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Learning Outcomes
You should be able to explain:
 MDPs vs RL 
 Planning (Offline) vs Learning (Online)
 RL
 Model-based (sample actions to learn T and R)
 Model-free

 Passive: Policy evaluation (direct evaluation vs. TD learning)
 Active: Q-learning (converges to optimal policy, but agent needs to explore enough)

 Exploration vs. Exploitation
 Explore: ε-greedy, exploration function 

 Approximate Q-learning with linear value functions
 Policy Search
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Reinforcement Learning



Reinforcement Learning

Basic idea:
 Receive feedback in the form of rewards
 The agent’s utility at a state is defined by the sum of rewards agent obtained 

when at that state 
 Agent must learn to act so as to maximize expected rewards
 All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r

Slide additions by Betke



Chapter 22 – Reinforcement Learning
Sections 22.1-22.5

Chapter 17.3 – Bandit Problems

AIMA



Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]



Example: Learning to Walk

Initial
[Video: AIBO WALK – initial][Kohl and Stone, ICRA 2004]



Example: Learning to Walk

Training
[Video: AIBO WALK – training][Kohl and Stone, ICRA 2004]



Example: Learning to Walk

Finished
[Video: AIBO WALK – finished][Kohl and Stone, ICRA 2004]



Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER – 40s]



The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]



Video of Demo Crawler Bot
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Non-Deterministic Search



Example: Grid World

 A maze-like problem
 The agent lives in a grid
 Walls block the agent’s path

 Noisy movement: actions do not always go as planned
 80% of the time, the action North takes the agent North 

(if there is no wall there)
 10% of the time, North takes the agent West; 10% East
 If there is a wall in the direction the agent would have 

been taken, the agent stays put

 The agent receives rewards each time step
 Small “living” reward each step (can be negative)
 Big rewards come at the end (good or bad)

 Goal: maximize sum of rewards



Grid World Actions
Deterministic Grid World Stochastic Grid World



Markov Decision Processes

 An MDP is defined by:
 A set of states s ∈ S
 A set of actions a ∈ A
 A transition function T(s, a, s’)

 Probability that a from s leads to s’, i.e., P(s’| s, a)
 Also called the model or the dynamics

 A reward function R(s, a, s’) 
 Sometimes just R(s) or R(s’)

 A start state
 Maybe a terminal state

 MDPs are non-deterministic search problems



What is Markov about MDPs?

 “Markov” generally means that given the present state, the 
future and the past are independent

 For Markov decision processes, “Markov” means action 
outcomes depend only on the current state

 The successor function only depends on the current state, not 
the history

Andrey Markov 
(1856-1922)



MDP Search Trees

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a q-
state



Example: Racing



Example: Racing
 A robot car wants to travel far, quickly
 Three states: Cool, Warm, Overheated
 Two actions: Slow, Fast
 Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5 

0.5 

0.5 

0.5 

1.0 

1.0 

+1 

+1 

+1 

+2 

+2 

-10



Racing Search Tree



Utilities of Sequences



Utilities of Sequences

What preferences should an agent have over reward sequences?

 More or less?

 Now or later?



Discounting

 It’s reasonable to maximize the sum of rewards
 It’s also reasonable to prefer rewards now to rewards later
 One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps



Discounting

 How to discount?
 Each time we descend a level, we 

multiply in the discount once

 Why discount?
 Sooner rewards probably do have 

higher utility than later rewards

 Example: discount of 0.5
 U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 U([1,2,3]) < U([3,2,1])



Stationary Preferences

 Theorem: if we assume stationary preferences:

 Then: there are only two ways to define utilities

 Additive utility:

 Discounted utility:



Example: Grid World

 A maze-like problem
 The agent lives in a grid
 Walls block the agent’s path

 Noisy movement: actions do not always go as planned
 80% of the time, the action North takes the agent North 

(if there is no wall there)
 10% of the time, North takes the agent West; 10% East
 If there is a wall in the direction the agent would have 

been taken, the agent stays put

 The agent receives rewards each time step
 Small “living” reward each step (can be negative)
 Big rewards come at the end (good or bad)

 Goal: maximize sum of rewards
Action: N

0.8

0.1 0.1

Action: E

0.1

0.1

0.8



Policies

 In deterministic single-agent search problems, 
we wanted an optimal plan, or sequence of 
actions, from start to a goal

 For MDPs, we want an optimal policy π*: S → A
 A policy π gives an action for each state
 An optimal policy is one that maximizes        

expected utility if followed



Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01



Optimal Policy
R(s) = -0.01

R(s) is the “living reward” – each time the agent makes a step, it costs 0.01.

Here, the agent tries to avoid falling into the terminal state with the “-1” 
reward.

When following the action arrows in each of the non-terminal grid states, 
there is NO risk of ever falling into the “-1” end state.

When next two the “-1” end state, the agent heads in the opposite direction, 
even if the likelihood of banging against the wall that is directly ahead is 80%.

 

1        2         3        4 

3 

2 

1 

Slide by Betke



Optimal Policy
R(s) = -0.01

R(s) is the “living reward” – each time the agent makes a step, it costs 0.01.

Here, the agent tries to avoid falling into the terminal state with the “-1” 
reward.

When following the action arrows in each of the non-terminal grid states, 
there is NO risk of ever falling into the “-1” end state.

When next two the “-1” end state, the agent heads in the opposite direction, 
even if the likelihood of banging against the wall that is directly ahead is 80%.

 

[3,2]

       [3,1]                 [3,2]                 [3,3]

[3,1][2,1][3,2]   [3,1],[3,2][3,3]   [3,3] [4,3][3,2]
       …                      …               …           …

1        2         3        4 

3 

2 

1 

Sum of rewards of all 2-step 
state  sequences starting at [3,2]:
-0.01-0.01
Except:
-0.01-0.01+1

Slide by Betke



Policy would not be optimal if:
R(s) = -0.01

R(s) is the “living reward” – each time the agent makes a step, it costs 0.01.

Here, the agent tries to avoid falling into the terminal state with the “-1” 
reward.

When following the action arrows in each of the non-terminal grid states, 
there is NO risk of ever falling into the “-1” end state.

When next two the “-1” end state, the agent heads in the opposite direction, 
even if the likelihood of banging against the wall that is directly ahead is 80%.

 

[3,2]

       [4,2]                 [3,2]                 [3,3]

                        [3,1],[3,2][3,3]   [3,3] [4,3][3,2]
                          …               …           …

1        2         3        4 

3 

2 

1 

Sum of rewards of all 2-step 
state  sequences starting at [3,2]:
-0.01-0.01=-0.02
Except:
-0.01-0.01+1 = 0.98

Now also 1 step sequence ending
in [4,2]:  
-0.01-1 = -1.01

10% 80%
10%

10%

Slide  by Betke



Optimal Policy

R(s) = -2.0

Life is so dreadfully expensive that the agent heads to the nearest exit from 
all tiles, even if the nearest exit is [4,2], which will cost -1.

Slide additions by Betke



Optimal Policy

R(s) = -0.4

Agent’s life is quite unpleasant: Each step costs 0.4.

Agent is willing to take the risk of falling into [4,2] from [3,2].

Agent tries to reach [4,3] on a shortest path from all grid tiles, 
even taking the shortcut from [3,1] to [3,2] (rather than keeping 
away from grid tiles neighboring [4,2]. 

Slide by Betke



For different R(s):  Different Optimal Policy

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Slide additions by Betke



For different R(s):  Different Optimal Policy

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Slide additions by Betke

How can 
we 
determine
the optimal 
policy?

That is:
Which 
direction
to move at 
each tile? 



Utility of States, given Policy π

Uπ(s) = E [ Σt=0  γt  R(st) | π, s0 = s ]                                                   
If agent executes optimal policy π*:  Utility of a state U(s) = Uπ*(s)

Slide by Betke

∞

0.812

0.6110.655

0.762

0.705 0.388

0.660

0.868 0.918

γ = 1R(s) = -0.04

R(s) = -0.04



Utility of States, given Policy π

Uπ(s) = E [ Σt=0  γt  R(st) | π, s0 = s ]                                                   
If agent executes optimal policy π*:  Utility of a state U(s) = Uπ*(s)

Slide by Betke

∞

0.812

0.6110.655

0.762

0.705 0.388

0.660

0.868 0.918

γ = 1R(s) = -0.04

π* (s) = argmaxa Σ s’ T(s,a,s’) U(s’)

Choose action that maximizes the expected utility of 
the subsequent state s’.

U(s) = R(s) + γ maxa Σ s’ T(s,a,s’) U(s’)

Immediate
reward at s

Expected discounted utility of next state,
assuming agent chooses optimal action



Utility of States, given Policy π

Slide by Betke

0.388

0.812

0.6110.655

0.762

0.705

0.660

0.868 0.918

γ = 1R(s) = -0.04

U(s) = R(s) + γ maxa Σ s’ T(s,a,s’) U(s’)

U(1,1) = -0.04 + γ max{

0.8 U(1,2)+0.1U(2,1)+0.1U(1,1),
0.9 U(1,1)+0.1U(1,2),
0.9 U(1,1)+0.1U(2,1),
0.8 U(2,1)+0.1U(1,1)+0.1U(1,2)
                                

Immediate
reward at s

Expected discounted utility of next state,
assuming agent chooses optimal action

Up
Left
Down 
Right



Utility of States, given Policy π
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0.388

0.812

0.6110.655

0.762

0.705

0.660

0.868 0.918

γ = 1R(s) = -0.04

U(s) = R(s) + γ maxa Σ s’ T(s,a,s’) U(s’)

U(1,1) = -0.04 + γ max{

0.8 U(1,2)+0.1U(2,1)+0.1U(1,1),
0.9 U(1,1)+0.1U(1,2),
0.9 U(1,1)+0.1U(2,1),
0.8 U(2,1)+0.1U(1,1)+0.1U(1,2)
                                

Immediate
reward at s

Expected discounted utility of next state,
assuming agent chooses optimal action

Up
Left
Down 
Right

= -0.04 + 0.8x0.762+0.1x0.655+0.1x0.705 = 0.7056 



How to Compute Utility of States

Bellman Equation:

U(s) = R(s) + γ maxa Σ s’ T(s,a,s’) U(s’)

Value Iteration Algorithm:
Initial U’s = zero

Update: Ui+1(s) = R(s) + γ maxa Σ s’ T(s,a,s’) Ui(s’)
Terminate upon convergence



Infinite Utilities?!

 Problem: What if the game lasts forever?  Do we get infinite rewards?

 Solutions:
 Finite horizon: (similar to depth-limited search)

 Terminate episodes after a fixed T steps (e.g. life)
 Gives nonstationary policies (π depends on time left)

 Discounting: use 0 < γ < 1

 Smaller γ means smaller “horizon” – shorter term focus

 Absorbing state: guarantee that for every policy, a terminal state will eventually 
be reached (like “overheated” for racing)



Single-arm bandit  versus multi-armed bandits

Slide by Betke, image by Yamaguchi先生, illustrations by Yim 

A slot machine is called a bandit
because it typically robs you of 
your money. 

The gambler must decide which 
machines to play, how many times 
to play each machine and in which 
order to play them, and whether to 
continue with the current machine
 or try a different machine.

Each slot machine has 
its own distribution of wins.  
When the gambler pulls the lever 
down, it samples the bandit’s 
distribution.single arm multiple arms



Double Bandits



Double Bandits

Slide additions by Betke

Blue:
A deterministic bandit.
Each time you play, 
you are guaranteed to win $1.

Red:
A fair bandit: 
Half the time you play, you win $2 
the other half you win $0.

Gambler:
Which slot machine 
should I play?

Cost of a single play: 
$1



Double Bandits

Slide additions by Betke

Blue:
A deterministic bandit.
Each time you play, 
you are guaranteed to win $1.

Red:
A generous non-bandit: 
Each time you play, you win $2      
¾ of the time and $0 ¼ of the time.

How much money are you expected 
to win if you play 10 times?

Gambler:
Which slot machine 
should I play?

Cost of a single play: 
$1



Double Bandits

Slide additions by Betke

Blue:
A deterministic bandit.
Each time you play, 
you are guaranteed to win $1.

Red:
A generous non-bandit: 
Each time you play, you win $2 ¾ of 
the time and $0 ¼ of the time.

How much money are you expected 
to win if you play 10 times?

10 x $2 x ¾ + 10 x $0 x ¼ = $15

Gambler:
Which slot machine 
should I play?

Cost of a single play: 
$1



Double-Bandit Markov Decision Process

 Actions: Blue 
 States: Win, Lose

W L$1

1.0

$1

1.0

Slide additions by Betke

Probability to 
have a win 
after a win
when playing 
the blue 
machine:

Reward:



Double-Bandit Markov Decision Process

 Actions: Blue, Red
 States: Win, Lose

W L$1

1.0

$1

1.0

0.25 $0

0.75 
$2

0.75 $2

0.25 
$0

Slide additions by Betke

Probability to have 
a loss after a win 
when playing the 
red machine:

Probability to 
have a win 
after a win
when playing 
the blue 
machine:

Reward:

Reward:



Offline Planning

 Solving Markov Decision Processes is offline planning
 You determine all quantities through computation
 You need to know the details of the MDP
 You do not actually play the game!

Play Red

Play Blue

Value after playing 100 times:

$150

$100

W L
$1

1.0

$1

1.0

0.25 $0

0.75 
$2

0.75 $2

0.25 
$0



Let’s Play!

$2 $2 $0 $2 $2
$2 $2 $0 $0 $0



Let’s Play!

Your rewards after playing red 10 times:
 $2  $2  $0  $2  $2  $2  $2  $0  $0  $0

                             =  $12

Slide additions by Betke



Let’s Play!

Your rewards after playing red 10 times:
 $2  $2  $0  $2  $2  $2  $2  $0  $0  $0

                             =  $12

Slide additions by Betke

Contrary to the offline situation, you actually won money, rather than just thinking about it! 



Let’s Play!

Your rewards after playing red 10 times:
 $2  $2  $0  $2  $2  $2  $2  $0  $0  $0

                             =  $12

Slide additions by Betke

In this online situation, you are “exploiting” your observations that red is giving you “rewards.” 



Let’s Play!

Your rewards after playing red 10 times:
 $2  $2  $0  $2  $2  $2  $2  $0  $0  $0

                             =  $12

Slide additions by Betke

But wait – shouldn’t you have received $15?  



Let’s Play!

Your rewards after playing red 10 times:
 $2  $2  $0  $2  $2  $2  $2  $0  $0  $0

                             =  $12

Slide additions by Betke

But wait – shouldn’t you have received $15? 
Yes, but maybe it’s just a sampling issue.  You won 6/10 times.
Just keep on playing some more, and you’ll get closer to winning ¾ of the time. 



Online Planning

But no, maybe the rules changed, and red’s win chance is different!!!

W L
$1

1.0

$1

1.0

?? $0

?? 
$2

?? $2

?? 
$0

Slide changes by Betke



Let’s Play!

$0 $0 $0 $2 $0
$2 $0 $0 $0 $0



Let’s Play!

Your rewards after playing red 10 times:
 $0  $0  $0  $2  $0  $2  $0  $0  $0  $0
                             =  $4

Slide additions by Betke

Red is a real bandit – you only won 2/10 times, i.e., you lost $8 !   
Cut your losses or exploring more?   “Exploration” may yield “regret.” 



What Just Happened?

 That wasn’t planning, it was learning!
 Specifically, reinforcement learning
 There was an MDP, but you couldn’t solve it with just computation
 You needed to actually act to figure it out

 Important ideas in reinforcement learning that came up
 Exploration: you have to try unknown actions to get information
 Exploitation: eventually, you have to use what you know
 Regret: even if you learn intelligently, you make mistakes
 Sampling: because of chance, you have to try things repeatedly
 Difficulty: learning can be much harder than solving a known MDP



Reinforcement Learning

 Basic idea:
 Receive feedback in the form of rewards
 Agent’s utility is defined by the reward function
 Must (learn to) act so as to maximize expected rewards
 All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r



Reinforcement Learning

 Still assume a Markov decision process (MDP):
 A set of states s ∈ S
 A set of actions (per state) A
 A model T(s,a,s’)
 A reward function R(s,a,s’)

 Still looking for a policy π(s)

 New twist: don’t know T or R
 We don’t know which states are good or what the actions do
 To learn, we must actually try out actions and states



Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning



Taxonomy of RL Methods

Slide by Betke

RL 

Model-
based

RL 

Model-
free
RL 



Example: Expected Age
Goal: Compute expected age of CS 640 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this 
work?  Because 
samples appear 
with the right 
frequencies.

Why does this 
work?  Because 
eventually you 
learn the right 

model.



Model-Based Learning

Slide additions by Betke

Try to figure out the model  =
Learn existing transition and reward functions 



Model-Based Learning

 Model-Based Idea:
 Learn an approximate model based on experiences
 Solve for values as if the learned model were correct

 Step 1: Learn empirical MDP model
 Count outcomes s’ for each s, a
 Normalize to give an estimate of
 Discover each when we experience (s, a, s’)

 Step 2: Solve the learned MDP
 For example, use value (utility) iteration, as before
  (Bellman update equation)



Example: Model-Based Learning

Input Policy π Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…



Model-Free Learning



Model-Free Learning

Slide additions by Betke

Expected result of action:
2 gold coins

with true result:
a worthless bow 

Compare



Passive Reinforcement Learning



Passive Reinforcement Learning

 Simplified task: policy evaluation
 Input: a fixed policy π(s)
 You don’t know the transitions T(s,a,s’)
 You don’t know the rewards R(s,a,s’)
 Goal: learn the state values

 In this case:
 Learner is “along for the ride”
 No choice about what actions to take
 Just execute the policy and learn from experience
 This is NOT offline planning!  You actually take actions in the world.



Passive Reinforcement Learning:
Direct Utility Evaluation

 Goal: Compute values for each state under π

 Idea: Average together observed sample values
 Act according to π
 Every time you visit a state, write down what the 

sum of discounted rewards turned out to be
 Average those samples

 This is called direct utility evaluation



Example: Direct Utility Evaluation

Input Policy π Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

A

B C D

E

+8 +4 +10

-10

-2



Example: Direct Utility Evaluation

Input Policy π Observed Episodes (Training) Utility Values:

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

A

B C D

E

+8 +4 +10

-10

-2

Slide additions by Betke

Why 8 for B?  Episodes 1 & 2: -1-
1+10 + 8 = 16. 
Average:  16/2 = 8

Why 4 for C?  9+ 9 + 9 – 11 = 16.  
16/4 = 4.



Problems with Direct Evaluation

 What’s good about direct evaluation?
 It’s easy to understand
 It doesn’t require any knowledge of T, R
 It eventually computes the correct average values, 

using just sample transitions

 What bad about it?
 It wastes information about state connections
 Each state must be learned separately
 So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C 
under this policy, how can 
their values be different?



Why Not Use Policy Evaluation?

 Simplified Bellman updates calculate V for a fixed policy:
 Each round, replace V with a one-step-look-ahead layer over V

 This approach fully exploited the connections between the states
 Unfortunately, we need T and R to do it!

 Key question: how can we do this update to V without knowing T and R?
 In other words, how to we take a weighted average without knowing the weights?

π(s)

s

s, π(s)

s, π(s),s’
s’

Betke notes:  Value V = Utility U 



Sample-Based Policy Evaluation?
 We want to improve our estimate of V by computing these averages:

 Idea: Take samples of outcomes s’ (by doing the action!) and average

π(s)

s

s, π(s)

s1's2' s3'
s, π(s),s’

s'

Almost!  But we can’t 
rewind time to get sample 
after sample from state s.

Betke notes:  Value V = Utility U 



Example: Sample-Based Policy Evaluation 

Set of trials in the environment using policy π:
Trail 1: [1,1][1,2],[1,3][1,2][1,3][2,3][3,3][4,3]
Trail 2: [1,1][1,2][1,3][2,3][3,3][3,2][3,3][4,3]
…

R(s) = -0.04



Example: Sample-Based Policy Evaluation 

Set of trials in the environment using policy π:
Trail 1: [1,1][1,2] [1,3] [1,2] [1,3] [2,3][3,3][4,3]
Trail 2: [1,1][1,2] [1,3] [2,3][3,3][3,2][3,3][4,3]
…
At state [1,3]: 2xright, 1xdown: T([1,3],Right,[2,3])=2/3

R(s) = -0.04



Example: Sample-Based Policy Evaluation 

Set of trials in the environment using policy π:
Trail 1: [1,1][1,2],[1,3][1,2][1,3][2,3][3,3][4,3]
Trail 2: [1,1][1,2][1,3][2,3][3,3][3,2][3,3][4,3]
…
Say, after trail 1: U(1,3)=0.84, U(2,3)=0.92
Update: U(1,3)=-0.04+U(2,3) = -0.04+0.92= 0.88
Current estimate 0.84 is a little low.  

R(s) = -0.04

0.84 0.92



Example: Sample-Based Policy Evaluation 

Set of trials in the environment using policy π:
Trail 1: [1,1][1,2],[1,3][1,2][1,3][2,3][3,3][4,3]
Trail 2: [1,1][1,2][1,3][2,3][3,3][3,2][3,3][4,3]
…
Say, after trail 1: U(1,3)=0.84, U(2,3)=0.92
Update: U(1,3)=-0.04+U(2,3) = -0.04+0.92= 0.88
Current estimate 0.84 is a little low.  Use learning rate α.
Update: U(s)  U(s) + α [ R(s) + γ U(s’) – U(s) ]
This update rule is the Temporal-difference (TD) equation.

R(s) = -0.04

0.84 0.92



Temporal Difference Learning

 Big idea: learn from every experience!
 Update V(s) each time we experience a transition (s, a, s’, r)
 Likely outcomes s’ will contribute updates more often

 Temporal difference learning of values
 Policy still fixed, still doing evaluation!
 Move values toward value of whatever successor occurs: running average

π(s)
s

s, π(s)

s’

Sample of V(s):

Update to V(s):

Same update:

Betke notes:  Value V = Utility U 



Exponential Moving Average

 Exponential moving average 
 The running interpolation update:

 Makes recent samples more important:

 Forgets about the past (distant past values were wrong anyway)

 Decreasing learning rate (alpha) can give converging averages



Example: Temporal Difference Learning

Assume: γ = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

Betke additions
B: 0.5 x 0 + 0.5 [ -2 + 0]  = -1 
C: 0.5 x 0 + 0.5 [-2 + 8 ] = 3



Problems with TD Value (Utility) Learning

 TD value leaning is a model-free way to do policy evaluation, mimicking 
Bellman updates with running sample averages

 However, if we want to turn values into a (new) policy, we’re sunk:

 π(s) = arg maxa  Σs’ T(s,a,s’) [ R(s,a,s’) + γ V(s’) ] 
 Learning values (=utilities) for each state is not enough

 Alternative: The “Q-learning” method, which learns an 
 action-utility representation (instead of just a utility representation)
 Q(a,s) = value of doing action a in state s.   U(s) =maxa Q(s,a)

Betke



Reminder:  Passive Reinforcement Learning

 Simplified task: policy evaluation
 Input: a fixed policy π(s)
 You don’t know the transitions T(s,a,s’)
 You don’t know the rewards R(s,a,s’)
 Goal: learn the state values

 In this case:
 Learner is “along for the ride”
 No choice about what actions to take
 Just execute the policy and learn from experience
 This is NOT offline planning!  You actually take actions in the world.



Active Reinforcement Learning

 Full reinforcement learning: optimal policies (like value iteration)
 You don’t know the transitions T(s,a,s’)
 You don’t know the rewards R(s,a,s’)
 You choose the actions now
 Goal: learn the optimal policy / values

 In this case:
 Learner makes choices!
 Fundamental tradeoff: exploration vs. exploitation
 This is NOT offline planning!  You actually take actions in the world and 

find out what happens…



Active Reinforcement Learning



Exploration vs. Exploitation



Bandit Problems are Active RL Problems

Your rewards after playing red 10 times:
 $0  $0  $0  $2  $0  $2  $0  $0  $0  $0
                             =  $4

Slide additions by Betke

Red is a real bandit – you only won 2/10 times, i.e., you lost $8 !   
Cut your losses or exploring more?   “Exploration” may yield “regret.” 



Active RL:  Manual Exploration – Bridge Grid 



How to Explore?

 Several schemes for forcing exploration
 Simplest: random actions (ε-greedy)
 Every time step, flip a coin
 With (small) probability ε, act randomly
 With (large) probability 1-ε, act on current policy



Video of Demo Q-learning – Epsilon-Greedy – Crawler 



How to Explore?

 Several schemes for forcing exploration
 Simplest: random actions (ε-greedy)
 Every time step, flip a coin
 With (small) probability ε, act randomly
 With (large) probability 1-ε, act on current policy

 Problems with random actions?
 You do eventually explore the space, but keep 

thrashing around once learning is done
 One solution: lower ε over time
 Another solution: exploration functions



Q learning
 Q functions store utility information
 Agent that learns Q function does not need a model of the form 

P(s’|s,a) for learning or action selection.
 Thus, Q-learning is model-free method.
 When Q values are correct, this equation must hold at 

equilibrium:

Q(s,a) = R(s) + γ  Σ s’ P(s’|s,a) maxa’  Q(s’,a’)

 Update equation for TD Q learning:
Q(s,a)   Q(s,a) + α (R(s) + γ  maxa’  Q(s’,a’) – Q(s,a))



Q-Value Iteration

 Value iteration: find successive (depth-limited) values
 Start with V0(s) = 0, which we know is right
 Given Vk, calculate the depth k+1 values for all states:

 But Q-values are more useful, so compute them instead
 Start with Q0(s,a) = 0, which we know is right
 Given Qk, calculate the depth k+1 Q-values for all states:



Q-Learning
 Q-Learning: sample-based Q-value iteration

 Learn Q(s,a) values as you go
 Receive a sample (s,a,s’,r)
 Consider your old estimate:
 Consider your new sample estimate:

 Incorporate the new estimate into a running average:



Q-Learning Properties

 Amazing result: Q-learning converges to optimal policy -- even 
if you’re acting suboptimally!

 This is called off-policy learning

 Caveats:
 You have to explore enough
 You have to eventually make the learning rate
 small enough
 … but not decrease it too quickly
 Basically, in the limit, it doesn’t matter how you select actions (!)



Exploration Functions f(u,n)
 When to explore?
 Random actions: explore a fixed amount
 Better idea: explore areas whose badness is not
 (yet) established, eventually stop exploring

 Exploration function
Takes a utility estimate u and a visit count n, and
 returns an optimistic utility, e.g.

 Note: this propagates the “bonus” back to states that lead to unknown states as well!
    

Modified Q-Update:

Regular Q-Update:



Regret

 Even if you learn the optimal policy, 
you still make mistakes along the way!

 Regret is a measure of your total 
mistake cost: the difference between 
your (expected) rewards, including 
youthful suboptimality, and optimal 
(expected) rewards

 Minimizing regret goes beyond 
learning to be optimal – it requires 
optimally learning to be optimal

 Example: random exploration and 
exploration functions both end up 
optimal, but random exploration has 
higher regret



Generalizing Across States

 Basic Q-Learning keeps a table of all q-values

 In realistic situations, we cannot possibly learn 
about every single state!
 Too many states to visit them all in training
 Too many states to hold the Q-tables in memory

 Instead, we want to generalize:
 Learn about some small number of training states from 

experience
 Generalize that experience to new, similar situations
 This is a fundamental idea in machine learning, and we’ll 

see it over and over again



Example: Pacman

Let’s say we discover 
through experience 

that this state is bad:

In naïve Q-learning, 
we know nothing 
about this state:

Or even this one!



Video of Demo Q-Learning Pacman – Tiny – Watch All



Video of Demo Q-Learning Pacman – Tiny – Silent Train



Video of Demo Q-Learning Pacman – Tricky – Watch All



Approximate Q-Learning

PacMan:

When you learn that a ghost is bad,
you should transfer that knowledge to
other states that have ghosts

So you don’t actually have to explore
all states that have ghosts (Q-learning)
and can get away with not exploring all 
states (approximate Q-learning).

Betke



Feature-Based Representations

 Solution: describe a state using a vector of 
features (properties)
 Features are functions from states to real numbers 

(often 0/1) that capture important properties of the 
state

 Example features:
 Distance to closest ghost
 Distance to closest dot
 Number of ghosts
 1 / (dist to dot)2

 Is Pacman in a tunnel? (0/1)
 …… etc.

 Can also describe a q-state (s, a) with features (e.g. 
action moves closer to food)



Linear Value Functions

 Using a feature representation, we can write a Q function (or value function) for any 
state using a few weights:

 Advantage: our experience is summed up in a few powerful numbers

 Disadvantage: states may share features but actually be very different in value!



Approximate Q-Learning

 Q-learning with linear Q-functions:

 Intuitive interpretation:
 Adjust weights of active features
 E.g., if something unexpectedly bad happens, blame the features that were on: 

disprefer all states with that state’s features

 Formal justification: online least squares

Exact Q’s

Approximate Q’s



Example: Q-Pacman



Video of Demo Approximate Q-Learning -- Pacman



Linear Value Functions

 Using a feature representation, we can write a Q function (or value function) for any 
state using a few weights:

 Advantage: our experience is summed up in a few powerful numbers

 Disadvantage: states may share features but actually be very different in value!



Approximate Q-Learning

 Q-learning with linear Q-functions:

 Intuitive interpretation:
 Adjust weights of active features
 E.g., if something unexpectedly bad happens, blame the features that were on: 

disprefer all states with that state’s features

Exact Q’s

Approximate Q’s



Policy Search



Policy Search

 Problem: often the feature-based policies that work well (win games, maximize 
utilities) aren’t the ones that approximate V or Q best

 Solution: learn policies that maximize rewards, not the values that predict them

 Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing 
on feature weights



Policy Search

 Simplest policy search:
 Start with an initial linear value function or Q-function
 Nudge each feature weight up and down and see if your policy is better than before

 Problems:
 How do we tell the policy got better?
 Need to run many sample episodes!
 If there are a lot of features, this can be impractical

 Better methods exploit lookahead structure, sample wisely, change 
multiple parameters…



RL and Deep Learning

RL 

Model-based
RL (access 
to R & T) 

Model-free
RL 

Q-Learning

Deep Q-Learning

Utility Iteration

Utility Iteration 
where state of 
environment 
represented by 
NN embedding 

More on this in BU’s Deep Learning class



Learning Outcomes
You should be able to explain:
 MDPs vs RL 
 Planning (Offline) vs Learning (Online)
 RL
 Model-based (sample actions to learn T and R)
 Model-free

 Passive: Policy evaluation (direct evaluation vs. TD learning)
 Active: Q-learning (converges to optimal policy, but agent needs to explore enough)

 Exploration vs. Exploitation
 Explore: ε-greedy, exploration function 

 Approximate Q-learning with linear value functions
 Policy Search
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