
More on Hidden Markov Models
and their Applications

Lecture by Margrit Betke, Yiwen Gu

Reading:  Rabiner’89, Vogler’98
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Four Classes of HMM Outputs  

bj(0) Scalar Output Vector Output

Symbols:  
Discrete Event  Space

e.g., word 
bj (“baby”) 

e.g., weather info 
bj ([sunny, windy])

Numerical Measurements: 
Continuous Event Space

e.g.,  temperature
  bj (60 F) 

e.g., 3D position
bj ([x,y,z] )
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Last class:  Discrete Scalar Output   

bj(0) Scalar Output Vector Output

Symbols:  
Discrete Event  Space

e.g., word 
bj (“baby”) 

e.g., weather info 
bj ([sunny, windy])

Numerical Measurements: 
Continuous Event Space

e.g.,  temperature
  bj (60 F) 

e.g., 3D position
bj ([x,y,z] )
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Today:  Continuous Output

bj(0) Scalar Output Vector Output

Symbols:  
Discrete Event  Space

e.g., word 
bj (“baby”) 

e.g., weather info 
bj ([sunny, windy])

Numerical Measurements: 
Continuous Event Space

e.g.,  temperature
  bj (60 F) 

e.g., 3D position
bj ([x,y,z] )
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Today:  Continuous Output

bj(O)
Scalar Output Vector Output

Symbols:  
Discrete Event  
Space

e.g., word 
bj (“baby”) 

e.g., weather info 
bj ([sunny, windy])

Numerical 
Measurements: 
Continuous Event 
Space

e.g.,  temperature
  bj (60 F) 

Density Function, e.g.,
Normal/Gaussian: 

N(rand. var, mean, variance)

e.g., 3D position
bj ([x,y,z] )

N(rand. var, mean, covariance 
matrix)
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Recall Discrete 
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bj(k) = Prob(Vk at t| qt = Sj),   1 ≤ j ≤ N, 1 ≤ k ≤ M



𝑘=1

𝑀

𝑏𝑗 𝑘 = 1



Continuous
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bj(k) = Prob(Vk at t| qt = Sj),   1 ≤ j ≤ N, 1 ≤ k ≤ M

න

−∞

∞

𝑏𝑗 𝑥 ⅆ𝑥 = 1



𝑘=1

𝑀

𝑏𝑗 𝑘 = 1



Mini-Intro to Estimation

Why needed?  

We need to estimate the output probabilities when we train a hidden 
Markov model.
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Mini-Intro to Estimation

Scalar world:  Given 𝑥1 , …, 𝑥𝑛   measurements (= samples)

Average:   ҧ𝑥 =
1

𝑛
(𝑥1+ … +𝑥𝑛) (= sample mean)

Sample variance:     s2 =
1

𝑛


𝑡=1

𝑛
𝑥𝑡 − ҧ𝑥 2

( ҧ𝑥, s2 )  are good estimates for ( )  of a normal density function  
(Gaussian) N  
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Mini-Intro to Estimation

Vector World: xi =[𝑥i
1, 𝑥i

2 , …, 𝑥i
𝑘]T 𝜖R𝑘

Sample mean:  ത𝐱 =
1

𝑛
 (x1 + … + xn)

Sample variance:      s2 =
1

𝑛


𝑡=1

𝑛
𝐱𝐭 − ത𝐱 𝐱𝐭 − ത𝐱 𝑇

(ത𝐱, s2 )  are good estimates for ( ) of a normal density function  
(multivariate Gaussian) N 
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Bivariate Gaussian

Image credit: User Bscan, Wikipedia

 = correlation coefficient
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xi =[𝑥i
1, 𝑥i

2 , …, 𝑥i
𝑘]T 𝜖R𝑘

Bivarivate :=> k=2 =>  xi =[𝑥i, 𝑦i]
T



Examples of HMM Applications

• American Sign Language (ASL) Recognition
• ASL Recognition Based on a Coupling Between HMMs and 3D Motion Analysis 

(by Vogler & Metaxas)

• Speech Recognition

Artificial Intelligence CS 640



Data

Artificial Intelligence CS 640

• Features: wrist position, 
orientation, velocities in 3D 
space

• 53 sign vocabulary

Vogler & Metaxas (ASL Recognition)



Isolated Recognition

Recognize one single sign at a time 

• Assuming each sign can be individually extracted and recognized

• Pause between individual signs as boundaries 

• → 40 signs & 656 examples: ¾ training, ¼ testing (178 samples)

(with each sign has ≥ 6 examples for training and ≥ 2 examples for 
testing)
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Vogler & Metaxas (ASL Recognition)



Isolated Recognition
Model Design: 

• Number of States: depends on frame rate, the complexity of the sign

• Transitions

• Outputs: Gaussians densities N(mean, covariance matrices)
• Mixure (Multivariate) Gaussian would be better but not chosen due to lack of training data 

Training

• For each sign in the dictionary, the training procedure then computes the mean and covariance 
matrix over the data available for that sign and assigns them uniformly as the initial output 
probabilities to all states in the corresponding HMM. 
• It also assigns initial transition probabilities uniformly to the HMM’s states. 

• The training procedure then runs the Viterbi algorithm repeatedly on the training samples, so as to 
align the training data along the HMM’s states. 
• The aligned data are then used to estimate better output probabilities for each state individually. 

• After constructing these bootstrapped HMMs, the training procedure finishes by reestimating each 
HMM in turn with the Baum-Welch reestimation algorithm.
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Vogler & Metaxas (ASL Recognition)

Empirical Process



Isolated Recognition
Model Design: 

• Number of States: depends on frame rate, the complexity of the sign

• Transitions

• Outputs: Gaussians densities N(mean, covariance matrices)
• Mixure (Multivariate) Gaussian would be better but not chosen due to lack of training data 

Training

• For each sign in the dictionary, the training procedure then computes the mean and covariance 
matrix over the data available for that sign and assigns them uniformly as the initial output 
probabilities to all states in the corresponding HMM. 
• It also assigns initial transition probabilities uniformly to the HMM’s states. 

• The training procedure then runs the Viterbi algorithm repeatedly on the training samples, so as to 
align the training data along the HMM’s states. 
• The aligned data are then used to estimate better output probabilities for each state individually. 

• After constructing these bootstrapped HMMs, the training procedure finishes by reestimating each 
HMM in turn with the Baum-Welch reestimation algorithm.
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Vogler & Metaxas (ASL Recognition)

Empirical Process



Isolated Recognition

Results:

Using  3D wrist position (Cartesian 
coordinates) only:  98.4% ± 1%

Adding wrist orientation:  98.3% ± 1% 

Using just velocities:  96.9% ± 1.2%
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Vogler & Metaxas (ASL Recognition)

The coordinate system was right-handed, with 
the origin at the base of the signer’s spine and 
the x axis facing up.



Continuous Recognition

Recognize an entire stream of signs at a time

• The Coarticulation Problem
• Coarticulation: that the pronunciation of a sign is influenced by the preceding 

and following signs.

• In ASL: a wide range of movements are inserted between signs

• Context-dependent HMM

• → 486 ASL sentences (2345 Signs):   389 training, 97 testing (456 
Signs, covering full vocabulary)

• Recognition rate:  87%
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Vogler & Metaxas (ASL Recognition)



Continuous Recognition
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Vogler & Metaxas (ASL Recognition)

Model Design: 

Input features:

Results: 

Word Error Rate (WER) = 

(S+D+I)/N = (S+D+I)/(S+D+C) 

where 

S: num of Substitutions,

D: num of Deletions, 

I:  num of Insertions, 

C: num of Correct words,

    (the table left uses H)

N: num of words in the reference,   

    N= (S+D+C)

Word Accuracy = 1 – WER =

(C-I)/(S+D+C)



Question: what is the WER here?

• Ground-truth (i.e. reference): This is an example of the word error 
rate calculation for Boston University’s CS 640. 

• Model output: This is example the world error rate calculation for 
Boston University’s see CS 640. 

• WER = ?
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Word Error Rate (WER) = 

(S+D+I)/N = (S+D+I)/(S+D+C) 

where 

S: num of Substitutions,

D: num of Deletions, 

I:  num of Insertions, 

C: num of Correct words,

    (the table left uses H)

N: num of words in the reference,   

    N= (S+D+C)



Question: what is the WER here?

• Ground-truth (i.e. reference): This is an example of the word error 
rate calculation for Boston University’s CS 640. 

• Model output: This is example the world error rate calculation for 
Boston University’s see CS 640. 

• WER = (S+D+I)/N = (S+D+I)/(S+D+C) = ?

• N = 15
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Question: what is the WER here?

• Ground-truth (i.e. reference): This is an example of the word error 
rate calculation for Boston University’s CS 640. 

• Model output: This is example the world error rate calculation for 
Boston University’s see CS 640. 

• WER = (S+D+I)/N = (S+D+I)/(S+D+C) = ?

• N = 15

• S=1, D=2, I=1, C=12 

• WER = (1+2+1)/(1+2+12)= 4/15 = 26.6%
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Vogler & Metaxas

Difficulties:

Feature selection:  Variability, reliability, information content

Intra and inter signer variability  (e.g., length of sign)

Gaussian densities sometimes not good model

Speed up of Recognition:

Add “Beam searching” to Viterbi Algorithm:

Threshold on dt(i).  If too low, partial path probability too low.  Probably 
does not contribute to most likely path

-> Set to zero. 
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Speech Recognition
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acoustic model

language model

Continued in the 2024-cs640-speech-recognition.pdf



Learning Outcomes

• Understand HMM with continuous outputs and how it is applied in 
the ASL and speech recognition

• Be aware of the importance in feature selection

• Know how to evaluate ASL and speech recognition model
•  WER and Word Accuracy
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ⴕ Highlighted (bold font) learning outcomes in the 2024-cs640-
speech-recognition.pdf
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