expected utility of
the subsequent state s’.

U(s) = R(s) + γ maxa Σ s’ T(s,a,s’) U(s’)

Immediate
reward at s

Expected discounted utility of next state,
assuming agent chooses optimal action

Utility of States, given Policy π

Slide by Betke

0.388

0.812

0.6110.655

0.762

0.705

0.660

0.868 0.918

γ = 1R(s) = -0.04

U(s) = R(s) + γ maxa Σ s’ T(s,a,s’) U(s’)

U(1,1) = -0.04 + γ max{

0.8 U(1,2)+0.1U(2,1)+0.1U(1,1),
0.9 U(1,1)+0.1U(1,2),
0.9 U(1,1)+0.1U(2,1),
0.8 U(2,1)+0.1U(1,1)+0.1U(1,2)

Immediate
reward at s

Expected discounted utility of next state,
assuming agent chooses optimal action

Up
Left
Down
Right

Utility of States, given Policy π

Slide by Betke

0.388

0.812

0.6110.655

0.762

0.705

0.660

0.868 0.918

γ = 1R(s) = -0.04

U(s) = R(s) + γ maxa Σ s’ T(s,a,s’) U(s’)

U(1,1) = -0.04 + γ max{

0.8 U(1,2)+0.1U(2,1)+0.1U(1,1),
0.9 U(1,1)+0.1U(1,2),
0.9 U(1,1)+0.1U(2,1),
0.8 U(2,1)+0.1U(1,1)+0.1U(1,2)

Immediate
reward at s

Expected discounted utility of next state,
assuming agent chooses optimal action

Up
Left
Down
Right

= -0.04 + 0.8x0.762+0.1x0.655+0.1x0.705 = 0.7056

How to Compute Utility of States

Bellman Equation:

U(s) = R(s) + γ maxa Σ s’ T(s,a,s’) U(s’)

Value Iteration Algorithm:
Initial U’s = zero

Update: Ui+1(s) = R(s) + γ maxa Σ s’ T(s,a,s’) Ui(s’)
Terminate upon convergence

Infinite Utilities?!

 Problem: What if the game lasts forever? Do we get infinite rewards?

 Solutions:
 Finite horizon: (similar to depth-limited search)

 Terminate episodes after a fixed T steps (e.g. life)
 Gives nonstationary policies (π depends on time left)

 Discounting: use 0 < γ < 1

 Smaller γ means smaller “horizon” – shorter term focus

 Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Single-arm bandit versus multi-armed bandits

Slide by Betke, image by Yamaguchi先生, illustrations by Yim

A slot machine is called a bandit
because it typically robs you of
your money.

The gambler must decide which
machines to play, how many times
to play each machine and in which
order to play them, and whether to
continue with the current machine
 or try a different machine.

Each slot machine has
its own distribution of wins.
When the gambler pulls the lever
down, it samples the bandit’s
distribution.single arm multiple arms

Double Bandits

Double Bandits

Slide additions by Betke

Blue:
A deterministic bandit.
Each time you play,
you are guaranteed to win $1.

Red:
A fair bandit:
Half the time you play, you win $2
the other half you win $0.

Gambler:
Which slot machine
should I play?

Cost of a single play:
$1

Double Bandits

Slide additions by Betke

Blue:
A deterministic bandit.
Each time you play,
you are guaranteed to win $1.

Red:
A generous non-bandit:
Each time you play, you win $2
¾ of the time and $0 ¼ of the time.

How much money are you expected
to win if you play 10 times?

Gambler:
Which slot machine
should I play?

Cost of a single play:
$1

Double Bandits

Slide additions by Betke

Blue:
A deterministic bandit.
Each time you play,
you are guaranteed to win $1.

Red:
A generous non-bandit:
Each time you play, you win $2 ¾ of
the time and $0 ¼ of the time.

How much money are you expected
to win if you play 10 times?

10 x $2 x ¾ + 10 x $0 x ¼ = $15

Gambler:
Which slot machine
should I play?

Cost of a single play:
$1

Double-Bandit Markov Decision Process

 Actions: Blue
 States: Win, Lose

W L$1

1.0

$1

1.0

Slide additions by Betke

Probability to
have a win
after a win
when playing
the blue
machine:

Reward:

Double-Bandit Markov Decision Process

 Actions: Blue, Red
 States: Win, Lose

W L$1

1.0

$1

1.0

0.25 $0

0.75
$2

0.75 $2

0.25
$0

Slide additions by Betke

Probability to have
a loss after a win
when playing the
red machine:

Probability to
have a win
after a win
when playing
the blue
machine:

Reward:

Reward:

Offline Planning

 Solving Markov Decision Processes is offline planning
 You determine all quantities through computation
 You need to know the details of the MDP
 You do not actually play the game!

Play Red

Play Blue

Value after playing 100 times:

$150

$100

W L
$1

1.0

$1

1.0

0.25 $0

0.75
$2

0.75 $2

0.25
$0

Let’s Play!

$2 $2 $0 $2 $2
$2 $2 $0 $0 $0

Let’s Play!

Your rewards after playing red 10 times:
 $2 $2 $0 $2 $2 $2 $2 $0 $0 $0

 = $12

Slide additions by Betke

Let’s Play!

Your rewards after playing red 10 times:
 $2 $2 $0 $2 $2 $2 $2 $0 $0 $0

 = $12

Slide additions by Betke

Contrary to the offline situation, you actually won money, rather than just thinking about it!

Let’s Play!

Your rewards after playing red 10 times:
 $2 $2 $0 $2 $2 $2 $2 $0 $0 $0

 = $12

Slide additions by Betke

In this online situation, you are “exploiting” your observations that red is giving you “rewards.”

Let’s Play!

Your rewards after playing red 10 times:
 $2 $2 $0 $2 $2 $2 $2 $0 $0 $0

 = $12

Slide additions by Betke

But wait – shouldn’t you have received $15?

Let’s Play!

Your rewards after playing red 10 times:
 $2 $2 $0 $2 $2 $2 $2 $0 $0 $0

 = $12

Slide additions by Betke

But wait – shouldn’t you have received $15?
Yes, but maybe it’s just a sampling issue. You won 6/10 times.
Just keep on playing some more, and you’ll get closer to winning ¾ of the time.

Online Planning

But no, maybe the rules changed, and red’s win chance is different!!!

W L
$1

1.0

$1

1.0

?? $0

??
$2

?? $2

??
$0

Slide changes by Betke

Let’s Play!

$0 $0 $0 $2 $0
$2 $0 $0 $0 $0

Let’s Play!

Your rewards after playing red 10 times:
 $0 $0 $0 $2 $0 $2 $0 $0 $0 $0
 = $4

Slide additions by Betke

Red is a real bandit – you only won 2/10 times, i.e., you lost $8 !
Cut your losses or exploring more? “Exploration” may yield “regret.”

What Just Happened?

 That wasn’t planning, it was learning!
 Specifically, reinforcement learning
 There was an MDP, but you couldn’t solve it with just computation
 You needed to actually act to figure it out

 Important ideas in reinforcement learning that came up
 Exploration: you have to try unknown actions to get information
 Exploitation: eventually, you have to use what you know
 Regret: even if you learn intelligently, you make mistakes
 Sampling: because of chance, you have to try things repeatedly
 Difficulty: learning can be much harder than solving a known MDP

Reinforcement Learning

 Basic idea:
 Receive feedback in the form of rewards
 Agent’s utility is defined by the reward function
 Must (learn to) act so as to maximize expected rewards
 All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r

Reinforcement Learning

 Still assume a Markov decision process (MDP):
 A set of states s ∈ S
 A set of actions (per state) A
 A model T(s,a,s’)
 A reward function R(s,a,s’)

 Still looking for a policy π(s)

 New twist: don’t know T or R
 We don’t know which states are good or what the actions do
 To learn, we must actually try out actions and states

Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

Taxonomy of RL Methods

Slide by Betke

RL

Model-
based

RL

Model-
free
RL

Example: Expected Age
Goal: Compute expected age of CS 640 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this
work? Because
samples appear
with the right
frequencies.

Why does this
work? Because
eventually you
learn the right

model.

Model-Based Learning

Slide additions by Betke

Try to figure out the model =
Learn existing transition and reward functions

Model-Based Learning

 Model-Based Idea:
 Learn an approximate model based on experiences
 Solve for values as if the learned model were correct

 Step 1: Learn empirical MDP model
 Count outcomes s’ for each s, a
 Normalize to give an estimate of
 Discover each when we experience (s, a, s’)

 Step 2: Solve the learned MDP
 For example, use value (utility) iteration, as before
 (Bellman update equation)

Example: Model-Based Learning

Input Policy π Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

Model-Free Learning

Model-Free Learning

Slide additions by Betke

Expected result of action:
2 gold coins

with true result:
a worthless bow

Compare

Passive Reinforcement Learning

Passive Reinforcement Learning

 Simplified task: policy evaluation
 Input: a fixed policy π(s)
 You don’t know the transitions T(s,a,s’)
 You don’t know the rewards R(s,a,s’)
 Goal: learn the state values

 In this case:
 Learner is “along for the ride”
 No choice about what actions to take
 Just execute the policy and learn from experience
 This is NOT offline planning! You actually take actions in the world.

Passive Reinforcement Learning:
Direct Utility Evaluation

 Goal: Compute values for each state under π

 Idea: Average together observed sample values
 Act according to π
 Every time you visit a state, write down what the

sum of discounted rewards turned out to be
 Average those samples

 This is called direct utility evaluation

Example: Direct Utility Evaluation

Input Policy π Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

Example: Direct Utility Evaluation

Input Policy π Observed Episodes (Training) Utility Values:

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit, x, +10

B, east, C, -1
C, east, D, -1
D, exit, x, +10

E, north, C, -1
C, east, A, -1
A, exit, x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east, D, -1
D, exit, x, +10

A

B C D

E

+8 +4 +10

-10

-2

Slide additions by Betke

Why 8 for B? Episodes 1 & 2: -1-
1+10 + 8 = 16.
Average: 16/2 = 8

Why 4 for C? 9+ 9 + 9 – 11 = 16.
16/4 = 4.

Problems with Direct Evaluation

 What’s good about direct evaluation?
 It’s easy to understand
 It doesn’t require any knowledge of T, R
 It eventually computes the correct average values,

using just sample transitions

 What bad about it?
 It wastes information about state connections
 Each state must be learned separately
 So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

Why Not Use Policy Evaluation?

 Simplified Bellman updates calculate V for a fixed policy:
 Each round, replace V with a one-step-look-ahead layer over V

 This approach fully exploited the connections between the states
 Unfortunately, we need T and R to do it!

 Key question: how can we do this update to V without knowing T and R?
 In other words, how to we take a weighted average without knowing the weights?

π(s)

s

s, π(s)

s, π(s),s’
s’

Betke notes: Value V = Utility U

Sample-Based Policy Evaluation?
 We want to improve our estimate of V by computing these averages:

 Idea: Take samples of outcomes s’ (by doing the action!) and average

π(s)

s

s, π(s)

s1's2' s3'
s, π(s),s’

s'

Almost! But we can’t
rewind time to get sample
after sample from state s.

Betke notes: Value V = Utility U

Example: Sample-Based Policy Evaluation

Set of trials in the environment using policy π:
Trail 1: [1,1][1,2],[1,3][1,2][1,3][2,3][3,3][4,3]
Trail 2: [1,1][1,2][1,3][2,3][3,3][3,2][3,3][4,3]
…

R(s) = -0.04

Example: Sample-Based Policy Evaluation

Set of trials in the environment using policy π:
Trail 1: [1,1][1,2] [1,3] [1,2] [1,3] [2,3][3,3][4,3]
Trail 2: [1,1][1,2] [1,3] [2,3][3,3][3,2][3,3][4,3]
…
At state [1,3]: 2xright, 1xdown: T([1,3],Right,[2,3])=2/3

R(s) = -0.04

Example: Sample-Based Policy Evaluation

Set of trials in the environment using policy π:
Trail 1: [1,1][1,2],[1,3][1,2][1,3][2,3][3,3][4,3]
Trail 2: [1,1][1,2][1,3][2,3][3,3][3,2][3,3][4,3]
…
Say, after trail 1: U(1,3)=0.84, U(2,3)=0.92
Update: U(1,3)=-0.04+U(2,3) = -0.04+0.92= 0.88
Current estimate 0.84 is a little low.

R(s) = -0.04

0.84 0.92

Example: Sample-Based Policy Evaluation

Set of trials in the environment using policy π:
Trail 1: [1,1][1,2],[1,3][1,2][1,3][2,3][3,3][4,3]
Trail 2: [1,1][1,2][1,3][2,3][3,3][3,2][3,3][4,3]
…
Say, after trail 1: U(1,3)=0.84, U(2,3)=0.92
Update: U(1,3)=-0.04+U(2,3) = -0.04+0.92= 0.88
Current estimate 0.84 is a little low. Use learning rate α.
Update: U(s) U(s) + α [R(s) + γ U(s’) – U(s)]
This update rule is the Temporal-difference (TD) equation.

R(s) = -0.04

0.84 0.92

Temporal Difference Learning

 Big idea: learn from every experience!
 Update V(s) each time we experience a transition (s, a, s’, r)
 Likely outcomes s’ will contribute updates more often

 Temporal difference learning of values
 Policy still fixed, still doing evaluation!
 Move values toward value of whatever successor occurs: running average

π(s)
s

s, π(s)

s’

Sample of V(s):

Update to V(s):

Same update:

Betke notes: Value V = Utility U

Exponential Moving Average

 Exponential moving average
 The running interpolation update:

 Makes recent samples more important:

 Forgets about the past (distant past values were wrong anyway)

 Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

Assume: γ = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

Betke additions
B: 0.5 x 0 + 0.5 [-2 + 0] = -1
C: 0.5 x 0 + 0.5 [-2 + 8] = 3

Problems with TD Value (Utility) Learning

 TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

 However, if we want to turn values into a (new) policy, we’re sunk:

 π(s) = arg maxa Σs’ T(s,a,s’) [R(s,a,s’) + γ V(s’)]
 Learning values (=utilities) for each state is not enough

 Alternative: The “Q-learning” method, which learns an
 action-utility representation (instead of just a utility representation)
 Q(a,s) = value of doing action a in state s. U(s) =maxa Q(s,a)

Betke

Reminder: Passive Reinforcement Learning

 Simplified task: policy evaluation
 Input: a fixed policy π(s)
 You don’t know the transitions T(s,a,s’)
 You don’t know the rewards R(s,a,s’)
 Goal: learn the state values

 In this case:
 Learner is “along for the ride”
 No choice about what actions to take
 Just execute the policy and learn from experience
 This is NOT offline planning! You actually take actions in the world.

Active Reinforcement Learning

 Full reinforcement learning: optimal policies (like value iteration)
 You don’t know the transitions T(s,a,s’)
 You don’t know the rewards R(s,a,s’)
 You choose the actions now
 Goal: learn the optimal policy / values

 In this case:
 Learner makes choices!
 Fundamental tradeoff: exploration vs. exploitation
 This is NOT offline planning! You actually take actions in the world and

find out what happens…

Active Reinforcement Learning

Exploration vs. Exploitation

Bandit Problems are Active RL Problems

Your rewards after playing red 10 times:
 $0 $0 $0 $2 $0 $2 $0 $0 $0 $0
 = $4

Slide additions by Betke

Red is a real bandit – you only won 2/10 times, i.e., you lost $8 !
Cut your losses or exploring more? “Exploration” may yield “regret.”

Active RL: Manual Exploration – Bridge Grid

How to Explore?

 Several schemes for forcing exploration
 Simplest: random actions (ε-greedy)
 Every time step, flip a coin
 With (small) probability ε, act randomly
 With (large) probability 1-ε, act on current policy

Video of Demo Q-learning – Epsilon-Greedy – Crawler

How to Explore?

 Several schemes for forcing exploration
 Simplest: random actions (ε-greedy)
 Every time step, flip a coin
 With (small) probability ε, act randomly
 With (large) probability 1-ε, act on current policy

 Problems with random actions?
 You do eventually explore the space, but keep

thrashing around once learning is done
 One solution: lower ε over time
 Another solution: exploration functions

Q learning
 Q functions store utility information
 Agent that learns Q function does not need a model of the form

P(s’|s,a) for learning or action selection.
 Thus, Q-learning is model-free method.
 When Q values are correct, this equation must hold at

equilibrium:

Q(s,a) = R(s) + γ Σ s’ P(s’|s,a) maxa’ Q(s’,a’)

 Update equation for TD Q learning:
Q(s,a) Q(s,a) + α (R(s) + γ maxa’ Q(s’,a’) – Q(s,a))

Q-Value Iteration

 Value iteration: find successive (depth-limited) values
 Start with V0(s) = 0, which we know is right
 Given Vk, calculate the depth k+1 values for all states:

 But Q-values are more useful, so compute them instead
 Start with Q0(s,a) = 0, which we know is right
 Given Qk, calculate the depth k+1 Q-values for all states:

Q-Learning
 Q-Learning: sample-based Q-value iteration

 Learn Q(s,a) values as you go
 Receive a sample (s,a,s’,r)
 Consider your old estimate:
 Consider your new sample estimate:

 Incorporate the new estimate into a running average:

Q-Learning Properties

 Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

 This is called off-policy learning

 Caveats:
 You have to explore enough
 You have to eventually make the learning rate
 small enough
 … but not decrease it too quickly
 Basically, in the limit, it doesn’t matter how you select actions (!)

Exploration Functions f(u,n)
 When to explore?
 Random actions: explore a fixed amount
 Better idea: explore areas whose badness is not
 (yet) established, eventually stop exploring

 Exploration function
Takes a utility estimate u and a visit count n, and
 returns an optimistic utility, e.g.

 Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update:

Regular Q-Update:

Regret

 Even if you learn the optimal policy,
you still make mistakes along the way!

 Regret is a measure of your total
mistake cost: the difference between
your (expected) rewards, including
youthful suboptimality, and optimal
(expected) rewards

 Minimizing regret goes beyond
learning to be optimal – it requires
optimally learning to be optimal

 Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret

Generalizing Across States

 Basic Q-Learning keeps a table of all q-values

 In realistic situations, we cannot possibly learn
about every single state!
 Too many states to visit them all in training
 Too many states to hold the Q-tables in memory

 Instead, we want to generalize:
 Learn about some small number of training states from

experience
 Generalize that experience to new, similar situations
 This is a fundamental idea in machine learning, and we’ll

see it over and over again

Example: Pacman

Let’s say we discover
through experience

that this state is bad:

In naïve Q-learning,
we know nothing
about this state:

Or even this one!

Video of Demo Q-Learning Pacman – Tiny – Watch All

Video of Demo Q-Learning Pacman – Tiny – Silent Train

Video of Demo Q-Learning Pacman – Tricky – Watch All

Approximate Q-Learning

PacMan:

When you learn that a ghost is bad,
you should transfer that knowledge to
other states that have ghosts

So you don’t actually have to explore
all states that have ghosts (Q-learning)
and can get away with not exploring all
states (approximate Q-learning).

Betke

Feature-Based Representations

 Solution: describe a state using a vector of
features (properties)
 Features are functions from states to real numbers

(often 0/1) that capture important properties of the
state

 Example features:
 Distance to closest ghost
 Distance to closest dot
 Number of ghosts
 1 / (dist to dot)2

 Is Pacman in a tunnel? (0/1)
 …… etc.

 Can also describe a q-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

 Using a feature representation, we can write a Q function (or value function) for any
state using a few weights:

 Advantage: our experience is summed up in a few powerful numbers

 Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

 Q-learning with linear Q-functions:

 Intuitive interpretation:
 Adjust weights of active features
 E.g., if something unexpectedly bad happens, blame the features that were on:

disprefer all states with that state’s features

 Formal justification: online least squares

Exact Q’s

Approximate Q’s

Example: Q-Pacman

Video of Demo Approximate Q-Learning -- Pacman

Linear Value Functions

 Using a feature representation, we can write a Q function (or value function) for any
state using a few weights:

 Advantage: our experience is summed up in a few powerful numbers

 Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

 Q-learning with linear Q-functions:

 Intuitive interpretation:
 Adjust weights of active features
 E.g., if something unexpectedly bad happens, blame the features that were on:

disprefer all states with that state’s features

Exact Q’s

Approximate Q’s

Policy Search

Policy Search

 Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V or Q best

 Solution: learn policies that maximize rewards, not the values that predict them

 Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
on feature weights

Policy Search

 Simplest policy search:
 Start with an initial linear value function or Q-function
 Nudge each feature weight up and down and see if your policy is better than before

 Problems:
 How do we tell the policy got better?
 Need to run many sample episodes!
 If there are a lot of features, this can be impractical

 Better methods exploit lookahead structure, sample wisely, change
multiple parameters…

RL and Deep Learning

RL

Model-based
RL (access
to R & T)

Model-free
RL

Q-Learning

Deep Q-Learning

Utility Iteration

Utility Iteration
where state of
environment
represented by
NN embedding

More on this in BU’s Deep Learning class

Learning Outcomes
You should be able to explain:
 MDPs vs RL
 Planning (Offline) vs Learning (Online)
 RL
 Model-based (sample actions to learn T and R)
 Model-free

 Passive: Policy evaluation (direct evaluation vs. TD learning)
 Active: Q-learning (converges to optimal policy, but agent needs to explore enough)

 Exploration vs. Exploitation
 Explore: ε-greedy, exploration function

 Approximate Q-learning with linear value functions
 Policy Search

	Slide Number 1
	Learning Outcomes
	CS 188: Artificial Intelligence�
	Reinforcement Learning
	Reinforcement Learning
	Slide Number 6
	Example: Learning to Walk
	Example: Learning to Walk
	Example: Learning to Walk
	Example: Learning to Walk
	Example: Toddler Robot
	The Crawler!
	Video of Demo Crawler Bot
	CS 188: Artificial Intelligence�
	Non-Deterministic Search
	Example: Grid World
	Grid World Actions
	Markov Decision Processes
	What is Markov about MDPs?
	MDP Search Trees
	Example: Racing
	Example: Racing
	Racing Search Tree
	Utilities of Sequences
	Utilities of Sequences
	Discounting
	Discounting
	Stationary Preferences
	Example: Grid World
	Policies
	Optimal Policies
	Optimal Policy
	Optimal Policy
	Policy would not be optimal if:
	Optimal Policy
	Optimal Policy
	For different R(s): Different Optimal Policy
	For different R(s): Different Optimal Policy
	Utility of States, given Policy p
	Utility of States, given Policy p
	Utility of States, given Policy p
	Utility of States, given Policy p
	How to Compute Utility of States
	Infinite Utilities?!
	Slide Number 46
	Double Bandits
	Double Bandits
	Double Bandits
	Double Bandits
	Double-Bandit Markov Decision Process
	Double-Bandit Markov Decision Process
	Offline Planning
	Let’s Play!
	Let’s Play!
	Let’s Play!
	Let’s Play!
	Let’s Play!
	Let’s Play!
	Online Planning
	Let’s Play!
	Let’s Play!
	What Just Happened?
	Reinforcement Learning
	Reinforcement Learning
	Offline (MDPs) vs. Online (RL)
	Taxonomy of RL Methods
	Example: Expected Age
	Model-Based Learning
	Model-Based Learning
	Example: Model-Based Learning
	Model-Free Learning
	Model-Free Learning
	Passive Reinforcement Learning
	Passive Reinforcement Learning
	Passive Reinforcement Learning:�Direct Utility Evaluation
	Example: Direct Utility Evaluation
	Example: Direct Utility Evaluation
	Problems with Direct Evaluation
	Why Not Use Policy Evaluation?
	Sample-Based Policy Evaluation?
	Example: Sample-Based Policy Evaluation
	Example: Sample-Based Policy Evaluation
	Example: Sample-Based Policy Evaluation
	Example: Sample-Based Policy Evaluation
	Temporal Difference Learning
	Exponential Moving Average
	Example: Temporal Difference Learning
	Problems with TD Value (Utility) Learning
	Reminder: Passive Reinforcement Learning
	Active Reinforcement Learning
	Active Reinforcement Learning
	Exploration vs. Exploitation
	Bandit Problems are Active RL Problems
	Active RL: Manual Exploration – Bridge Grid
	How to Explore?
	Video of Demo Q-learning – Epsilon-Greedy – Crawler
	How to Explore?
	Q learning
	Q-Value Iteration
	Q-Learning
	Q-Learning Properties
	Exploration Functions f(u,n)
	Regret
	Generalizing Across States
	Example: Pacman
	Video of Demo Q-Learning Pacman – Tiny – Watch All
	Video of Demo Q-Learning Pacman – Tiny – Silent Train
	Video of Demo Q-Learning Pacman – Tricky – Watch All
	Approximate Q-Learning
	Feature-Based Representations
	Linear Value Functions
	Approximate Q-Learning
	Example: Q-Pacman
	Video of Demo Approximate Q-Learning -- Pacman
	Linear Value Functions
	Approximate Q-Learning
	Policy Search
	Policy Search
	Policy Search
	RL and Deep Learning
	Learning Outcomes

