Hidden Markov Models

Slides by Margrit Betke, Yiwen Gu

Reading: Rabiner, Proceedings of the IEEE, 77(2), 1989, up to page 275

Agenda (10/29, 10/31)

- From State Machine To Markov Model
- Working with Hidden Markov Models

Finite State Machine (FSM)

= Automata

Markov Network = FSM with Transition Probabilities Finite State Machine with Deterministic Outputs

Hidden Markov Model = Markov Network with Output Probabilities

Finite State Machine (FSM)

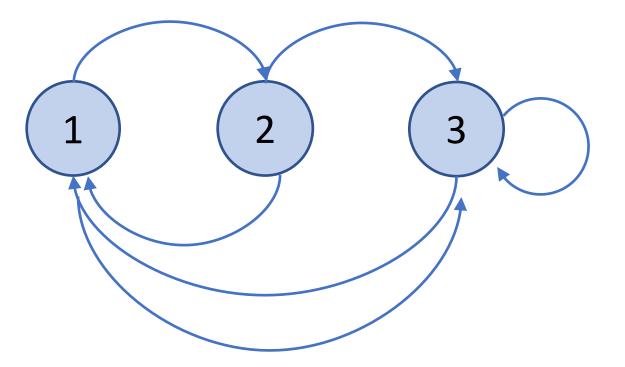
= Automata

Markov Network = FSM with Transition Probabilities Finite State Machine with Deterministic Outputs

Hidden Markov Model = Markov Network with Output Probabilities

Finite State Machine (FSM) = Automata

- A state machine is a machine's Al logic in graph form.
- Key Concepts:
 - States/nodes/vertices
 - Transitions/edges/arcs



States = N = 3,

Set of states Q = $\{q_1, ..., q_N\}$

Artificial Intelligence CS 640

Finite State Machine (FSM)

= Automata

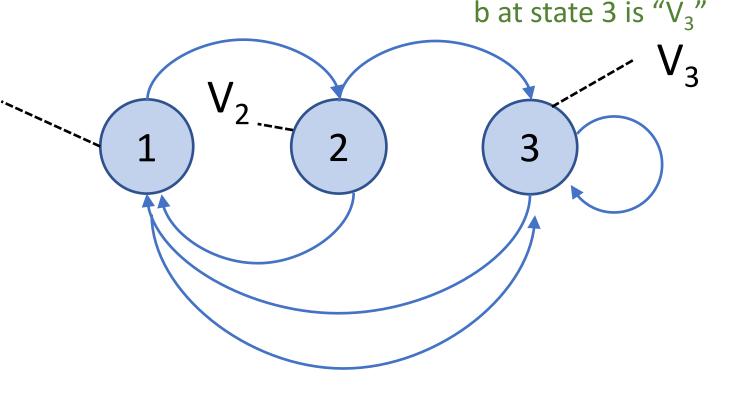
Markov Network = FSM with Transition Probabilities Finite State Machine with Deterministic Outputs

Hidden Markov Model = Markov Network with Output Probabilities

FSM with Deterministic Outputs (b's)

- Each state outputs a symbol deterministically

 i.e., for every state and input combination, there is a specific, predefined output).
- The symbols in an FSM form a **vocabulary**.
- The set of all possible vocabularies (sequences of the symbols) is called language.
- Generator and/or Recognizer



States = N = 3, Set of states Q = $\{q_1, ..., q_N\}$ # Outputs = M = 3, $\{V_{1_i}, V_{2_i}, V_3\}$

Artificial Intelligence CS 640

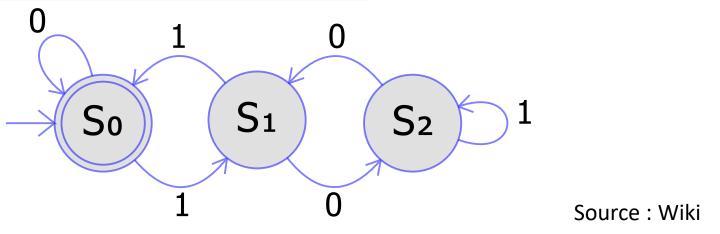
Example: Deterministic FSM as a Recognizer

Formal Definition:

A Deterministic Finite Automaton(Acceptor) (DFA) is a tuple $M=\langle Q, \Sigma, \delta, q0, F \rangle$

- •Q a finite set of **states**
- $\bullet \Sigma$ a finite set of input symbol **alphabet**
- $\bullet\delta$ a transition function
- •q0∈Q the start state
- •F⊆Q the final (or "accepting") states

Q: What is this doing?

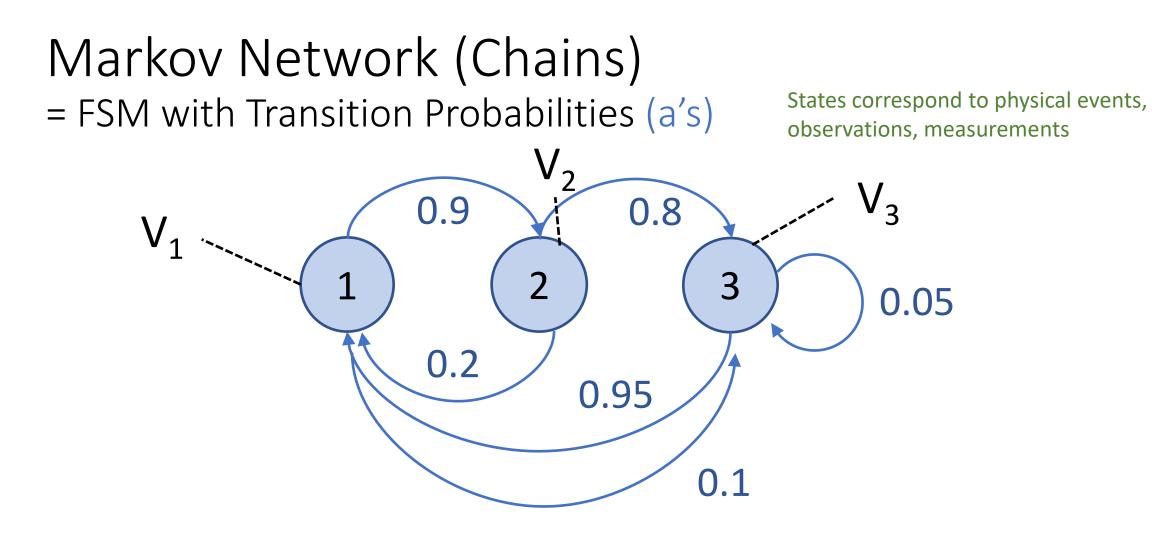


Finite State Machine (FSM)

= Automata

Markov Network = FSM with Transition Probabilities Finite State Machine with Deterministic Outputs

Hidden Markov Model = Markov Network with Output Probabilities



Markov property: the future state of a system depends only on its current state, not on the sequence of events that preceded it

Probability Axioms (Kolmogorov Axioms)

1. Probabilities are non-negative reals:

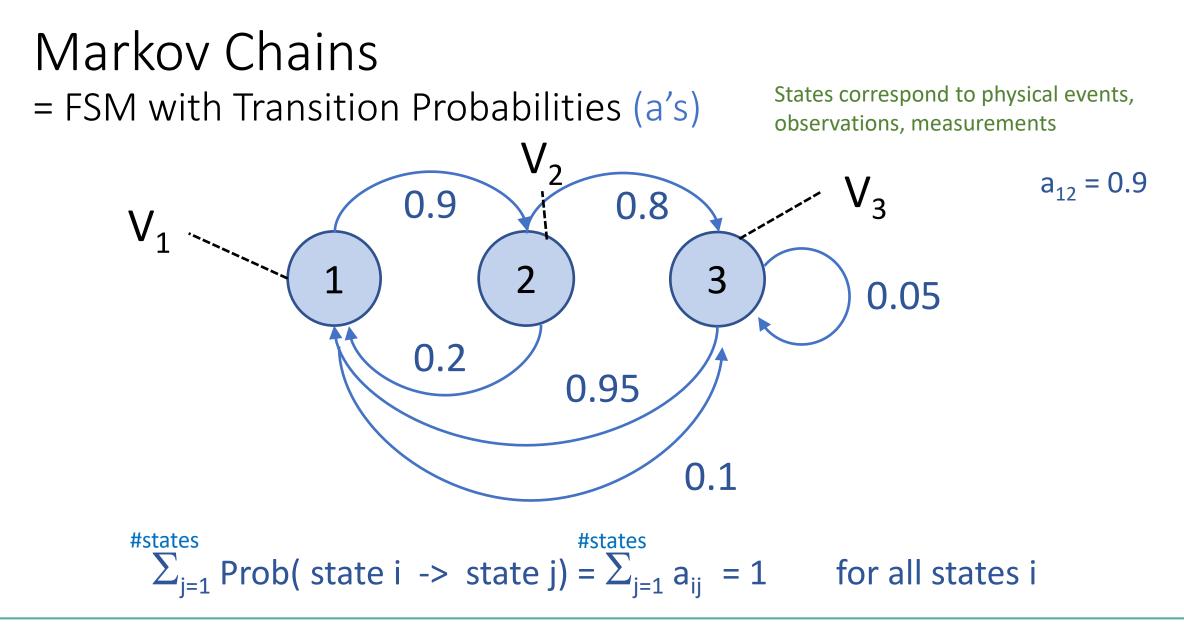
P(A) >= 0 for all events A

2. The entire event space has probability 1:

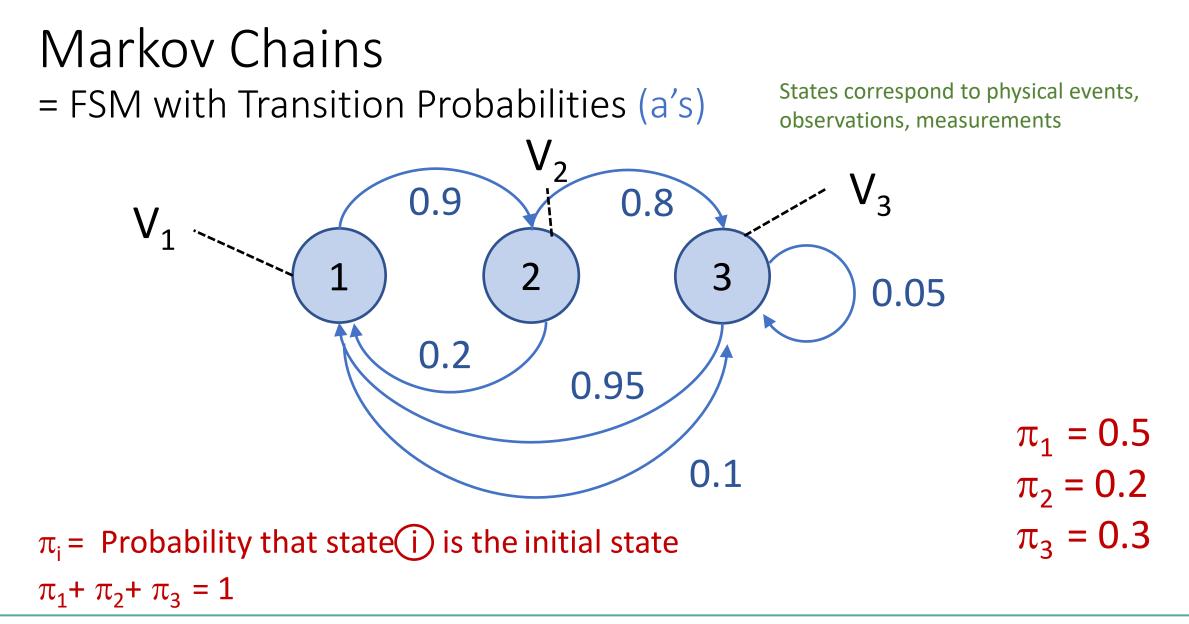
 $\Sigma P(A) = 1$ (sum over all events A)

3. Probabilities add for pairwise disjoint events:

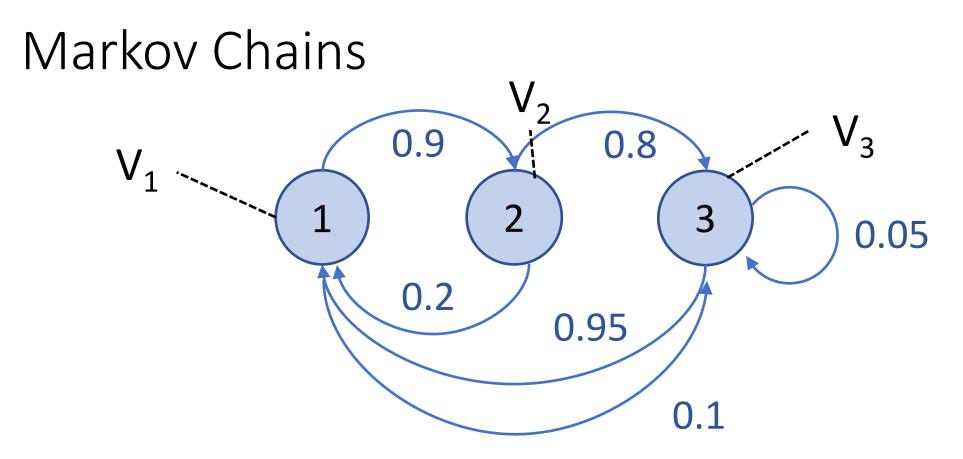
A & B disjoint events: $P(A \cup B) = P(A) + P(B)$



Artificial Intelligence CS 640

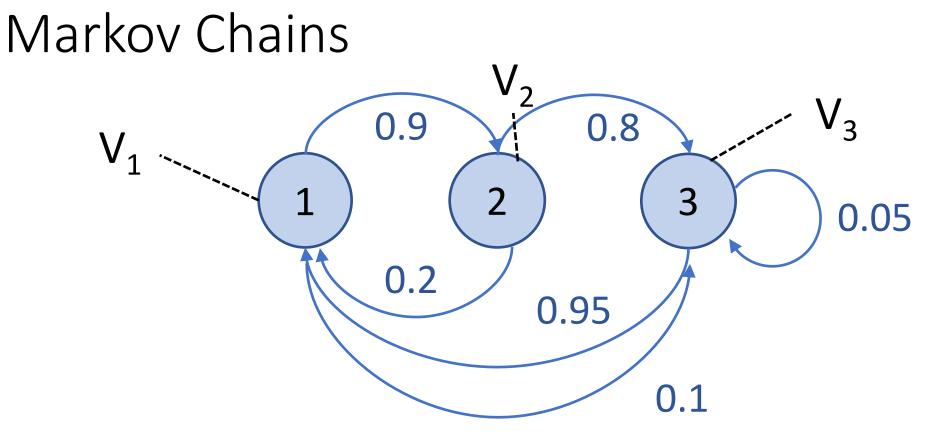


Artificial Intelligence CS 640



Given a sequence of outputs, we can calculate the probability of observing it.

E.g, outputs = $V_2V_1V_3$



Probability of observing a sequence of outputs $V_2V_1V_3 =$

Prob(O) = Prob(V₂V₁V₃) =
$$\pi_2 \cdot Prob(2 \rightarrow 1) \cdot Prob(1 \rightarrow 3)$$

0.2 0.2 0.1 = 0.004

Artificial Intelligence CS 440/640

Finite State Machine (FSM)

= Automata

Markov Network = FSM with Transition Probabilities Finite State Machine with Deterministic Outputs

Hidden Markov Model = Markov Network with Output Probabilities

states not directly observable (= hidden)

Hidden Markov Model

Markov model: each state outputs and must output one symbol, making the state outputs deterministic (**observable**).

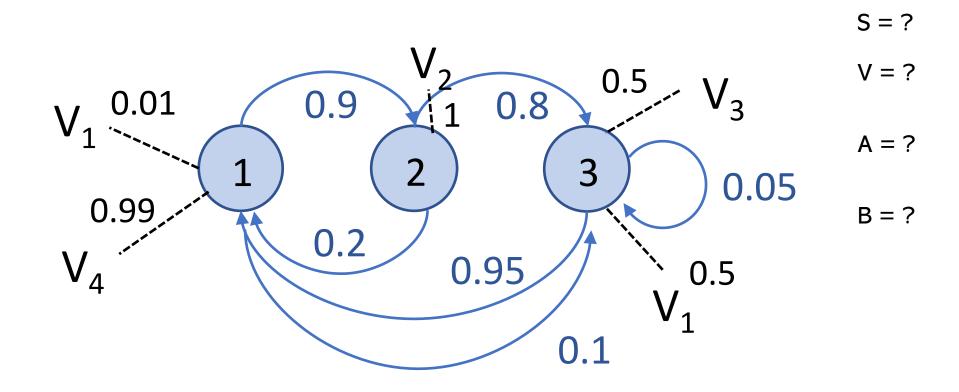
However, if instead, each state can output different symbols where each symbol is associated with a certain probability, then the outputs are non-deterministic (**hidden**) and the resulting model is called **Hidden Markov Model (HMM)**.

At a high level, a HMM is a Markov model with Markov transition process and non-observable (hidden) states.

HMM Notations

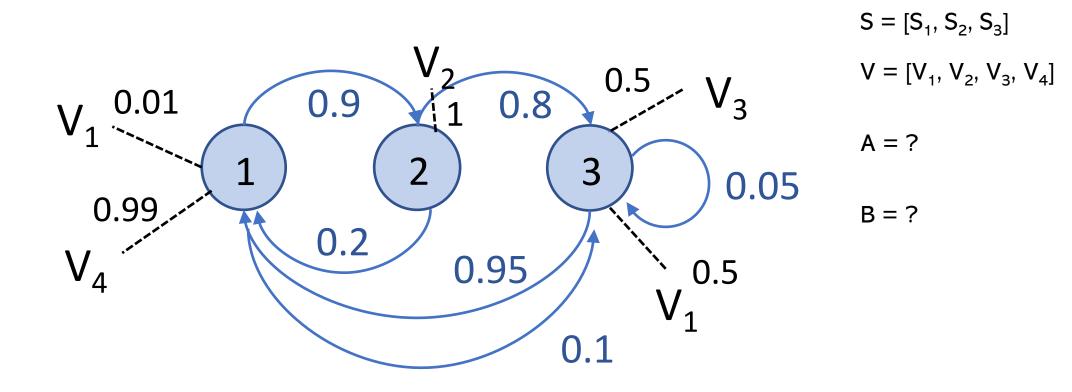
- A set of *N* states: $S = \{S_1, S_2, S_3, ..., S_N\}$
 - denote q_t : the actual state at time t
- A set of *M* distinct symbols as **vocabulary** : $\mathbf{V} = \{V_1, V_2, V_3, ..., V_M\}$
 - sometimes symbols are in lower case
- Transition probabilities as a **matrix**: *A* = {a_{ij}}
 - $a_{ij} = Prob(q_t = S_j | q_{t-1} = S_i), 1 \le i, j \le N$
- Initial probabilities: $\boldsymbol{\pi} = \{\boldsymbol{\pi}_1, \boldsymbol{\pi}_2, \boldsymbol{\pi}_3, ..., \boldsymbol{\pi}_N\}$
 - $\pi_i = \operatorname{Prob}(q_1 = S_i), \ 1 \le i \le N$
- A matrix for observation likelihoods (aka. Emission probabilities): *B* = {b_i(k)}
 - $b_j(k) = Prob(V_k \text{ at } t | q_t = S_j), 1 \le j \le N, 1 \le k \le M$
 - The probability of V_k being generated from a state q_j
- A sequence of T observations (observed symbols at time T): $\mathbf{O} = O_1 O_2 O_3 ... O_T$
 - Each O_i is drawn from the vocabulary V
- HMM: $\lambda = (S, V, A, B, \pi)$ or more commonly just (A, B, π)

HMM Example

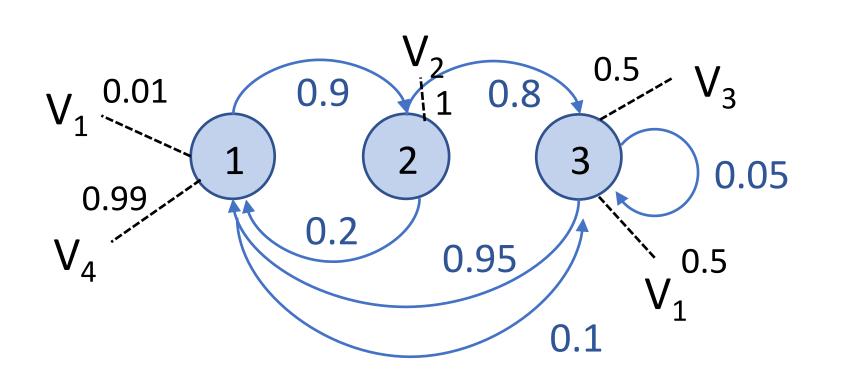


Artificial Intelligence CS 640

HMM Example – States and Symbols



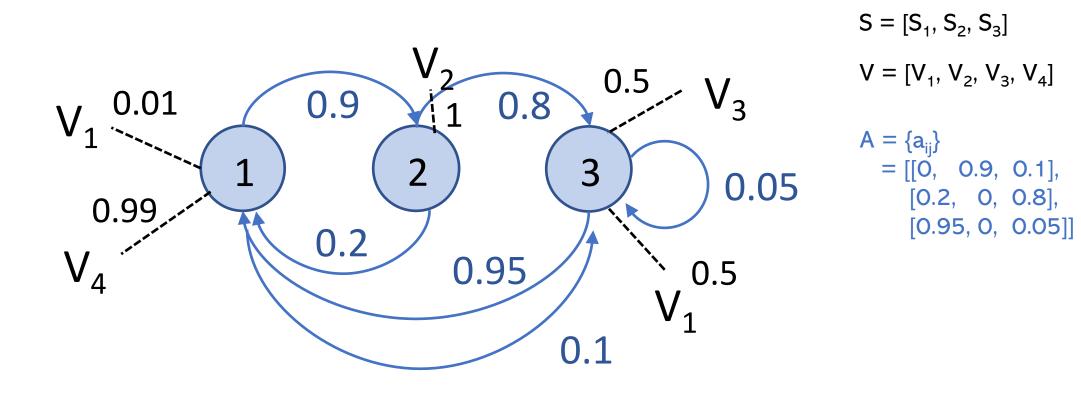
HMM Example – Transition Probability

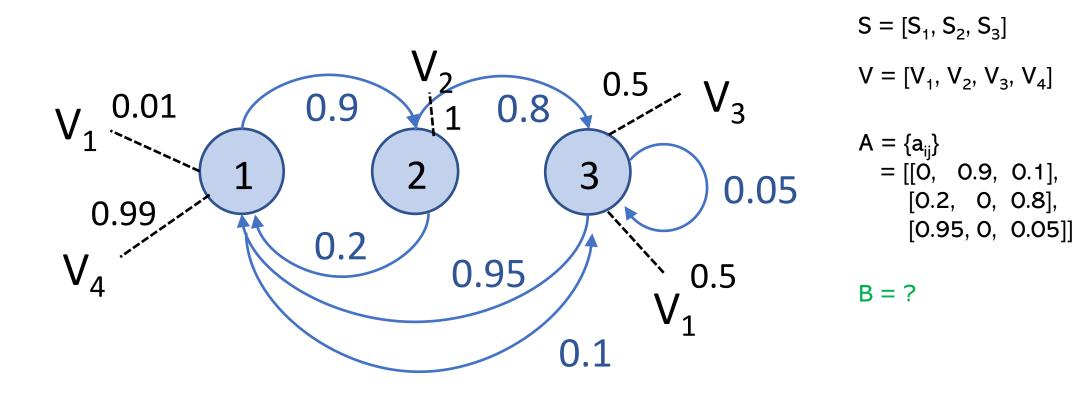


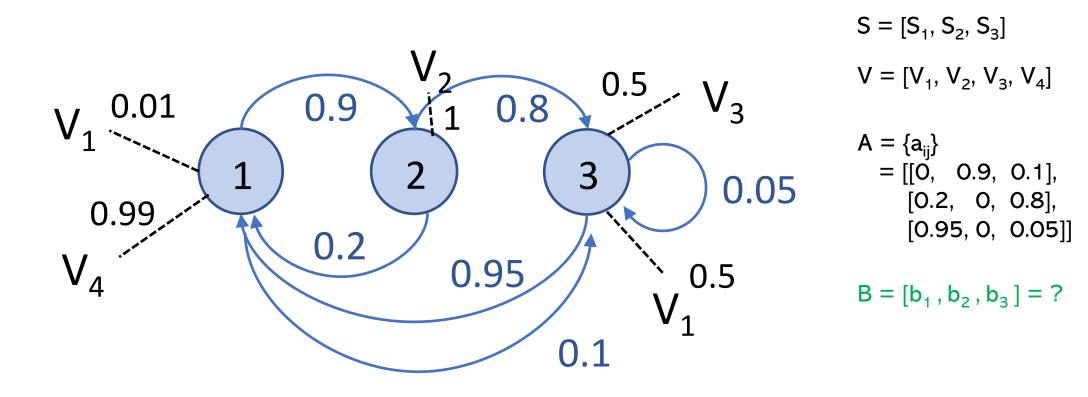
$$S = [S_1, S_2, S_3]$$
$$V = [V_1, V_2, V_3, V_4]$$

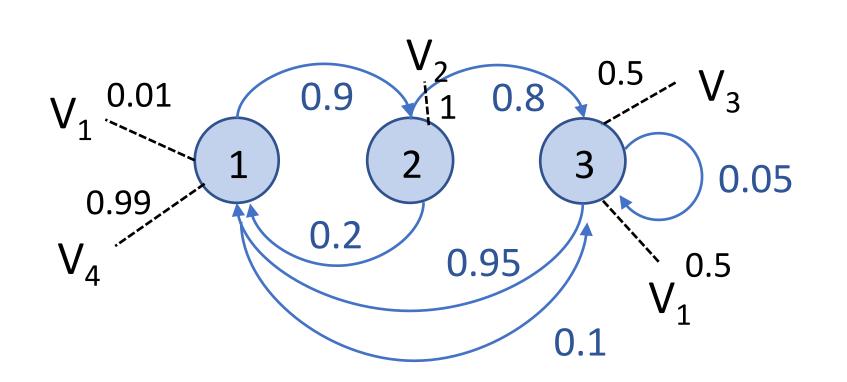
A = $\{a_{ij}\}$ = ? What is the size of A?

HMM Example – Transition Probability





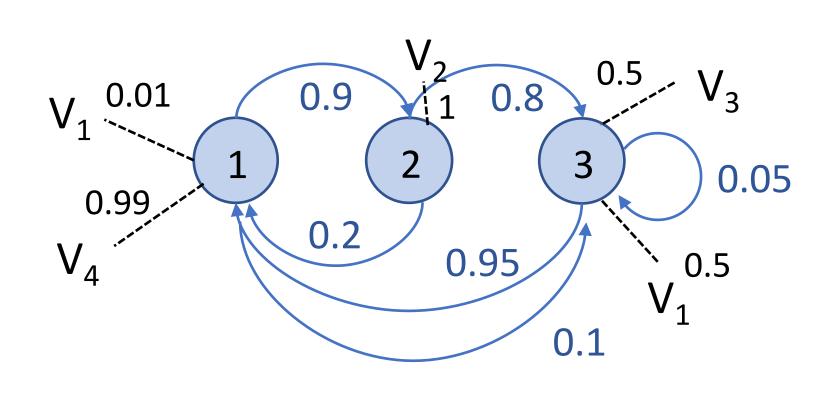




 $S = [S_1, S_2, S_3]$ $V = [V_1, V_2, V_3, V_4]$ $A = \{a_{ij}\}$ = [[0, 0.9, 0.1], [0.2, 0, 0.8], [0.95, 0, 0.05]]

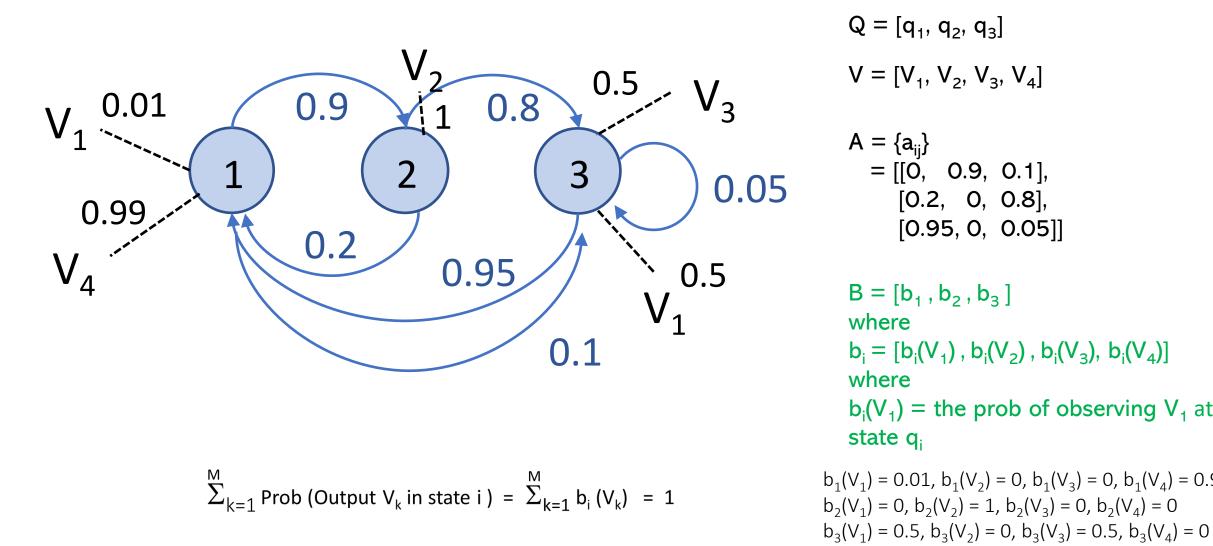
$$B = [b_1, b_2, b_3]$$

where
$$b_i = [b_i(V_1), b_i(V_2), b_i(V_3), b_i(V_4)]$$



 $S = [S_{1}, S_{2}, S_{3}]$ $V = [V_{1}, V_{2}, V_{3}, V_{4}]$ $A = \{a_{ij}\}$ = [[0, 0.9, 0.1], [0.2, 0, 0.8], [0.95, 0, 0.05]] $B = [b_{1}, b_{2}, b_{3}]$

 $B = [b_1, b_2, b_3]$ where $b_i = [b_i(V_1), b_i(V_2), b_i(V_3), b_i(V_4)]$ where $b_i(V_1) = \text{the prob of observing } V_1 \text{ at}$ state q_i



$$Q = [q_1, q_2, q_3]$$

$$V = [V_1, V_2, V_3, V_4]$$

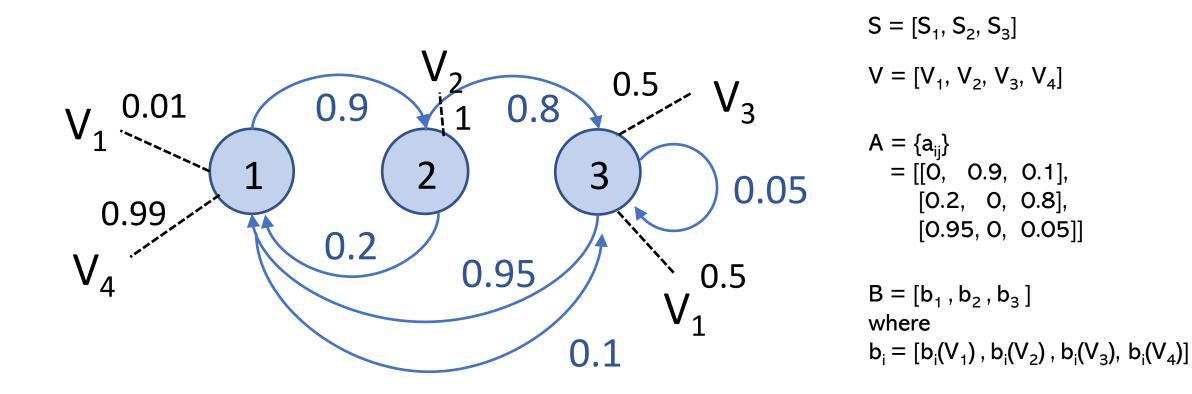
$$A = \{a_{ij}\}$$

$$= [[0, 0.9, 0.1], [0.2, 0, 0.8], [0.95, 0, 0.05]]$$

 $B = [b_1, b_2, b_3]$ where $b_i = [b_i(V_1), b_i(V_2), b_i(V_3), b_i(V_4)]$ where $b_i(V_1)$ = the prob of observing V_1 at state q_i $b_1(V_1) = 0.01, b_1(V_2) = 0, b_1(V_3) = 0, b_1(V_4) = 0.99$

Artificial Intelligence CS 640

HMM Example – λ



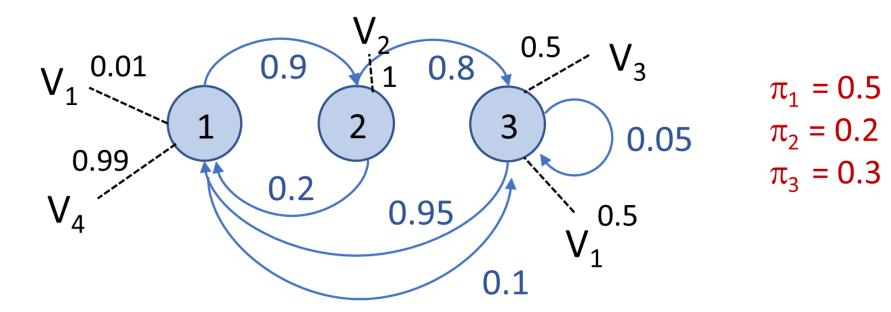
$$\boldsymbol{\lambda} := (A, B, \boldsymbol{\pi})$$

 $\pi = [0.5, 0.2, 0.3]$

Define specific HMM λ :

Transition matrix A, Emission probability B, Initial state vector π

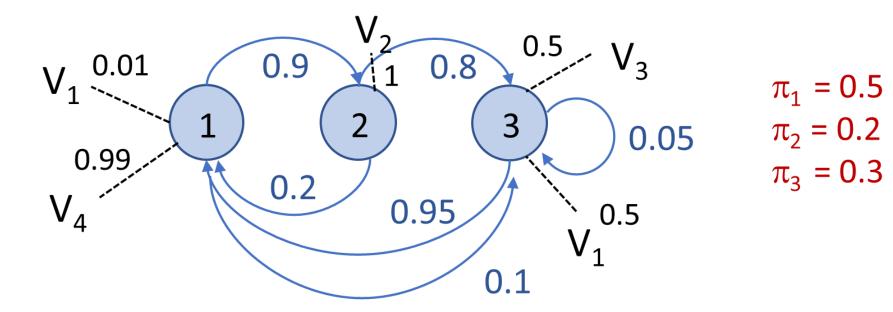
Artificial Intelligence CS 640



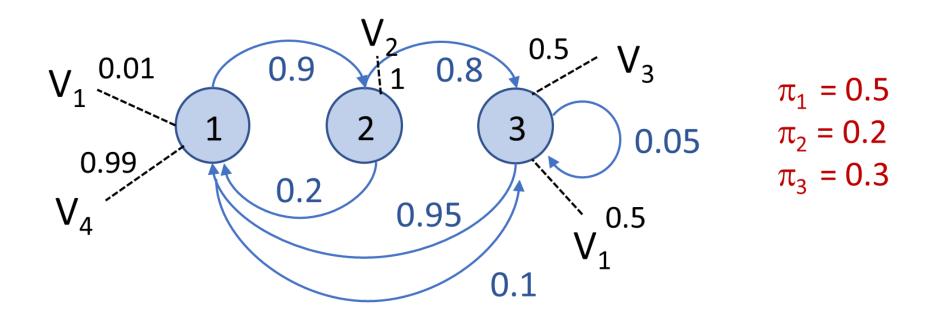
What is the probabilities of observing V_2 ?

$$P(V_2) = \pi_1 \cdot b_1(V_2) + \pi_2 \cdot b_2(V_2) + \pi_3 \cdot b_3(V_2)$$

= 0 + 0.2 \cdot 1 + 0
= 0.2

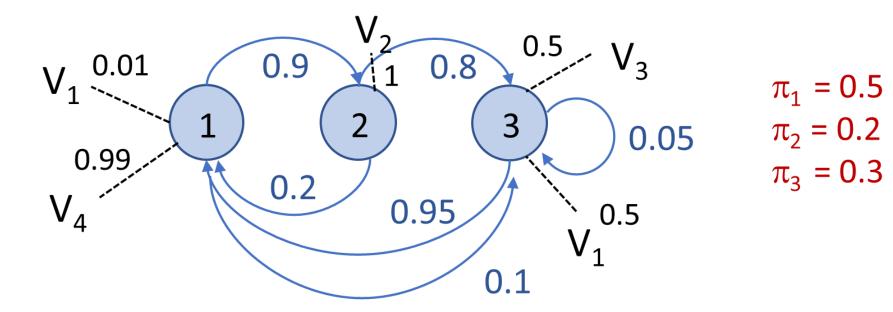


What is the probabilities of observing $V_2 V_2$?

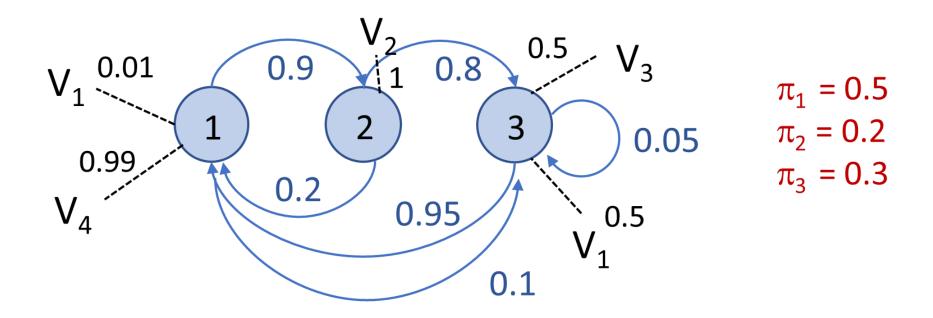


 $P(V_2V_2) = \pi_1 \cdot b_1(V_2) \cdot a_{11} \cdot b_1(V_2) + \pi_1 \cdot b_1(V_2) \cdot a_{12} \cdot b_2(V_2) + \pi_1 \cdot b_1(V_2) \cdot a_{13} \cdot b_3(V_2) + \\\pi_2 \cdot b_2(V_2) \cdot a_{21} \cdot b_1(V_2) + \pi_2 \cdot b_2(V_2) \cdot a_{22} \cdot b_2(V_2) + \\\pi_2 \cdot b_2(V_2) \cdot a_{23} \cdot b_3(V_2) + \\\pi_3 \cdot b_3(V_2) \cdot a_{31} \cdot b_1(V_2) + \\\pi_3 \cdot b_3(V_2) \cdot a_{32} \cdot b_2(V_2) + \\\pi_3 \cdot b_3(V_2) \cdot a_{33} \cdot b_3(V_2) + \\\pi_3 \cdot b_3(V_2) \cdot a_{33} \cdot b_1(V_2) + \\\pi_3 \cdot b_3(V_2) \cdot a_{33} \cdot b_3(V_2) + \\\pi_3 \cdot b_3(V_2) \cdot a_{33} \cdot b_1(V_2) + \\\pi_3 \cdot b_3(V_2) \cdot a_{33} \cdot b_3(V_2) + \\\pi_3 \cdot b_3(V_2) \cdot a_{33} \cdot b_1(V_2) + \\\pi_3 \cdot b_3(V_2) \cdot a_{33} \cdot b_3(V_2) + \\\pi_3 \cdot b_3(V_2) \cdot a_{33} \cdot b_1(V_2) + \\\pi_3 \cdot b_3(V_2) \cdot a_{33} \cdot b_3(V_2) + \\\pi_3 \cdot b_3(V_2) +$

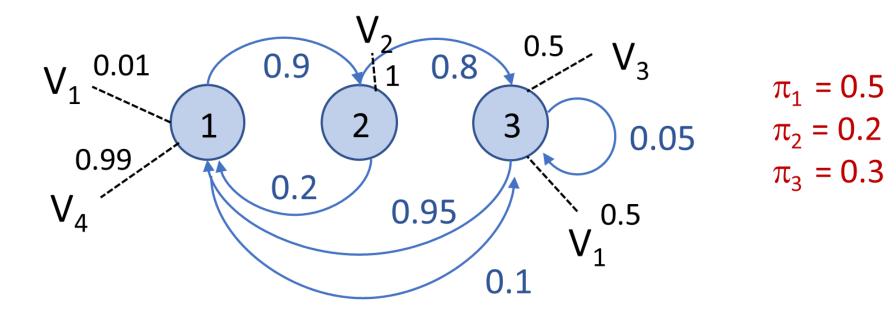
= 0



What is the probabilities of observing $V_2 V_1$?



 $P(V_2V_1) = \pi_1 \cdot b_1(V_2) \cdot a_{11} \cdot b_1(V_1) + \pi_1 \cdot b_1(V_2) \cdot a_{12} \cdot b_2(V_1) + \pi_1 \cdot b_1(V_2) \cdot a_{13} \cdot b_3(V_1) + \\\pi_2 \cdot b_2(V_2) \cdot a_{21} \cdot b_1(V_1) + \pi_2 \cdot b_2(V_2) \cdot a_{22} \cdot b_2(V_1) + \\\pi_2 \cdot b_2(V_2) \cdot a_{23} \cdot b_3(V_1) + \\\pi_3 \cdot b_3(V_2) \cdot a_{31} \cdot b_1(V_1) + \\\pi_3 \cdot b_3(V_2) \cdot a_{32} \cdot b_2(V_1) + \\\pi_3 \cdot b_3(V_2) \cdot a_{33} \cdot b_3(V_1) \\= 0 + (0.2 * 1 * 0.2 * 0.01 + 0 + 0.2 * 1 * 0.8 * 0.5) + 0 \\= 0.0804$



What is the probabilities of observing $V_2 V_1 V_3$?

Working with Hidden Markov Models

There are three fundamental problems in HMM:

• Evaluation Problem:

How likely is it that HMM λ computed O? Forward or backward procedure

• Recognition Problem:

Does HMM λ recognize O? Viterbi Algorithm

• Learning (= Training) Problem:

Adjust λ so that Prob (O| λ) is locally maximized.

Problem 1: Evaluation Problem

Problem Definition: Given an observation sequence $O=O_1O_2O_3...O_T$ and the model λ , what is $P(O|\lambda)$?

- The most straightforward way: enumerate every possible state sequence of length *T*
 - This is what we have just practiced and we have seen how fast the math gets ugly.

Problem Definition: Given an observation sequence $O=O_1O_2...O_T$ and the model λ , what is $P(O|\lambda)$?

- Consider **one** such fixed state sequence $Q=q_1q_2...q_T$, we have
 - $P(O|Q,\lambda) = \Pi_{t=1}^{T} P(O_t|q_t,\lambda) = b_{q_1}(O_1) \cdot b_{q_2}(O_2) \cdot ... \cdot b_{q_T}(O_T)$
- The prob. of such a state seq Q can be written as

•
$$P(Q|\lambda) = \pi_{q_1} a_{q_1 q_2} a_{q_2 q_3} \cdots a_{q_{T-1} q_T}$$

- The joint prob. of O and Q:
 - $P(O, Q | \lambda) = P(O | Q, \lambda) P(Q | \lambda)$
- With all possible state sequences, summing up
 - $P(O | \lambda) = \sum_{all Q} P(O, Q | \lambda) = \sum_{all Q} P(O | Q, \lambda) P(Q | \lambda)$

Problem Definition: Given an observation sequence $O=O_1O_2O_3...O_T$ and the model λ , what is $P(O|\lambda)$?

- The most straightforward way: enumerate every possible state sequence of length *T*
 - This is what we have just practiced and we have seen how fast the math gets ugly.
 - The time complexity is exponential. O(2T N^T)
- More efficient procedure?

Forward Procedure

• Define forward variable $\alpha_t(i)$:

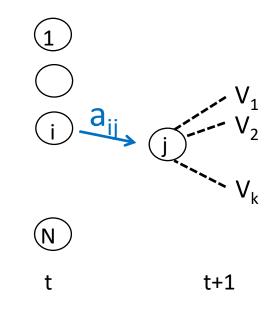
$$\alpha_t(i) = P(O_1 O_2 ... O_t, q_t = S_i | \lambda)$$

$$O_{0=0_1 O_2 ... O_{t-1} O_t O_{t+1} ... O_t}$$

- Given the model, $\alpha_t(i)$ is the probability of the **partial** observation sequence $O_1O_2...O_t$ when it reaches state S_i at time t.
- How about $\alpha_{t+1}(j)$ for some state S_j ?
 - assuming $\alpha_t(i)$ is known

$$\alpha_{t+1}(j) = \left(\sum_{i} \alpha_t(i) \cdot a_{ij}\right) \cdot b_j(O_{t+1})$$

- We can solve $\alpha_t(i)$ inductively.
- Time complexity. O(T N²)



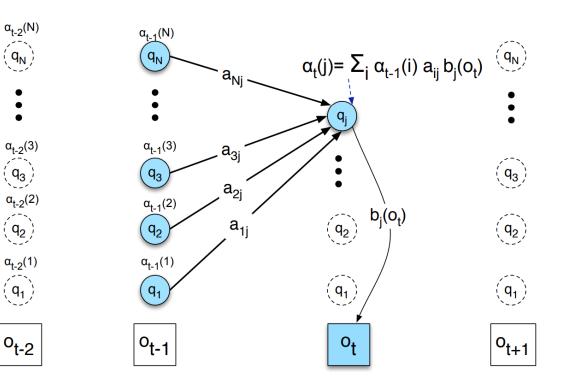
Forward Procedure

- **1.** Initialization $\alpha_1(i) = \pi_i b_i(o_1)$, $1 \le i \le N$
- 2. Induction

For t = 1, 2, ..., T-1

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_{t}(i) a_{ij} \right] b_{j}(o_{t+1}), \quad 1 \le j \le N$$

3. Termination Prob(O | λ) = $\sum_{i=1}^{N} \alpha_{T}(i)$



$$\alpha_{t}(i) = P(o_{1}o_{2}...o_{t}\otimes i | \lambda)$$

Forward Procedure

1. Initialization

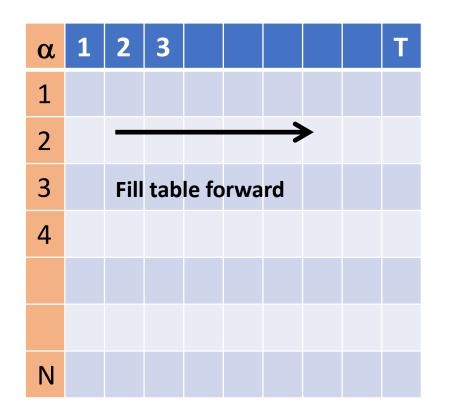
$$\alpha_1(i) = \pi_i b_i(o_1)$$
, $1 \le i \le N$

2. Induction

For t = 1, 2, ..., T-1

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_{t}(i) a_{ij} \right] b_{j}(o_{t+1}), \quad 1 \le j \le N$$

3. Termination Prob(O | λ) = $\sum_{i=1}^{N} \alpha_{T}(i)$ Problem 1: Evaluation Problem



$$\alpha_{t}(i) = P(o_{1}o_{2}...o_{t}\otimes i | \lambda)$$

Example: Forward Procedure

1. Initialization

 $\alpha_1(i) = \pi_i b_i(o_1)$, $1 \le i \le N$

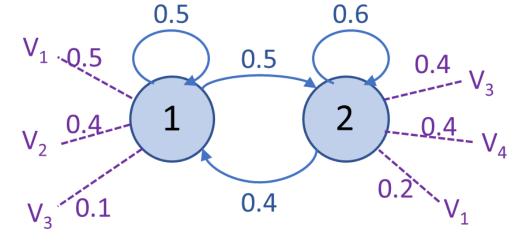
2. Induction

For t = 1, 2, ..., T-1

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_{t}(i) a_{ij} \right] b_{j}(o_{t+1}), \quad 1 \le j \le N$$

3. Termination

 $\mathsf{Prob}(\mathsf{O} \mid \lambda) = \sum_{i=1}^{\mathsf{N}} \alpha_{\mathsf{T}}(i)$



 π_1 = 0.2, π_2 =0.8

Observation $O = V_3V_1V_4$ – What is the probability?

α	1	2	3
1			
2			

Example: Forward Procedure

1. Initialization

 $\alpha_1(i) = \pi_i b_i(o_1)$, $1 \le i \le N$

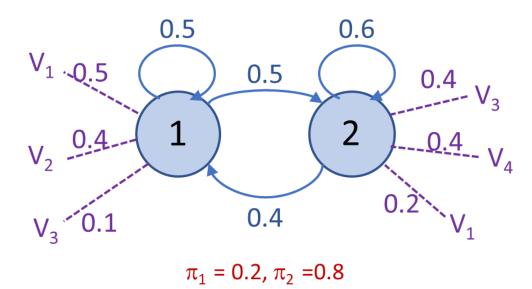
2. Induction

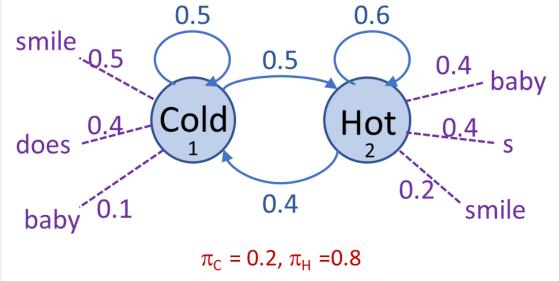
For t = 1, 2, ..., T-1

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_{t}(i) a_{ij} \right] b_{j}(o_{t+1}), \quad 1 \le j \le N$$

3. Termination

 $\mathsf{Prob}(\mathsf{O} \mid \lambda) = \sum_{i=1}^{\mathsf{N}} \alpha_{\mathsf{T}}(i)$





Observation $O = V_3V_1V_4$ – What is the probability?

Observation $O = V_3 V_1 V_4 \rightarrow O =$ "baby smile s"

Example: Forward Procedure	α	1	2	3
1. Initialization $\alpha_1(i) = \pi_i b_i(o_1)$, $1 \le i \le N$ 2. Induction For $t = 1, 2,, T-1$ $\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_t(i) a_{ij}\right] b_j(o_{t+1})$, $1 \le j \le N$ 3. Termination $Prob(O \mid \lambda) = \sum_{i=1}^{N} \alpha_T(i)$	1 Cold	$ \alpha_1(C) = \pi_C b_C(baby) = 0.2 * 0.1 = 0.02 $	$\alpha_{2}(C) = (\alpha_{1}(C) \cdot a_{CC} + \alpha_{1}(H) \cdot a_{HC}) \cdot b_{c}(\text{smile}) = (0.02 * 0.5 + 0.32 * 0.4) * 0.5 = 0.069$	$\alpha_{3}(C) = (\alpha_{2}(C) \cdot a_{CC} + \alpha_{2}(H) \cdot a_{HC}) \cdot b_{c}(s) = (0.069 * 0.5 + 0.0404 * 0.4) * 0 = 0$
0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	2 Hot	$ \alpha_1(H) = \pi_H b_H (baby) = 0.8 * 0.4 = 0.32 $	$\alpha_{2}(H) = (\alpha_{1}(C) \cdot a_{CH} + \alpha_{1}(H) \cdot a_{HH}) + \alpha_{1}(H) \cdot a_{HH}) + b_{H}(\text{smile}) = (0.02 * 0.5 + 0.32) + 0.6) * 0.2 = 0.0404$	$\alpha_{3}(H) = (\alpha_{2}(C) \cdot a_{CH} + \alpha_{2}(H) \cdot a_{HH}) \cdot b_{H}(s) = (0.069 * 0.5 + 0.0404 * 0.6) * 0.4 = 0.023496$
baby 0.1 $\pi_{\rm C} = 0.2, \pi_{\rm H} = 0.8$ smile				

$$P(0|\lambda) = \alpha_3(C) + \alpha_3(H) = 0.023496$$

Observation O = "baby smile s" – What is the probability?

Example: Forward Procedure

1. Initialization

 $\alpha_1(i) = \pi_i b_i(o_1)$, $1 \le i \le N$

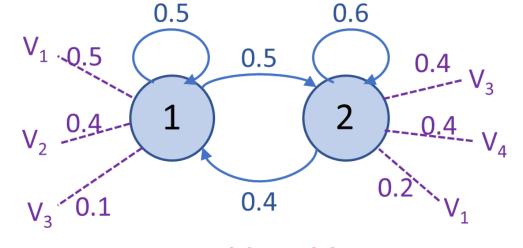
2. Induction

For t = 1, 2, ..., T-1

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_{t}(i) a_{ij} \right] b_{j}(o_{t+1}), \quad 1 \le j \le N$$

3. Termination

 $\mathsf{Prob}(\mathsf{O} \mid \lambda) = \sum_{i=1}^{\mathsf{N}} \alpha_{\mathsf{T}}(i)$



 π_1 = 0.2, π_2 =0.8

α	1	2	3
1	$ \begin{array}{l} \alpha_1(1) \\ = \pi_1 b_1(V_3) \\ = 0.2 * 0.1 \\ = 0.02 \end{array} $	$ \begin{array}{l} \alpha_{2}(1) \\ = (\alpha_{1}(1) \cdot a_{11} + \alpha_{1}(2) \\ \cdot a_{21}) \cdot b_{1}(V_{1}) \end{array} $	$a_{3}(1) = (\alpha_{2}(1) \cdot a_{11} + \alpha_{2}(2) \cdot a_{21}) \cdot b_{1}(V_{4})$
2	$\alpha_1(2)$ = $\pi_2 b_2(V_3)$ = $0.8 * 0.4$ = 0.32	$\alpha_2(2) = (\alpha_1(1) \cdot a_{12} + \alpha_1(2)) \cdot a_{22} \cdot b_2(V_1)$	$ \begin{array}{l} \alpha_{3}(2) \\ = (\alpha_{2}(1) \cdot a_{12} + \alpha_{2}(2) \\ \cdot a_{22}) \cdot b_{2}(\mathbb{V}_{4}) \end{array} $

 $P(0|\lambda) = \alpha_3(\mathbf{1}) + \alpha_3(\mathbf{2})$

Observation $O = V_3V_1V_4$ – What is the probability?

Example: Forward Procedure

1. Initialization

 $\alpha_1(i) = \pi_i b_i(o_1)$, $1 \le i \le N$

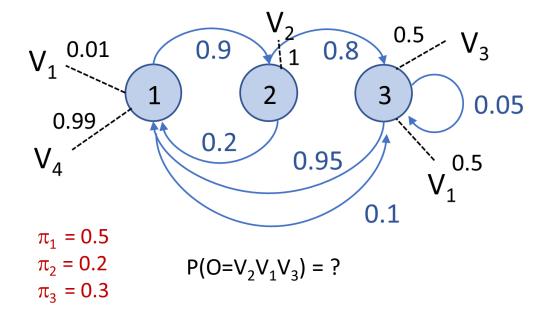
2. Induction

For t = 1, 2, ..., T-1

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_{t}(i) a_{ij} \right] b_{j}(o_{t+1}), \quad 1 \le j \le N$$

3. Termination

 $\mathsf{Prob}(\mathsf{O} \mid \lambda) = \sum_{i=1}^{\mathsf{N}} \alpha_{\mathsf{T}}(i)$



α	1	2	3
1	<i>α</i> ₁ (1)	α ₂ (1)	<i>α</i> ₃ (1)
2	α ₁ (2)	<i>α</i> ₂ (2)	<i>α</i> ₃ (2)
3	α ₁ (3)	<i>α</i> ₂ (3)	α ₃ (3)

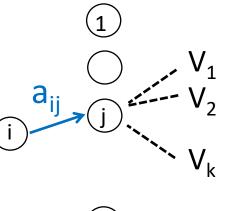
Backward Procedure

• Define backward variable $\beta_t(i)$:

 $\beta_t(i) = P(O_{t+1}O_{t+2}...O_T | q_t = S_i, \lambda)$

- This is the probability of the observing the **future** sequence $O_{t+1}O_{t+2}...O_T$ given that the current (i.e. at time t) state is S_i .
- It can be computed using future $\beta_{t\, +\, 1}$ as follows
 - assuming we know those future values

$$\beta_t(i) = \sum_{j=1}^{n} a_{ij} b_j(O_{t+1}) \beta_{t+1}(j)$$



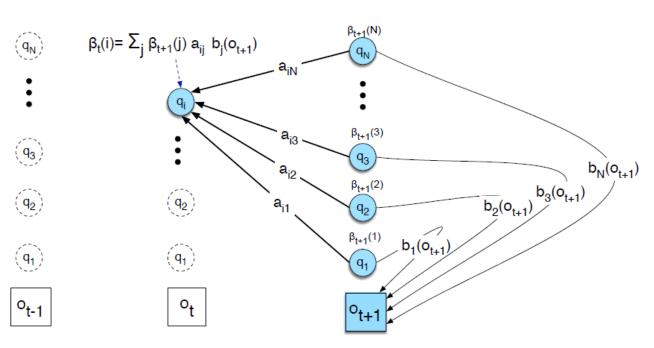
(N)

t+1

t

$\beta_t(i) = P(o_{t+1}o_{t+2}...o_T)$ state at t=(i), λ) Backward Procedure

- 1. Initialization $\beta_T(i) = 1$, for all i, $1 \le i \le N$
- 2. Induction For t = T-1, ...,1, and for all i, 1 <= i <= N $\beta_t(i) = \sum_{j=1}^{N} a_{ij}\beta_{t+1}(j) \ b_j(o_{t+1})$



3. Termination Prob(O | λ) = $\sum_{i=1}^{N} \beta_1(i) \pi_i b_i(o_1)$

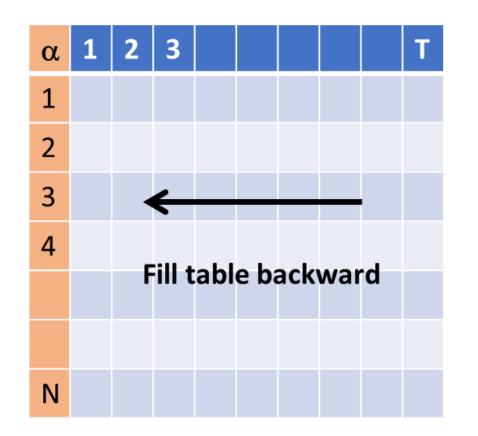
Results of Backward & Forward Procedure **must be the same**!

Backward Procedure

- 1. Initialization $\beta_T(i) = 1$, for all i, $1 \le i \le N$
- 2. Induction

For t = T-1, ...,1, and for all i, 1 <= i <= N $\beta_t(i) = \sum_{j=1}^{N} a_{ij}\beta_{t+1}(j) \ b_j(o_{t+1})$

3. Termination Prob(O | λ) = $\sum_{i=1}^{N} \beta_{1}(i) \pi_{i} b_{i}(o_{1})$



 $\beta_t(i) = P(O_{t+1}O_{t+2}...O_T | \text{state at } t=(i), \lambda)$

Results of Backward & Forward Procedure **must be the same**!

Working with Hidden Markov Models

There are three fundamental problems in HMM:

• Evaluation Problem:

How likely is it that HMM λ computed O? Forward or backward procedure

• Recognition Problem:

Does HMM λ recognize O? Viterbi Algorithm

• Learning (= Training) Problem:

Adjust λ so that Prob (O| λ) is locally maximized.

Problem 2: Recognition Problem

Problem Statement: Given an observation sequence $O=O_1O_2O_3...O_T$ and the model λ , what is the **optimal** state sequence $Q = q_1q_2q_3...q_T$?

- "Optimal?
 - Choose each state \boldsymbol{q}_t that is **individually** most likely _
 - Choose the single best **path** $q_1q_2q_3...q_T$

i.e. to maximize $P(Q|O, \lambda)$, equivalent to maximizing $P(Q, O|\lambda)$ Sometimes not possible (a_{ij} = 0 for some i and j)

New Problem Statement: Given an observation sequence O and the model λ , what is the state sequence Q that maximizes the probability P(Q,O| λ)?

Problem 2: Recognition Problem

Viterbi Algorithm

• Define $\delta_t(i)$:

$$Q_{t-1} = q_1 q_2 \dots q_{t-1}$$

$$\delta_t(i) = \max_{Q_{t-1}} P(Q_{t-1}, q_t = S_i, O_t | \lambda)$$

- Given the model, $\delta_t(i)$ is the best score (highest probability) along a single path, at time t, which accounts for the first t observations and ends in state S_i .
- How about $\delta_{t+1}(j)$ for some state S_j ? $\delta_{t+1}(j) = [\max_i \delta_t(i)a_{ij}]b_j(O_{t+1})$
- To actually retrieve the state sequence, we need to keep track of the argument which maximized $\delta_{t+1}(j)$ for each t and j. We do this via the array $\psi_t(j)$

Problem 2: Recognition Problem

Viterbi Algorithm

- 1. Initialization: $\delta_1(i) = \pi_i b_i(o_1)$ for all *i*, $1 \le i \le N$ $\psi_1(i) = 0$
- **2.** Recursion: For *t* = 2, ..., *T*-1, and for all *j*, 1 <= *j* <= *N*

$$\begin{split} \delta_{t}(j) &= \max_{i=1..N} \left[\delta_{t-1}(i) a_{ij} \right] b_{j}(o_{t+1}) \\ \psi_{t}(j) &= \arg\max_{i=1..N} \left[\delta_{t-1}(i) a_{ij} \right] \end{split}$$

3. Termination: $P(Q^*, O | \lambda) = \max_{i=1..N} \delta_T(i)$

$$q_T^* = argmax_{i=1..N} \delta_T(i)$$

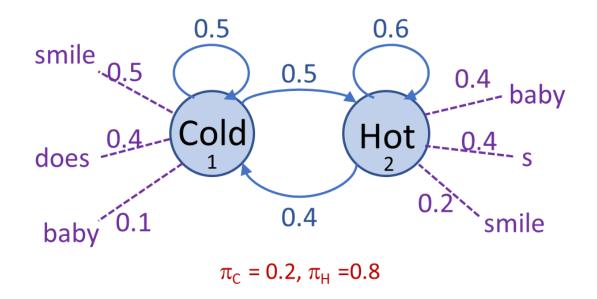
4. Path backtracking:

$$q_t^* = \psi_{t+1} q_{t+1}^*$$
 for $t = T-1, T-2,..., 1$

Example: Viterbi Algorithm

- 1. Initialization: $\delta_1(i) = \pi_i b_i(o_1)$ for all *i*, $1 \le i \le N$ $\psi_1(i) = 0$
- 2. Recursion: For t = 2, ..., T-1, and for all $j, 1 \le j \le N$ $\delta_t(j) = \max_{i=1..N} [\delta_{t-1}(i) a_{ij}] b_j(o_{t+1})$ $\psi_t(j) = \operatorname{argmax}_{i=1..N} [\delta_{t-1}(i) a_{ij}]$ 3. Termination: $P(Q^*, O \mid \lambda) = \max_{i=1..N} \delta_T(i)$ $q_T^* = \operatorname{argmax}_{i=1..N} \delta_T(i)$

$$q_t^* = \psi_{t+1} q_{t+1}^*$$
 for $t = T-1, T-2,..., 1$



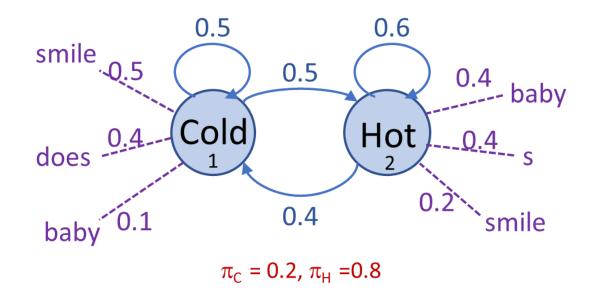
Observation O = "baby smile s" – What is the best path?

δ	1	2	3
Cold			
Hot			

Example: Viterbi Algorithm

- 1. Initialization: $\delta_1(i) = \pi_i b_i(o_1)$ for all *i*, $1 \le i \le N$ $\psi_1(i) = 0$
- 2. Recursion: For t = 2, ..., T-1, and for all $j, 1 \le j \le N$ $\delta_t(j) = \max_{i=1..N} [\delta_{t-1}(i) a_{ij}] b_j(o_{t+1})$ $\psi_t(j) = \operatorname{argmax}_{i=1..N} [\delta_{t-1}(i) a_{ij}]$ 3. Termination: $P(Q^*, O \mid \lambda) = \max_{i=1..N} \delta_T(i)$ $q_T^* = \operatorname{argmax}_{i=1..N} \delta_T(i)$
- 4. Path backtracking:

$$q_t^* = \psi_{t+1} q_{t+1}^*$$
 for $t = T-1, T-2,..., 1$



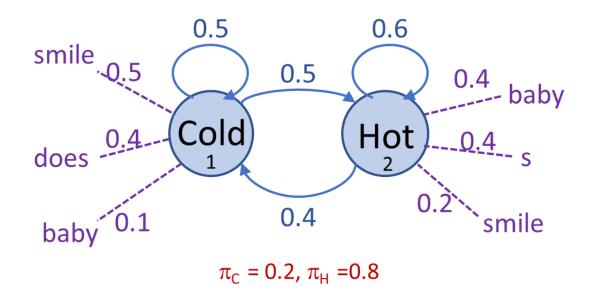
Observation O = "baby smile s" – What is the best path?

δ	1	2	3
Cold	$\delta_1(C) = \pi_C b_C$ (baby) = 0.2 * 0.1 = 0.02	$\delta_{2}(C) = max(\delta_{1}(C) \cdot a_{CC}, \delta_{1}(H) \cdot a_{HC}) \cdot b_{c}(\text{smile}) \\ = max(0.02 * 0.5, 0.32 * 0.4) * 0.5 = 0.064$	$\delta_3(C) = max(\delta_2(C) \cdot a_{CC}, \delta_2(H) \cdot a_{HC}) \cdot b_c(s)$
Hot	$\delta_1(H) = \pi_H b_H(\text{baby})$ = 0.8 * 0.4 = 0.32	$\delta_{2}(H) = max(\delta_{1}(C) \cdot a_{CH}, \delta_{1}(H) \cdot a_{HH}) \cdot b_{H}(\text{smile}) \\ = max(0.02 * 0.5, 0.32 * 0.6) * 0.2 = 0.038$	$\delta_{3}(H) = max(\delta(C) \cdot a_{CH}, \delta_{2}(H) \cdot a_{HH}) \cdot b_{H}(s)$

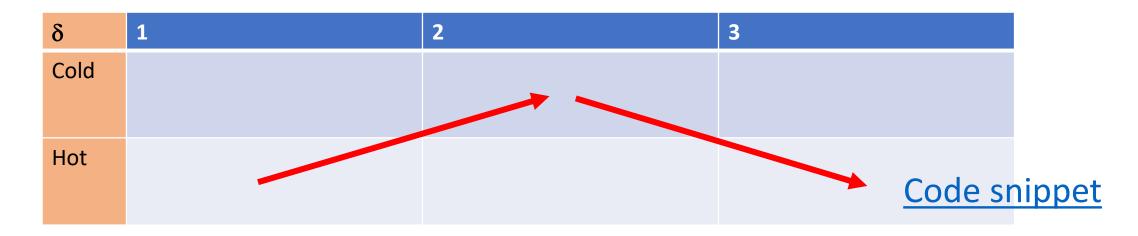
Example: Viterbi Algorithm

- 1. Initialization: $\delta_1(i) = \pi_i b_i(o_1)$ for all *i*, $1 \le i \le N$ $\psi_1(i) = 0$
- 2. Recursion: For t = 2, ..., T-1, and for all $j, 1 \le j \le N$ $\delta_t(j) = \max_{i=1..N} [\delta_{t-1}(i) a_{ij}] b_j(o_{t+1})$ $\psi_t(j) = \operatorname{argmax}_{i=1..N} [\delta_{t-1}(i) a_{ij}]$ 3. Termination: $P(Q^*, O \mid \lambda) = \max_{i=1..N} \delta_T(i)$ $q_T^* = \operatorname{argmax}_{i=1..N} \delta_T(i)$
- 4. Path backtracking:

$$q_t^* = \psi_{t+1} q_{t+1}^*$$
 for $t = T-1, T-2, ..., 1$



Observation O = "baby smile s" – What is the best path?



Working with Hidden Markov Models

There are three fundamental problems in HMM:

• Evaluation Problem:

How likely is it that HMM λ computed O? Forward or backward procedure

• Recognition Problem:

Does HMM λ recognize O? Viterbi Algorithm

• Learning (= Training) Problem:

Adjust λ so that Prob (O| λ) is locally maximized.

Problem Statement: Given an observation sequence $O=O_1O_2O_3...O_T$ and the model λ , how do we adjust $\lambda = (A, B, \pi)$ to maximize $P(O|\lambda)$?

- If we can solve this problem, then we can train a model starting from some random parameters.
- But there is no optimal way to estimate the parameters.
- One can at best use some iterative procedure to locally maximize the probabilities
 - Baum-Welch

• Define

$$\xi_t(i,j)=P(q_t=S_i,q_{t+1}=S_j|O,\lambda)$$
 .

- This is the probability of being in state S_i at time t and state S_j at time t + 1, given the observations and the model.
- Define

$$\gamma_t(i) = \sum_{j=1}^N \xi_t(i,j) = P(q_t = S_i | O, \lambda)$$
 .

 This is the probability of being in state S_i at time t, given the observations and the model.

$$\gamma_t(i) = \sum_{j=1}^N \xi_t(i,j) = P(q_t = S_i | O, \lambda)$$
 .

$$\xi_t(i,j)=P(q_t=S_i,q_{t+1}=S_j|O,\lambda)$$

What are the sums of these two quantities over time steps t from 1 to T - 1?

 $\sum_{t=1}^{T-1} \gamma_t(i) = \text{expected number of transitions from } S_i$ $\sum_{t=1}^{T-1} \xi_t(i, j) = \text{expected number of transitions from } S_i \text{ to } S_j$

This is because they follow **Poisson binomial distribution**.

$$egin{aligned} \xi_t(i,j) &= P(q_t = S_i, q_{t+1} = S_j | O, \lambda) \ \gamma_t(i) &= \sum_{j=1}^N \xi_t(i,j) = P(q_t = S_i | O, \lambda) \end{aligned}$$

we can then update $\lambda = (A, B, \pi)$ as

$$\overline{a_{ij}} = rac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)}$$

$$\overline{b_j(v_k)} = rac{\sum_{t=1}^{T-1} \mathbf{1}(v_k = O_t) \gamma_t(i)}{\sum_{t=1}^{T-1} \gamma_t(i)}$$

$$\overline{\pi_i} = \gamma_1(i)$$

Wait, how do we compute this?

$$\begin{split} \xi_t(i,j) &= P(q_t = S_i, q_{t+1} = S_j | O, \lambda) \\ &= \frac{P(q_t = S_i, q_{t+1} = S_j, O | \lambda)}{P(O | \lambda)} \\ &= \frac{P(q_t = S_i, q_{t+1} = S_j, O | \lambda)}{\sum_i \sum_j P(q_t = S_i, q_{t+1} = S_j, O | \lambda)} \end{split}$$

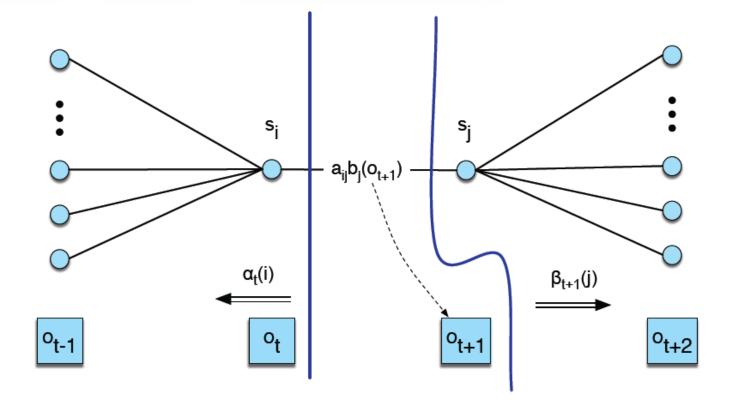
where

$$P(q_t = S_i, q_{t+1} = S_j, O|\lambda) = lpha_t(i) a_{ij} b_j(O_{t+1}) eta_{t+1}(j)$$

Recall Notations

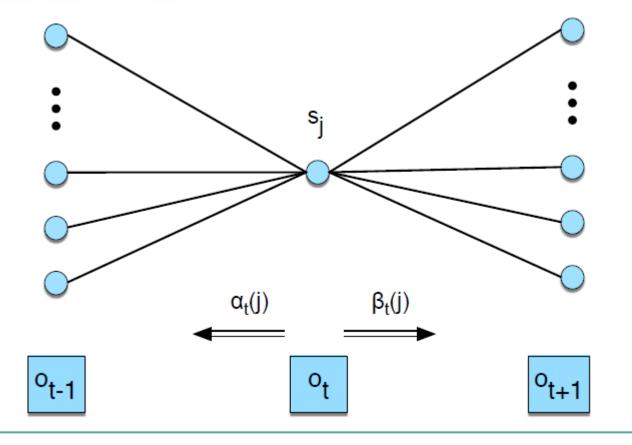
 $\begin{aligned} &\alpha_t(i) = \mbox{ Prob } (O_1...O_t \mbox{ and } q_t = i \mid \lambda \) \\ &\beta_t(i) = \mbox{ Prob } (O_{t+1}...O_T \mid q_t = i \mbox{ and } \lambda \) \end{aligned}$

 $P(q_t = S_i, q_{t+1} = S_j, O|\lambda) = lpha_t(i) a_{ij} b_j(O_{t+1}) eta_{t+1}(j)$



Recall Notations $\gamma_t(i) = \sum_{j=1}^N \xi_t(i, j) = P(q_t = S_i | O, \lambda)$

 $\begin{aligned} &\alpha_t(i) = \mbox{ Prob } (O_1...O_t \mbox{ and } q_t = i \mid \lambda \) \\ &\beta_t(i) = \mbox{ Prob } (O_{t+1}...O_T \mid q_t = i \mbox{ and } \lambda \) \end{aligned}$



$$egin{aligned} \xi_t(i,j) &= P(q_t = S_i, q_{t+1} = S_j | O, \lambda) \ \gamma_t(i) &= \sum_{j=1}^N \xi_t(i,j) = P(q_t = S_i | O, \lambda) \end{aligned}$$

$$\begin{aligned} \alpha_t(i) &= \text{Prob} \left(O_1 ... O_t \text{ and } q_t = i \mid \lambda \right) \\ \beta_t(i) &= \text{Prob} \left(O_{t+1} ... O_T \mid q_t = i \text{ and } \lambda \right) \end{aligned}$$

$$\begin{split} \xi_{t}(i, j) &= \alpha_{t}(i) a_{ij} b_{j}(O_{t+1}) \beta_{t+1}(j) / \text{ Prob }(O | \lambda) \\ &= \alpha_{t}(i) a_{ij} b_{j}(O_{t+1}) \beta_{t+1}(j) / \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{t}(i) a_{ij} b_{j}(O_{t+1}) \beta_{t+1}(j) \\ \gamma_{t}(i) &= \alpha_{t}(i) \beta_{t}(i) / \text{ Prob }(O | \lambda) \\ &= \alpha_{t}(i) \beta_{t}(i) / \sum_{i=1}^{n} \alpha_{t}(i) \beta_{t}(i) \end{split}$$

Problem 3: Training/Learning

Baum-Welch Re-estimation

1.
$$\overline{\pi}_{i} = \gamma_{1}$$
 (i)
2. $\overline{a}_{ij} = \sum_{t=1}^{T} \xi_{t}$ (i,j) $/ \sum_{t=1}^{T} \gamma_{t}$ (i)
3. \overline{b}_{j} (k) $= \sum_{t=1, O_{t} = V_{k}}^{T} \gamma_{t}$ (j) $/ \sum_{t=1} \gamma_{t}^{T}$ (j)

If Prob(O | $\overline{\lambda}$) > Prob (O | λ) Re-estimate $\overline{\lambda}$ until (local) maximum is reached

- No analytic solution (= no "simply plug in" solution)
- Use iterative algorithm that learns to represent training data better and better
- "Baum-Welch Reestimation Algorithm"

Input: HMM λ , training sequence O

- 1) Initialization: Guess all probabilities to be uniform
- 2) Repeat until no better HMM λ can be found:

Update all probabilities according to equations on next slide

Output: HMM $\lambda *$

Learning Outcomes

- Understand FSM, Deterministic FSM, Markov Network(Chains), HMM
 - The "Markov" Property
 - The "Hidden"
- Know the three fundamental problems in HMM, and how to solve them
 - Forward procedure
 - Viterbi Algorithm
 - Baum-Welch Reestimation Algorithm using the forward-backward quantities

