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Agenda (10/29, 10/31)

• From State Machine To Markov Model

• Working with Hidden Markov Models
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Finite State Machine (FSM) 

   = Automata

Finite State Machine with 
Deterministic Outputs                  

Hidden Markov Model  
= Markov Network with Output Probabilities

Markov Network 
= FSM with Transition Probabilities 
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Finite State Machine (FSM) = Automata
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• A state machine is a machine’s AI 
logic in graph form.

• Key Concepts:
• States/nodes/vertices

• Transitions/edges/arcs

1 2 3

# States = N = 3,  

Set of states Q = {q1,…, qN } 
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FSM with Deterministic Outputs (b’s)

# States = N = 3,  Set of states Q = {q1,…, qN }

# Outputs = M = 3 , {V1, V2, V3 }  
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1 2 3
V1

V3
V2

b at state 3 is “V3”• Each state outputs a symbol 
deterministically 
i.e., for every state and input 
combination, there is a specific, 
predefined output). 

• The symbols in an FSM form 
a vocabulary.

• The set of all possible 
vocabularies (sequences of 
the symbols) is called 
language.

• Generator and/or Recognizer



Example: Deterministic FSM as a Recognizer
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Source : Wiki

Formal Definition:
A Deterministic Finite Automaton(Acceptor) (DFA) is a tuple M=⟨Q,Σ,δ,q0,F⟩
•Q - a finite set of states
•Σ - a finite set of input symbol alphabet
•δ - a transition function
•q0∈Q - the start state
•F⊆Q - the final (or "accepting") states

  

 

 

  

 

 

  

 

 

Q: What is this doing?
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Finite State Machine (FSM) 

   = Automata

Finite State Machine with 
Deterministic Outputs                  

Hidden Markov Model  
= Markov Network with Output Probabilities

Markov Network 
= FSM with Transition Probabilities 



Markov Network (Chains)
= FSM with Transition Probabilities (a’s)
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States correspond to physical events, 
observations, measurements

Markov property: the future state of a system depends only on its current state, not on the sequence of events that 
preceded it



Probability Axioms (Kolmogorov Axioms)

1. Probabilities are non-negative reals:

 P(A) >= 0     for all events A

2. The entire event space has probability 1:

     P(A)   =  1      (sum over all events A)

3. Probabilities add for pairwise disjoint events:  

  A & B disjoint events:   P(A U B ) = P(A) + P(B)
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Markov Chains 
= FSM with Transition Probabilities (a’s)
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1 2 3
V1

V3
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j=1 Prob( state i  ->  state j) = j=1 aij  = 1        for all states i
#states #states

a12 = 0.9

States correspond to physical events, 
observations, measurements



i =  Probability that state  i   is the initial state

1+ 2+ 3  = 1  
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V2

1  = 0.5
2 = 0.2
3  = 0.3

Markov Chains 
= FSM with Transition Probabilities (a’s) States correspond to physical events, 

observations, measurements
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V2

Markov Chains 

Given a sequence of outputs, we can calculate the probability of 
observing it. 
E.g, outputs = V2V1V3 
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V2

Prob(O) = Prob(V2V1V3) = 2 Prob( 2   ->   1 )  Prob( 1  ->  3 )  

                                                                    0.2           0.2                0.1                 = 0.004

..

Markov Chains 

Probability of observing a sequence of outputs V2V1V3   =
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Finite State Machine (FSM) 

   = Automata
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Deterministic Outputs                  
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= Markov Network with Output Probabilities

Markov Network 
= FSM with Transition Probabilities 



Hidden Markov Model

Markov model: each state outputs and must output one symbol, 
making the state outputs deterministic (observable).

However, if instead, each state can output different symbols where 
each symbol is associated with a certain probability, then the outputs 
are non-deterministic (hidden) and the resulting model is called 
Hidden Markov Model (HMM).

At a high level, a HMM is a Markov model with Markov transition 
process and non-observable (hidden) states.
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states not directly observable (= hidden)



HMM Notations
● A set of N states: S = {S1, S2, S3, …, SN}

• denote qt : the actual state at time t

● A set of M distinct symbols as vocabulary : V = {V1, V2, V3, …, VM}
• sometimes symbols are in lower case

● Transition probabilities as a matrix: A = {aij}
• aij = Prob(qt = Sj | qt-1 = Si),  1 ≤ i, j ≤ N

● Initial probabilities: 𝝅 = {𝝅1, 𝝅2, 𝝅3, …, 𝝅N}
• 𝝅i = Prob(q1 = Si),  1 ≤ i ≤ N

● A matrix for observation likelihoods (aka. Emission probabilities): B = {bj(k)} 
• bj(k) = Prob(Vk at t| qt = Sj),   1 ≤ j ≤ N, 1 ≤ k ≤ M

• The probability of Vk being generated from a state qj

● A sequence of T observations (observed symbols at time T): O = O1O2O3…OT

• Each Oi is drawn from the vocabulary V

● HMM: 𝞴 = (S, V, A, B, 𝝅) or more commonly just (A, B, 𝝅)
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HMM Example
S = ?

V = ?

A = ?

B = ?
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HMM Example – States and Symbols
S = [S1, S2, S3]

V = [V1, V2, V3, V4]

A = ?

B = ?
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HMM Example – Transition Probability
S = [S1, S2, S3]

V = [V1, V2, V3, V4]

A = {aij} = ?

What is the size of A? 
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HMM Example – Transition Probability
S = [S1, S2, S3]

V = [V1, V2, V3, V4]

A = {aij}

   = [[0,   0.9,  0.1], 

       [0.2,   0,  0.8], 

       [0.95, 0,  0.05]]
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HMM Example – Emission Probability
S = [S1, S2, S3]

V = [V1, V2, V3, V4]

A = {aij}

   = [[0,   0.9,  0.1], 

       [0.2,   0,  0.8], 

       [0.95, 0,  0.05]]

B = ?
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HMM Example – Emission Probability
S = [S1, S2, S3]

V = [V1, V2, V3, V4]

A = {aij}

   = [[0,   0.9,  0.1], 

       [0.2,   0,  0.8], 

       [0.95, 0,  0.05]]

B = [b1 , b2 , b3 ] = ?
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HMM Example – Emission Probability
S = [S1, S2, S3]

V = [V1, V2, V3, V4]

A = {aij}

   = [[0,   0.9,  0.1], 

       [0.2,   0,  0.8], 

       [0.95, 0,  0.05]]

B = [b1 , b2 , b3 ] 

where

bi = [bi(V1) , bi(V2) , bi(V3), bi(V4)]
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HMM Example – Emission Probability
S = [S1, S2, S3]

V = [V1, V2, V3, V4]

A = {aij}

   = [[0,   0.9,  0.1], 

       [0.2,   0,  0.8], 

       [0.95, 0,  0.05]]

B = [b1 , b2 , b3 ] 

where

bi = [bi(V1) , bi(V2) , bi(V3), bi(V4)]

where

bi(V1) = the prob of observing V1 at 
state qi
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HMM Example – Emission Probability
Q = [q1, q2, q3]

V = [V1, V2, V3, V4]

A = {aij}

   = [[0,   0.9,  0.1], 

       [0.2,   0,  0.8], 

       [0.95, 0,  0.05]]

B = [b1 , b2 , b3 ] 

where

bi = [bi(V1) , bi(V2) , bi(V3), bi(V4)]

where

bi(V1) = the prob of observing V1 at 
state qi

b1(V1) = 0.01, b1(V2) = 0, b1(V3) = 0, b1(V4) = 0.99
b2(V1) = 0, b2(V2) = 1, b2(V3) = 0, b2(V4) = 0
b3(V1) = 0.5, b3(V2) = 0, b3(V3) = 0.5, b3(V4) = 0
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HMM Example –  
S = [S1, S2, S3]

V = [V1, V2, V3, V4]

A = {aij}

   = [[0,   0.9,  0.1], 

       [0.2,   0,  0.8], 

       [0.95, 0,  0.05]]

B = [b1 , b2 , b3 ] 

where

bi = [bi(V1) , bi(V2) , bi(V3), bi(V4)]

Define specific HMM  

Transition matrix A, Emission probability B, Initial state vector 

𝞴 := (A, B, 𝝅)   = [0.5, 0.2, 0.3]
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What is the probabilities of observing V2? 

HMM Example – Observation Probabilities
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What is the probabilities of observing V2 V2? 

HMM Example – Observation Probabilities
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HMM Example – Observation Probabilities
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What is the probabilities of observing V2 V1? 

HMM Example – Observation Probabilities
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HMM Example – Observation Probabilities
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What is the probabilities of observing V2 V1 V3? 

HMM Example – Observation Probabilities



Working with Hidden Markov Models

There are three fundamental problems in HMM:

• Evaluation Problem:  

   How likely is it that HMM  computed O?
Forward or backward procedure

• Recognition Problem:  

   Does HMM  recognize O?
Viterbi Algorithm

• Learning (= Training) Problem:  

   Adjust  so that Prob (O|) is locally maximized.
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Problem 1: Evaluation Problem
Problem Definition: Given an observation sequence O=O1O2O3…OT and 
the model 𝞴, what is P(O|𝞴)?

• The most straightforward way: enumerate every possible state 
sequence of length T
• This is what we have just practiced and we have seen how fast the math gets 

ugly.     

Artificial Intelligence CS 640



Problem 1: Evaluation Problem
Problem Definition: Given an observation sequence O=O1O2…OT and 
the model 𝞴, what is P(O|𝞴)?

• Consider one such fixed state sequence Q=q1q2…qT, we have 
• P O Q, 𝜆 =  Π𝑡=1

T P Ot qt, 𝜆 = 𝑏𝑞1
𝑂1 ⋅ 𝑏𝑞2

𝑂2 ⋅  … ⋅ 𝑏𝑞𝑇
𝑂𝑇

• The prob. of such a state seq Q can be written as
• P Q λ) = 𝜋𝑞1

𝑎𝑞1𝑞2
𝑎𝑞2𝑞3

⋯ 𝑎𝑞𝑇−1𝑞𝑇

• The joint prob. of O and Q:
• P O, Q λ) = P O Q, 𝜆 P Q λ)

• With all possible state sequences, summing up
• P O λ) = σ𝑎𝑙𝑙 𝑄 P O, Q λ) = σ𝑎𝑙𝑙 𝑄 P O Q, 𝜆 P Q λ)
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Problem 1: Evaluation Problem
Problem Definition: Given an observation sequence O=O1O2O3…OT and 
the model 𝞴, what is P(O|𝞴)?

• The most straightforward way: enumerate every possible state 
sequence of length T
• This is what we have just practiced and we have seen how fast the math gets 

ugly.   

• The time complexity is exponential. O(2T NT)  

• More efficient procedure?
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• Define forward variable t(i):
 

• Given the model, t(i) is the probability of the partial observation sequence 
O1O2…Ot when it reaches state Si at time t. 

• How about t + 1(j) for some state Sj?
• assuming t(i) is known

• We can solve t(i) inductively.

• Time complexity. O(T N2)
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Problem 1: Evaluation Problem

Forward Procedure

O=O1O2 … Ot-1 Ot Ot+1 …OT 

jj

V1

V2

Vk

i
aij

1

N

t t+1



Forward Procedure

1. Initialization
 1(i) = ibi(o1) , 1 <= i <= N

2. Induction
For t = 1, 2, …, T-1

t+1(j) = [ i=1 t(i) aij ] bj (ot+1), 1 <= j <= N

3. Termination

Prob(O |  ) = i=1 T(i) 
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t(i) = P(o1o2… ot &  i |  )

N

N

Problem 1: Evaluation Problem



Forward Procedure

1. Initialization
 1(i) = ibi(o1) , 1 <= i <= N

2. Induction
For t = 1, 2, …, T-1

t+1(j) = [ i=1 t(i) aij ] bj (ot+1), 1 <= j <= N

3. Termination

Prob(O |  ) = i=1 T(i) 
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t(i) = P(o1o2… ot &  i |  )

N

N

Problem 1: Evaluation Problem

 1 2 3 T

1

2

3

4

N

Fill table forward



Example: Forward Procedure
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Observation O = V3V1V4 – What is the probability?

 1 2 3

1

2



Example: Forward Procedure
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Observation O = V3V1V4 – What is the probability? Observation O = V3V1V4 →  O = “baby smile s”

 1 2 3

1

2



Example: Forward Procedure
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 1 2 3

1

2

Observation O = “baby smile s” – What is the probability?

Cold

Hot

𝛼1 𝐶
= 𝜋𝐶𝑏𝐶 baby
= 0.2 ∗ 0.1
= 0.02

𝛼2 𝐶
= ሺ

)
𝛼1 𝐶 ⋅ 𝑎𝐶𝐶

+ 𝛼1 𝐻 ⋅ 𝑎𝐻𝐶

⋅ 𝑏𝑐 smile
= ሺ

)
0.02 ∗ 0.5 + 0.32

∗ 0.4 ∗ 0.5 = 0.069

𝛼1 𝐻
= 𝜋𝐻𝑏𝐻 baby
= 0.8 ∗ 0.4
= 0.32

𝛼2 𝐻
= ሺ

)
𝛼1 𝐶 ⋅ 𝑎𝐶𝐻

+ 𝛼1 𝐻 ⋅ 𝑎𝐻𝐻

⋅ 𝑏𝐻 smile
= ሺ

)
0.02 ∗ 0.5 + 0.32

∗ 0.6 ∗ 0.2 = 0.0404

𝛼3 𝐶
= ሺ

)
𝛼2 𝐶 ⋅ 𝑎𝐶𝐶

+ 𝛼2 𝐻 ⋅ 𝑎𝐻𝐶 ⋅ 𝑏𝑐 s
= ሺ

)
0.069 ∗ 0.5

+ 0.0404 ∗ 0.4 ∗ 0
= 0

𝛼3 𝐻
= ሺ

)
𝛼2 𝐶 ⋅ 𝑎𝐶𝐻

+ 𝛼2 𝐻 ⋅ 𝑎𝐻𝐻 ⋅ 𝑏𝐻 s
= ሺ

)
0.069 ∗ 0.5

+ 0.0404 ∗ 0.6 ∗ 0.4
= 0.023496

𝑃 𝑂 𝜆 =  𝛼3 𝐶 + 𝛼3 𝐻 = 0.023496



Example: Forward Procedure
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 1 2 3

1 𝛼1 𝟏
= 𝜋𝟏𝑏𝟏 V3

= 0.2 ∗ 0.1
= 0.02

𝛼2 𝟏
= ሺ

)
𝛼1 𝟏 ⋅ 𝑎𝟏𝟏 + 𝛼1 𝟐

⋅ 𝑎𝟐𝟏 ⋅ 𝑏𝟏 V1

𝛼3 𝟏
= ሺ

)
𝛼2 𝟏 ⋅ 𝑎𝟏𝟏 + 𝛼2 𝟐

⋅ 𝑎𝟐𝟏 ⋅ 𝑏𝟏 V4

2 𝛼1 𝟐
= 𝜋𝟐𝑏𝟐 V3

= 0.8 ∗ 0.4
= 0.32

𝛼2 𝟐
= ሺ

)
𝛼1 𝟏 ⋅ 𝑎𝟏𝟐 + 𝛼1 𝟐

⋅ 𝑎𝟐𝟐 ⋅ 𝑏𝟐 V1

𝛼3 𝟐
= ሺ

)
𝛼2 𝟏 ⋅ 𝑎𝟏𝟐 + 𝛼2 𝟐

⋅ 𝑎𝟐𝟐 ⋅ 𝑏𝟐 V4

𝑃 𝑂 𝜆 =  𝛼3 𝟏 + 𝛼3 𝟐

Observation O = V3V1V4 – What is the probability?



Example: Forward Procedure
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P(O=V2V1V3) = ? 

 1 2 3

1 𝛼1 𝟏 𝛼2 𝟏 𝛼3 𝟏

2 𝛼1 𝟐 𝛼2 𝟐 𝛼3 𝟐

3 𝛼1 𝟑 𝛼2 𝟑 𝛼3 𝟑



• Define backward variable t(i):
 

• This is the probability of the observing the future sequence Ot+1Ot+2…OT given 
that the current (i.e. at time t) state is Si. 

• It can be computed using future t + 1 as follows
• assuming we know those future values
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Backward Procedure

ji

V1

V2

Vk

j
aij

1

N

t t+1



Backward Procedure

1.   Initialization
T(i) = 1, for all i, 1 <= i <= N

2. Induction
For t = T-1, …,1, and for all i, 1 <= i <= N

t(i) = j=1 aijt+1(j)  bj (ot+1)

3. Termination

Prob(O |  ) = i=1 1(i) i bi(o1)

Artificial Intelligence CS 640

t(i) = P(ot+1ot+2… oT|state at t= i , )

N

N

Results of Backward & Forward Procedure
must be the same!



Backward Procedure

1.   Initialization
T(i) = 1, for all i, 1 <= i <= N

2. Induction
For t = T-1, …,1, and for all i, 1 <= i <= N

t(i) = j=1 aijt+1(j)  bj (ot+1)

3. Termination

Prob(O |  ) = i=1 1(i) i bi(o1)
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t(i) = P(ot+1ot+2… oT|state at t= i , )

N

N

Results of Backward & Forward Procedure
must be the same!



Working with Hidden Markov Models

There are three fundamental problems in HMM:

• Evaluation Problem:  

   How likely is it that HMM  computed O?
Forward or backward procedure

• Recognition Problem:  

   Does HMM  recognize O?
Viterbi Algorithm

• Learning (= Training) Problem:  

   Adjust  so that Prob (O|) is locally maximized.
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Problem 2: Recognition Problem
Problem Statement: Given an observation sequence O=O1O2O3…OT and 
the model 𝞴, what is the optimal state sequence Q = q1q2q3…qT?

• “Optimal? 
• Choose each state qt that is individually most likely 

• Choose the single best path q1q2q3…qT  

Artificial Intelligence CS 640

Sometimes not possible 
(aij = 0 for some i and j) i.e. to maximize P(Q|O,𝞴), 

equivalent to maximizing P(Q,O| 𝝺)

New Problem Statement: Given an observation sequence O and the 
model 𝞴, what is the state sequence Q that maximizes the probability 
P(Q,O| 𝝺)?



• Define t(i):
 

• Given the model, t(i) is the best score (highest probability) along a single 
path, at time t, which accounts for the first t observations and ends in state Si. 

• How about t + 1(j) for some state Sj?

 

• To actually retrieve the state sequence, we need to keep track of the 
argument which maximized t+1(j) for each t and j. We do this via the 
array t(j)
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Problem 2: Recognition Problem

Viterbi Algorithm

Qt-1= q1 q2 … qt-1



Viterbi Algorithm
1. Initialization: 1(i) = ibi(o1)     for all i, 1 <= i <= N

   1(i) = 0

2. Recursion:  For t = 2, …, T-1, and for all j, 1 <= j <= N

   t(j) = maxi=1..N [t-1(i) aij ] bj (ot+1)

   t(j) = argmaxi=1..N [t-1(i) aij ] 

3. Termination: P(Q*, O|  ) = maxi=1..N  T(i)

   qT*= argmaxi=1..N  T(i)

4. Path backtracking:

   qt*= t+1 qt+1* for t = T-1, T-2,…, 1
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Problem 2: Recognition Problem



Example: Viterbi Algorithm
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 1 2 3

Cold

Hot

Observation O = “baby smile s” – What is the best path?



Example: Viterbi Algorithm
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 1 2 3

Cold

Hot

Observation O = “baby smile s” – What is the best path?

2 𝐶
= 𝑚𝑎𝑥 1 𝐶 ⋅ 𝑎𝐶𝐶 , 1 𝐻 ⋅ 𝑎𝐻𝐶 ⋅ 𝑏𝑐 smile
= 𝑚𝑎𝑥 0.02 ∗ 0.5, 0.32 ∗ 0.4 ∗ 0.5 = 0.064

1 𝐶 = 𝜋𝐶𝑏𝐶 baby
= 0.2 ∗ 0.1 = 0.02

1 𝐻 = 𝜋𝐻𝑏𝐻 baby
= 0.8 ∗ 0.4 = 0.32

2 𝐻
= 𝑚𝑎𝑥 1 𝐶 ⋅ 𝑎𝐶𝐻, 1 𝐻 ⋅ 𝑎𝐻𝐻 ⋅ 𝑏𝐻 smile
= maxሺ 0.02 ∗ 0.5, 0.32 ∗ 0.6) ∗ 0.2 = 0.038

3 𝐶
= 𝑚𝑎𝑥 2 𝐶 ⋅ 𝑎𝐶𝐶 , 2 𝐻 ⋅ 𝑎𝐻𝐶 ⋅ 𝑏𝑐 s

3 𝐻
= 𝑚𝑎𝑥  𝐶 ⋅ 𝑎𝐶𝐻 , 2 𝐻 ⋅ 𝑎𝐻𝐻 ⋅ 𝑏𝐻 s



Example: Viterbi Algorithm
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Observation O = “baby smile s” – What is the best path?

 1 2 3

Cold

Hot

Code snippet

https://colab.research.google.com/drive/1AnC5EZBXcTJ7wmXizc-WXvRKe2JKD3uK?usp=sharing


Working with Hidden Markov Models

There are three fundamental problems in HMM:

• Evaluation Problem:  

   How likely is it that HMM  computed O?
Forward or backward procedure

• Recognition Problem:  

   Does HMM  recognize O?
Viterbi Algorithm

• Learning (= Training) Problem:  

   Adjust  so that Prob (O|) is locally maximized.
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Problem 3: Training HMM

Problem Statement: Given an observation sequence O=O1O2O3…OT and 
the model 𝞴, how do we adjust 𝞴 = (A, B, 𝝅) to maximize P(O|𝝺)?

• If we can solve this problem, then we can train a model starting from 
some random parameters.

• But there is no optimal way to estimate the parameters.

• One can at best use some iterative procedure to locally maximize the 
probabilities
• Baum-Welch
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Problem 3: Training HMM
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• Define

• This is the probability of being in state Si at time t and state Sj at 
time t + 1, given the observations and the model.

• Define

• This is the probability of being in state Si at time t, given the 
observations and the model.



Problem 3: Training HMM
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What are the sums of these two quantities over time steps t from 1 to 
T - 1?

This is because they follow Poisson binomial distribution.

https://en.wikipedia.org/wiki/Poisson_binomial_distribution


Problem 3: Training HMM
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we can then update 𝞴 = (A, B, 𝝅) as
Wait, how do we compute 

this?



Problem 3: Training HMM
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where



Recall Notations
t(i) =  Prob (O1…Ot and qt = i |  )

t(i) =  Prob (Ot+1…OT | qt = i and  )
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Recall Notations
t(i) =  Prob (O1…Ot and qt = i |  )

t(i) =  Prob (Ot+1…OT | qt = i and  )
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t(i) =  Prob (O1…Ot and qt = i |  )

t(i) =  Prob (Ot+1…OT | qt = i and  )

t(i, j) = t(i) aij bj(Ot+1) t+1 (j) /  Prob (O|)  

 = t(i) aij bj(Ot+1) t+1 (j) /   i=1 j=1 t(i) aij bj(Ot+1) t+1 (j)

t(i) = t(i) t(i) /  Prob (O|)   

       = t(i) t(i) / i=1 t(i) t(i) 
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Problem 3: Training HMM



Baum-Welch Re-estimation

1. i  = 1 (i)

2. aij  =  t=1  t (i,j) / t=1  t (i)

3. bj (k) =  t=1, O  = V  t (j) / t=1  t (j)

If Prob(O |  )  >  Prob (O |  )  

       Re-estimate  until (local) maximum is reached
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Problem3: Training HMMs

• No analytic solution ( = no “simply plug in” solution)

• Use iterative algorithm that learns to represent training data better 
and better

“Baum-Welch Reestimation Algorithm” 

Input:  HMM  training sequence O

1) Initialization:  Guess all probabilities to be uniform

2) Repeat until no better HMM  can be found:  

 Update all probabilities according to equations on next slide

Output: HMM 
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Learning Outcomes

• Understand FSM, Deterministic FSM, Markov Network(Chains), HMM
• The “Markov” Property

• The “Hidden”

• Know the three fundamental problems in HMM, and how to solve 
them
• Forward procedure

• Viterbi Algorithm

• Baum-Welch Reestimation Algorithm – using the forward-backward quantities

Artificial Intelligence CS 640
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