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LOOKING AT PEOPLE
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LOOKING AT PEOPLE: PERSON LOCALIZATION

rali Image source: Her, 2013
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LOOKING AT PEOPLE: HUMAN POSE DETECTION
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LOOKING AT PEOPLE: FACE DETECTION
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LOOKING AT PEOPLE: FACE RECOGNITION
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LOOKING AT PEOPLE: FACIAL LANDMARK DETECTION
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LOOKING AT PEOPLE: FACIAL EXPRESSION RECOGNITION
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LOOKING AT PEOPLE: FACE RECOGNITION

' Image source: Her, 2013
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Recognizing Faces

Two Tasks:

e Face Verification

* Face Identification

“ Boston University Computer Science
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Face Verification?

Are these two images showing the

same person?

Query Image Reference Image
“One-to-one similarity”

Important for Access Control and Re-identification
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Face Identification?

What is the ID or name of this person? “Margrit Betke”

Query Image

“One-to-many similarity”

Important for Watch-list Surveillance or Forensic Search
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Gallery of Known Subjects

Image credit: Q. Orozco-Ramirez

Who?
Same person
?

Face Identification

Face Verification
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Face Recognition
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Gallery of Known Subjects

Image credit: Q. Orozco-Ramirez
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Face Recognition

Gallery of Known Subjects

Here:
One picture per person

Better:
Multiple pictures per person

; ‘ '.3 | . ,.:l - r x - '?: : .;\~ ,'{ ;,;5 . - - ‘zji
Image credit: Q. Orozco-Ramirez
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Face Recognition

Gallery of Known Subjects
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Face Recognition

Gallery of Known Subjects

Probe or Query of Unknown Subject

similarity pictures
of MB
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How does Face Recognition Technology Work?

2012 Revolution in Computer Vision:
Deep Neural Networks
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Deep Neural Networks used for Face Recognition

1. Network architecture
2. Training
3. Testing = “use mode”
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Network Architecture

Deep Neural
Net
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Training a Face Recognition Network

Training image for “Margrit Betke”

Deep N. Net

‘ Input to black box
i} neural net = normalized

image for “Margrit Betke”
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Training a Face Recognition Network

Likelihood training

T .. . f IIM : B k ” . .
raining image for “Margrit Betke image is “Person X

”

0.2
% 0.0001
/ 0.69
Deep N. Net
0.001
# outputs
‘ Input to black box = #IDs
neural net = normalized
image for “Margrit Betke”

& Boston University Computer Science
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Training a Face Recognition Network

Likelihood training

T .. . f IIM : B k ” . .
raining image for “Margrit Betke image is “Person X

”

0.2
% 0.0001
/ 0.69
Deep N. Net
0.001
# outputs
‘ Input to black box = #IDs
neural net = normalized
image for “Margrit Betke”

& Boston University Computer Science

One hot encoding
of “Margrit”

0
0
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Training a Face Recognition Network

L y . ) Likelihood training One hot encoding
Tralnlngllmage for “Margrit Betke image is “Person X” of “Margrit”
0.2 0
% 0.0001 0
/ 0.69 minus 1 = error
Deep N. Net
0.001 0
‘ Input to black box Sum squared error =
neural net = normalized Measure of training need
image for “Margrit Betke”
. BOSTON
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Training a Face Recognition Network

L “ : ” Likelihood training One hot encoding
Tralnlngllmage for “Margrit Betke image is “Person X” of “Margrit Betke”
0.2 0
% 0.0001 0
/ 0.69 minus 1 = error
Deep N. Net \
0.001 0
‘ Input to black box . Sum squared error = high =>
neural net = normalized Update network parameters
image for “Margrit Betke”
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Training a Face Recognition Network

Training image for “Margrit Betke” !_lkellhgo? tramlng” On,? hot e'ncodlng”
‘ Improve image is “Person X of “Margrit Betke
likelihood numbers 0
% 0
/ minus 1 = error
Deep N. Net \

0

Input to black box . Sum squared error = high =>

neural net = normalized Update network parameters

image for “Margrit Betke”
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Training a Face Recognition Network

Training image for “Margrit Betke” !_lkellhgo? tramlng” On,? hot e'ncodlng”
‘ Improve image is “Person X of “Margrit Betke
likelihood numbers 0
0
minus 1 = error
Deep N. Net
0

Input to black box
neural net = normalized
image for “Margrit Betke” Algorithm

. BOSTON
Boston University Computer Science PYMl UNIVERSITY

Sum squared error = high =>

Backpropagation
Update network parameters




Training a Face Recognition Network

Training image for “Margrit Betke” !_lkellhgo? tramlng” On,? hot e'ncodlng”
‘ After numerous 'Mmage is “Person X of “Margrit Betke
network updates: 0
% 0
/ 0.99 minus 1 = error
Deep N. Net
0
Input to black box Sum squared error = low =>
neural net = normalized Done with training!

image for “Margrit Betke”
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Trained network

Training image for “Margrit Betke”

Deep N. Net

‘ Input to black box
i} neural net = normalized

image for “Margrit Betke”
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Let’s look at the trained network

Training image for “Margrit Betke”

‘ Input to black box
@ neural net = normalized

image for “Margrit Betke”
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Network Architecture: VGG-16

Input: Output:
3 X 4,096
224 x 224 numbers
16,128

numbers
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Network Architecture: VGG-16

Input: VGG-16 network Output:
3 X has 138 million 4,096
PPER YAl  parameters numbers
16,128

numbers
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Network Architecture of VGG-16: Two Visualizations

224x224x3
224x224x64

7/ 112x112x128

/] 56x56%x256
28x28x512 14x14x512  7x7x512
1x1x4096 1x1x4096 1x1x1000 1x1x1000
) ) 5
Lo Image credit:
/ Hamidreza Habibollahi-Najaf-Abadi
VGG16 Model Architecture
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Image credit:
L gL y Gorla Praveen
~
Convolutional and Pooling Layers Fully-Connected Layers
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Let’s look at how to use the trained network

Training image for “Margrit Betke”

“feature
vector”
ot that
ro ¢' 3 describes
224 x 224 RVl o 076 = M
@ numbers numbers picture

E;J

. ‘ normalized image for “Margrit Betke”
= Red Green Blue values of
224 x 224 pixels

| Boston University Computer Science * VGG = Visual Geometry Group, Oxford
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Face Recognition in “Use Mode”

Query image of unknown person

3 x

YLIPYEN c.g., VGG Network
numbers

normalized image
= (Red, Green, Blue) values of
224 x 224 pixels

{80 Boston University Computer Science

4,096
numbers

“feature
vector”
that
describes
the
picture

¥
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Face Verification in “Use Mode”

Query image of unknown person

“feature
vector”
that
3x describes
224 x 224 4,096 _ the
numbers numbers = picture

¥

normalized image
= (Red, Green, Blue) values of
) 224 x 224 pixels

{80 Boston University Computer Science

“feature
vector”
that
describes
M.B.’s
picture

8
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Face Verification in “Use Mode”

Query image of unknown person

“feature
vector”
that
describes
the

picture
|/ i

IF error small

minus

“feature
vector”
that
describes
M.B.s
picture

g

= error

THEN unknown person = Margrit Betke
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Face Verification in “Use Mode”

Query image of unknown person

“feature
vector”
that
describes
the

picture
|/ ¥

minus

IF Euclidean error small

“feature
vector”
that
describes
M.B.s
picture

g

2 = Euclidean Error

THEN unknown person = Margrit Betke
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Face Verification in “Use Mode”

Query image of unknown person

“feature “feature
vector” vector”
that that
cos ( e el | | Joscries ) = Cosine Similarity
the M.B.s
picture picture

IF Cosine Similarity high
THEN unknown person = Margrit Betke

BOSTON
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Face |dentification in “Use Mode”

Query image of unknown person

. Boston University Computer Science

“feature
vector”
that
describes
the

picture
7 o

For all IDs in database:
IF smallest error for ID x

minus

“feature
vector”
that
describes
picture of
person X

THEN unknown person = ID x

I | V‘I Ds vectors
|
|

-> # IDs errors
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Benchmark Dataset (from 2007, still used)
Labeled Faces in the Wild (LFW)~

Gallery of Known Subijects

5,749 identities
13,233 face images
1,680 people with two
or more images

* Publicly available
e Web data
e Celebrities

_ . BOSTON
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Recognition Results on LFW Dataset

Google

Neural Net Name: FaceNet 2015 DeepFace 2014
Number of Photos: > 500 Million 4.4 Million
Number of Subjects: > 10 Million 4,000
Accuracy: 99.6% 97.3%

¥ Boston University Computer Science
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Do these accuracy numbers show that the problem was
solved already in 20157
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Do these accuracy numbers show that the problem was
solved already in 20157

No!

1. Distractor images

2. Training versus testing datasets

3. What is the best network/algorithm?

4. What are the limitations of existing systems?

_ BOSTON
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Benchmark Dataset Labeled Faces in the Wild (LFW)

What if we add 5,749 identities _Gallery of Known Subjects

° ° . ‘.‘:' " \’? ?[ "g; ?,1@ @ 4 :
1 million 13,233 face images o 2B OO B P00
ao_J° ))
distractor
face images? .
eature

vector” “feature ol e

that vector” 1 Mill S S

describes that

the describes

picture picture of

person X

&
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Benchmark Dataset Labeled Faces in the Wild (LFW)

Gallery of Known Subjects
} " el2 20885 2k AT
IR L AN LY )

With 1 million
“distractor”
face images:

£ 9

Recognition rates go down a lot!

. BOSTON
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Do these accuracy numbers show that the problem was
solved in 20157

No!

Distractor images

Size of datasets

What is the best network/algorithm?

What are the limitations of existing systems?

= W N

— . BOSTON
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Size of Training Datasets

Google

Neural Net Name: FaceNet 2015
Number of Photos: > 500 Million
Number of Subjects: > 10 Million

Accuracy on LFW dataset (5K):  99.6%

i Boston University Computer Science

DeepFace 2014
4.4 Million
4,000

97.3%

BOSTON
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Do these accuracy numbers show that the problem is
solved?

No!

Distractor images makes the problem much more difficult
Size of datasets does matter a lot

What is the best network/algorithm?
What are the challenges & limitations of existing systems?

_ . BOSTON
%8sy Boston University Computer Science Rl UNIVERSITY
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s the key to success the size of the training data or

the network ?
Google

Neural Net Name: FaceNet 2015 DeepFace 2014
Number of Photos: > 500 Million 4.4 Million
Number of Subjects: > 10 Million 4,000
Accuracy on LFW dataset: 99.6% 97.3%

@%my Boston University Computer Science SO UNIVERSITY



2017 MegaFace2™ Dataset

https://arxiv.org/pdf/1705.00393.pdf
Gallery of Known Subijects

672,057 identities Maxh= 2,469 images of (3
. the same person
4,753,320 face images P
* Publicly available Template™= @
multiple pictures

* No celebrities
* Flickr account data
* Automated labeling
e 59% males, 41% females
* Age range among
template images:
16 years

) | BOSTON
Boston University Computer Science megaface.cs.washington.edu SYB UNIVERSITY



2017 Competition

Gallery of Known Subijects

 Train on MegaFace2 (672K IDs, 4 mill. images) ) (3)
. Max = 2,469 images of
 Test on FaceScrub* (530 IDs, 106K images) the same person

 Add 1 million “distractor” face images

“Template”= @
6 teams provided feature vectors to competition multiple pictures
organizers on FaceScrub & distractor images

Results varied between 28% to 76%
recognition accuracy

Method matters!

_ .o inlerb BOSTON
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2017 MegaFaceZ Dataset

* Train on MegaFace2
 Test on FaceScrub (530 IDs, 106K images)
e Add 1 million “distractor” face images

E.g., NEC's commercial product:
~100% accuracy without distractors
~60% accuracy with 1 million distractors

Best method: GRCC with 76% accuracy with
1 million distractors

. Boston University Computer Sci

Gallery of Known Subijects

Max = 2,469 images of o
the same person

“Template”=
multiple pictures

BOSTON
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Neural Networks for Biometrics

We don’t know what was under the hood in the 2017 Competition.
Secrets of the trade...

More recently, network structures, loss functions, and training schemes
have been published.

Most recent conference: International Joint Conference on Biometric,
Ljubljana, Slovenia, September 25-28, 2023

Our research group’s work won a “Best Poster Award”

. lii' . BOSTON
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Do these accuracy numbers show that the problem is
solved?

No!

Distractor images makes the problem much more difficult

Size of datasets does matter a lot
Competitions used to determine best network/algorithm
What are the challenges & limitations of existing systems?
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Do these accuracy numbers show that the problem is
solved?

No!

Distractor images makes the problem much more difficult

Size of datasets does matter a lot
Competitions used to determine best network/algorithm
What are the challenges & limitations of existing systems?

— . BOSTON
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What are other limitations of existing systems?

System performance degrades due to

Aging Pose Variations: Frontal vs. Profile

. . BOSTON
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What are other limitations of existing systems?

System performance degrades due to

Aging Pose Variations: Frontal vs. Profile

e Klare et al., CVPR 2015:
IJARPA Janus Benchmark A

* Sengupta et al., WACV 2016:
CFP Dataset

* Yuetal., ICCV2017:
AFLW2000 Dataset

y. . . BOSTON
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https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Klare_Pushing_the_Frontiers_2015_CVPR_paper.pdf
http://cfpw.io/paper.pdf
http://cvlab.cse.msu.edu/pdfs/Yin_Yu_Sohn_Liu_Chandraker_ICCV2017.pdf

Let’s do a Human Experiment on Recognizing Faces in
Frontal versus Profile Images

Please determine if the following images show the same
person.

_ . BOSTON
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0 Same Person?
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0 Same Person?

_ BOSTON
Boston University Computer Science C¥M UNIVERSITY



1 Same Person?

Cao et al., CVPR 2018 62



https://openaccess.thecvf.com/content_cvpr_2018/papers/Cao_Pose-Robust_Face_Recognition_CVPR_2018_paper.pdf

1 Same Person?

Cao et al., CVPR 2018 63



https://openaccess.thecvf.com/content_cvpr_2018/papers/Cao_Pose-Robust_Face_Recognition_CVPR_2018_paper.pdf

2 Same Person?

Cao et al., 2018 64



2 Same Person?

Cao et al., 2018 65



3 Same Person?

Cao et al., 2018 66



3 Same Person?

Cao et al., 2018 67



4 Same Person?

Cao et al., 2018 68



4 Same Person?

Cao et al., 2018 69



5 Same Person?

Cao et al., 2018 70



5 Same Person?

Cao et al., 2018 71



Cao et al., 2018

Same Person?




1 Same Person?

Cao et al., 2018 73



1 Same Person?

Cao et al., 2018



2 Same Person?

Cao et al., 2018 75



2 Same Person?

Cao et al., 2018 76



3 Same Person?

Cao et al., 2018 77



3 Same Person?

Cao et al., 2018 78



4 Same Person?

Cao et al., 2018 79



4 Same Person?

Cao et al., 2018 80



5 Same Person?

Cao et al., 2018 81



5 Same Person?

Cao et al., 2018 82



6 Same Person?
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6 Same Person?
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7/ Same Person?
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7/ Same Person?

/s Boston University Computer Science Photos © Betke 86 |[REINIAZT 60



Frontal vs. Profile

Kristen Grauman

GT: Not same
person

False
Positives

Pawan Sinha

GT: Same
person

False
Negatives

© Betke
Cao et al., 2018



Research on Face Recognition under Pose Variations

Cao et al., CVPR 2018

ldea: Map profile representations into
frontal pose representations

Results:

Verification:

True Acceptance Rate (TAR) at
False Acceptance Rate (FAR) of
0.01: 94%

0.001: 89%

Rank 1 Identification:

96.8%

a1 Boston University Computer Science

Zhu et al., PAMI 2019: pdf

Idea: 3D Dense Face Alignment (3DDFA) =
Use DNNs to estimate 3D Morphable
Model (3DMM) parameters:

* Pose: 3 Euler angles, translation, scale

* Shape: 50 dimensions

e Expression: 19 dimension

Results:

Better than state-of-the-art but relatively
poor (regression by neural network

difficult!)

BOSTON
s


https://xiangyuzhu-open.github.io/homepage/files/xiangyu2017face.pdf

Beyond 3DMM: Learning to Capture High-fidelity 3D Face Shape

Zhu et al., ECCV 2020, PAMI 2022:

Texture

—)

Illumination

(e) Texture constrained ICP
depth: vj = (xk, yk zg)  RGB:ty = (1%, i bi)

é ﬁebww e
: - ’I {5 Tipe®
[ ¥ 4 ; ﬁw : T y
i ' - i | o
B> il .
@i ti) Z { O
d :
d d d §
d = dsq + Adgey N

(Vt t)

u ‘ [/(6 ‘ (/ ICP

vertex: v; = (X, Yi, Zi) texture: t; = (1, gi, b;)

> o

No match

BOSTON
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https://xiangyuzhu-open.github.io/homepage/files/2020beyond.pdf
https://arxiv.org/pdf/2204.04379.pdf

What are other limitations of existing systems?

System performance degrades due to

Aging Pose Variations: Frontal vs. Profile
* Best-Rowden-Jain-PAMI-2017 e Klare et al., CVPR 2015:
. %\”SIT ;\/Iugshot |dentification Database IARPA Janus Benchmark A
MID
* NIST Multiple Encounter Dataset * Sengupta et al., WACV 2016:  CFP

(MEDS), FBI Biometric Center of Excellence Dataset

e Yuetal., ICCV2017: AFLW?2000
Dataset

. . BOSTON
S/ Boston University Computer Science S| UNIVERSITY


https://ieeexplore.ieee.org/document/7815403
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Klare_Pushing_the_Frontiers_2015_CVPR_paper.pdf
http://cfpw.io/paper.pdf
http://cvlab.cse.msu.edu/pdfs/Yin_Yu_Sohn_Liu_Chandraker_ICCV2017.pdf

Let’s do a Human Experiment on Recognizing Age
Difference of Images of Faces

. BOSTON
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A: How Many Years Older?

Best-Rowden and Jain, 2018 92



B: How Many Years Older?

Best-Rowden and Jain, 2018 93



C: How Many Years Older?

Best-Rowden and Jain, 2018 94



D: How Many Years Older?

Best-Rowden and Jain, 2018 95



E: How Many Years Older?




F: How Many Years Older?

97



G: How Many Years Older?




H: How Many Years Older?

99



Estimating Aging

A C

Best-Rowden
and Jain, 2018

D

Best-Rowden and Jain, 2018 100



Estimating Aging

A C

Best-Rowden
and Jain, 2018

D

Elapsed time: 9 years 8 years 8 years 9 years

99% of subjects can still be recognized at 0.01% FAR up to

approximately 6 years elapsed time
PP Yoy P Best-Rowden and Jain, 2018



Estimating Aging
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Estimating Aging

12 years

30 years

BOSTON
© Betke 103



|dentity-Preserving Aging of Face Images via Latent
Diffusion Models

* Banerjee et al., IJCB 2023: Use a latent text-to-image diffusion model to
synthetically age and de-age face images

Training
Set

~ Regularization

| VAE U-NET | CLIP —
st ‘ (Pixel) | (Latent) L(Text) < ]
J J Face quality
= e check |
Rag
A P ¢
chilL eeeeeeeeeeeeeeeeeee

middleaged elderly old
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https://arxiv.org/pdf/2307.08585.pdf

International Joint Conference on Biometrics,
September 2023: Keynote Address by Mayank Vatsa

Biometric Datasets from IIT Jodhpur ¢ Narayan et al., CVPR 2023

https://lab-rubric.org/resources  DFPlatter: Multi-subject deepfakes

* DroneSurf: face recognition from
drones

e Dhamecha et al., IJCB 2023,
Disguise Detection

* TIFS 2023: Largest fingerprint
dataset

* Injured Face Recognition (120
unclaimed dead identified)

Figure 1. Samples showcasing multi-face deepfakes circulated on

» social media. (a) A zoom call with a deepfake of Elon Musk [*]
Pz o . . . (b) Real-time deepfake generation at America’s Got Talent [*'] (c) BOSTON
o Boston University Com puter Science Deepfake round-table with multiple deepfake subjects [ ]. (LS UNIVERSITY


https://lab-rubric.org/resources
https://iab-rubric.org/images/pdf/papers/disguise-ICB13.pdf
https://iab-rubric.org/images/pdf/papers/disguise-ICB13.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Narayan_DF-Platter_Multi-Face_Heterogeneous_Deepfake_Dataset_CVPR_2023_paper.pdf
https://iab-rubric.org/df-platter-database

Face Forgery Detection by 3D Decomposition

Zhu et al., CVPR 2021, PAMI 2023

3D Decomposition

Image ‘ (a) Direct Light (b) Ambient Light (c) 3D Geometry

<$ ..

(e) Identity Texture (d) Common Texture,

Oe

Real or Fake (f) Facial Detail

i Boston University Computer Science

BOSTON
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https://xiangyuzhu-open.github.io/homepage/files/cvpr21face.pdf
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Left Ears Right Ears (
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Alternative Biometrics: Ears

Our Task:

Can we identify newborns, during the subsequent
months based on images of their growing ears?

Motivation:

N
L

* |nfants should be immunized.

* Infants born to women with HIV should receive
the HIV-prevention medicine zidovudine.

* Qur collaborators in rural Zambia, health care
professionals who manage a network of clinics,
have difficulties tracking down babies.

ASDH P O ) (O OF )

X o)
--.- ) \ :)

] -
- -

l
‘)
l
.
l
| l!
!

\\ ™
-
)
. !
»
P
ll
l l

9, ! )

oo o 7
o XEN
o W \ S5 O

107



1JCB 2023 Best Poster Award: Qin et al., Age-constrained Ear
Recognition: The EICZA Dataset and SASE Baseline Model

(Young Ears) {

6@ 9 @
Subject A Subject B months 5 months / \
6 weeks _ .

_ 4 months 5 months
7 months
(S

ubject ASubject B Subject A Subject B K 4 Subject /y
* 7 months
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Table 3. Average cross-validation recognition accuracy of SASE compared to four baseline models on three datasets

Dataset | UERC [19] FG-NET [32] (Aging Faces) Our EICZA (Aging Ears)
without Age Neutral | Age Constrained || Age Neutral | Age Constrained Train/Test
Model Ear Ages Train/Test Train/Test Train/Test | with Day 6 | without Day 6
SqueezeNet [28] 26.88% 17.85% 7.24% 52.30 % 8.23% 11.14%
ResNet-50 [25] 36.72% 82.84% 55.92% 61.30% 13.84% 22.98%
SENet [27] 41.86% 78.89% 46.05% 68.11 % 18.85% 28.46%
SASE (Our Model) 42.56 % 82.90 % 52.96% 69.49 % 33.14% 49.98 %
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The Palm as a Biometric

https://one.amazon.com

Manoj Aggarwal,

Director of Applied Science,
Amazon One

Your palmis all you need gave a keynote address

at 1JCB 2023, September 28
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How does Amazon’s Palm Recognition work?

Bi-modal input:
1. RGB image of your palm

2. Subsurface image of your palm
illuminated by near infrared light
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Computer Vision & Biometrics

Other Biometric Tasks:

* @Gait Recognition

* |ris Recognition

* Fingerprint Recognition

* Face Recognition with Face
Expressions or micro-expressions

Ethical Concerns:

Misuse by personal enemies:
Fake nude pictures on social
media

Misuse by totalitarian
governments: “Big-brother
watching you”

Arms race of fake creation/fake
detection
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