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Outline (Recap)

= Whatis NLP?
= Key NLP tasks

e Text Classification, NER, MT, Sentiment Analysis, QA, Summarization

= NLP Techniques and Approaches
= Traditional techs,
=  RNNSs
= Attention Mechanism & Transformers
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RNNs: Limitations

Difficulty in Capturing Long-Term Dependencies: Even with
improvements like LSTMs and GRUs, RNNs can struggle with very long
sequences.

Sequential Computation: RNNs process one time step at a time,
which makes training slower, especially for long sequences.

- Transformers: RNNs have been largely supplanted by transformers,
which use self-attention mechanisms to process entire sequences in
parallel, making them more efficient and better at capturing long-range

dependencies.
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Transformers
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Transformers
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Attention Is All You Need
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https://arxiv.org/pdf/1706.03762

Example: Translate the French to English

INPUT
. THE
_’ _P
Je suis étudiant TRANSFORMER | am a student
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Example: Translate the French to English

Some transformers consist of
deCOderS Only’ SUCh as GPTS' Je suis  étudiant | ——> THE —| | am a student
o’ TRANSFORMER
| am a student

ENCODERS * DECODERS

INPU Ui etudiant
BOSTON Visualization Credit to Jay Alammar
UNIVERSITY



Example: Translate the French to English

I am a student

Both: a stack of 6 (
|

am a student

(r ~ e N
ENCODER > DECODER
\ J \ J
4 4
{ Y { 3
ENCODER DECODER
. v, . v
4 4
r ™ 's ~
ENCODER DECODER
\ J \ J
4 4
r ~ r “
ENCODER DECODER
\ J \ J
4 4
{ Y { 3
ENCODER DECODER
W » ' v
4 4
s ™ 's )
ENCODER DECODER
\ J \ J
\_ A W,

INPUT | Je  suis étudiant

BOSTON Visualization Credit to Jay Alammar
UNIVERSITY



Example: Translate the French to English
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Example: Translate the French to English

i i i
Feed Forward ]
Encoder #1
t t t
[T T 1] LT 1] [T T 1]
| t |
Self-Attention )
t t t
X1 | X2 | X3 I

suis

Each word is
embedded into

étudiant

a vector of size
512
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Attention Mechanism

Attention(Q,K,V) = softmax(Q K") V

Q = query vector = current English (or French) word
K key and V value = memory of words seen before

Goal: Find key(s) most similar to query and retrieve value(s) that
correspond to this/these key(s)

Softmax = X, e% /s e v. produces probability distribution over keys
with peaks for keys similar to query

ESE&STNY CS 585: Image and Video Computing



Attention Mechanism

Attention(Q,K,V) = softmax(Q K") V

Acts as a weight mask over V
Q = query vector = current English (or French) word
K key and V value = memory of words seen before

Goal: Find key(s) most similar to query and retrieve value(s) that
correspond to this/these key(s)

Softmax = X, e% /s e v. produces probability distribution over keys
with peaks for keys similar to query
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Attention Mechanism

Very fast:
2 matrix multiplications & 1 softmax operation

Attention(Q,K,V) = softmax(Q K") V

Acts as a weight mask over V
Q = query vector = current English (or French) word
K key and V value = memory of words seen before

Goal: Find key(s) most similar to query and retrieve value(s) that
correspond to this/these key(s)

Softmax = X, e% /s e v. produces probability distribution over keys
with peaks for keys similar to query
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Attention Mechanism

Very fast:
2 matrix multiplications & 1 softmax operation
Attention(Q,K,V) = softmax(Q K"/ sqrt(d,) ) V strtiely nommalzation needed
for training

Acts as a weight mask over V

Q = query vector = current English (or French) word
K key and V value = memory of words seen before

Goal: Find key(s) most similar to query and retrieve value(s) that
correspond to this/these key(s)

Softmax = X, e% /s e v. produces probability distribution over keys
with peaks for keys similar to query
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QK!
vy

Attention(Q), K, V) = softmax(

How to get Q,K,V?

)\%

Embeddings_dim: 512

Input Thinking Viachines W_dim (Q,K,V): 512 x 64
Embedding x||:|:|:|:| Kzl:l:l:l:l

Queries Q1D:|:| qED:IJ we

Keys D:I:I I:Ijj

Values [l:l:' D:‘]
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QK"

Attention(Q), K, V) = softmax( NG
k

)\%

How to get Q,K,V?  inthe Matrix Form
X wa Q

X softmax( ) )

dk
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Multi-Head Self-Attention

MultiHead(Q, K, V) = Concat(heady, ..., head,) W
where head; = Attention(QW<, KWX viv})

Question:

Known:

Number of heads: h=8,

Model dim = Embedding dim: d=512,
Weight matrices for K, Q, V are in the shape of 512 x| 64

What is the shape of W°? d,

64*8 x 512
See explanation on the next slide

BOSTON Visualization Credit to Jay Alammar
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Multi-Head Self-Attention

1) This is our 2) We embed
input sentence* each word*

Thinking

=1 WK

Machines

* |n all encoders other than #0,
we don't need embedding.
We start directly with the output

of the encoder right below this one

3) Split into 8 heads.
We multiply X or
with weight matrices

W@
WoV

e

H?I:I:HK{h

R

4) Calculate attention
using the resulting
Q/K/V matrices

Qo

Qq

Q7

5) Concatenate the resulting ©~ matrices,
then multiply with weight matrix to
produce the output of the layer

In this example,

n = 2 (not relevant to W°),

h=8
d=4
d, =3

The shape of the W° is drawn
accordingly, i.e. (3x8, 4)
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Why Multi-Head Attention?

* Multiple attention layers (heads) in paraellel
e Each head uses different linear transformation

 Different heads can learn different relationships

ESEEESTNY CS 585: Image and Video Computing



Source: Attention is all you need

Visualization of Attentions
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< > < > . .
<pad> <pad> and 6. Note that the attentions are very sharp for this word..

Right: Full attentions for head 5.
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Figure 3: An example of the attention
mechanism following long-distance
dependencies in the encoder self-
attention in layer 5 of 6. Many of the
attention heads attend to a distant
dependency of the verb ‘making’,
completing the phrase ‘making...more
difficult’. Attentions here shown only for
the word ‘making’. Different colors
represent different heads. Best viewed in
color.
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Feed Forward:

 Position-wise Feed-Forward Networks, process
every word

FFN(z) = max(0,zW1 + b1)Wa + b

* Where facts in LLM live (3Blue1Brown)

Add & Norm:

» Residual Connection and LayerNorm

N x: Stacking

 Stacking these attention models also allows for
higher level reasoning

* Lower layers focus more on word relationships
and syntax, whereas higher layers more on
contextual relationships and semantics


https://www.youtube.com/watch?v=9-Jl0dxWQs8

- i
On The Decoders Side -
Feed Forward
i S Y
s A 4
Feed Forward Encoder-Decoder Attention
. J \.
[ E—— 4
- ™ {
Self-Attention Self-Attention
. A .
1 t

* Encoder-Decoder Attention (Cross-Attention)

* This cross-attention allows the decoder to attend to the output of the encoder,
combining information from both the input sequence (processed by the
encoder) and the current decoder states.

* Used in Visual Transformers (ViTs) = Later

* Masked Self-Attention:
* Each token can only attend to previous tokens in the sequence.

* This prevents the decoder from "cheating" by looking at tokens it hasn't
generated yet, ensuring autoregressive generation.

BOSTON
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Last Step
linear + softmax, (sampling)

output token probabilities (logits)

0.19850038 |aardvark
0.7089803 aarhus
0.46333563 |aaron

model vocabulary size
50,257

-0.51006055 |ZyZZyva
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Putting Together

Decoding time step: 1@3 4 56 OUTPUT
4 )
Kencdec  Vencdec ( Linear + Softmax )
{ 3 { 3
ENCODERS DECODERS
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Putting Together
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Qutput

Putting Together preciton

*—-—-

Output branch

Input branch

- N Matrix multiply:
[ Add & Norm | - e.g. processed English words by processed
Multi-Head
Feed forwe_lrd network processes Fond it — e
every English word | ¢ Forward 77 Nx

Add & Norm

Masked
Multi-Head

Masking: Matrix multiply:

Multi-Head

Attention Attention €0 2000 French words by 2000 French

it 7 it 7 I words but masking words that come

\. J y, afterwards with zero
Positional D Positional
Encoding ¢ Encoding
Input Qutput
Embedding Embedding
I I
English Sentence Inputs Outputs French words, coming in
(shifted right)

Figure 1: The Transformer - model architecture.

Note:

The training dataset (WMT) consists of parallel corpora from multiple languages. This means that the source and the target are paired in
the sentence level during the training. In this way, the source sentence is passed through the encoder to get some representation; the
target sentence is used during training to guide the decoder in generating the correct translation, with the model learning to minimize the
difference between its output and the actual target sentence. During inference (when the model is actually translating sth.), only the source
sentence is provided. And the model generates the target sentence word by word, based on its learned patterns from the paired training data.

BOSTON
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Transformer Architecture Complexity
(per layer)

* n= number of words in sequence

* d= network dimension

Number of operations: n?d
Number of activations: n?+nd

Much better than RNNs with number of operations n d?

BOSTON e :
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Transformer Architecture Complexity
(per layer)

* n= number of words in sequence (<70 words per sentence)

* d= network dimension  (easily go beyond 1000 in a transformer)

Every word attends to every word
To get the dot product of Q, K (both of size d/h), then multiply by h for multi-head

Number of operations: n’d e.g., 70x70x1000=4.9 mill

. . . 2
Number of activations: n‘+ n d From FEN. ReLU

From self-attention, softmax

Much better than RNNs with number of operations n d?
e.g., 70x1000x1000=70 mill

BOSTON i :
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Training a Transformer

* ADAM optimizer

* Dropout during training at every layer
 Label smoothing

* Auto-regressive decoding with beam-search

* Checkpoint-averaging

e Library available: https://github.com/tensorflow/tensor2tensor

BOSTON i .
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https://github.com/tensorflow/tensor2tensor

How much data
to train?e




All of it...
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All text on the
internet?

Is that legal?

Al & Ethics!

BOSTON CS 640: Artificial Intelligence, 2024 © Betke
UNIVERSITY



-:._.'.:0 REUTE RS® World v  Business v Markets v  Sustainability v Legal v Breakingviews v Technology v Investic

AI I teXt O n t h e Litigation | Copyright | Litigation | Technology | Intellectual Property

internet? John Grisham, other top US authors sue
OpenAl over copyrights

5 By Blake Brittain T
IS that |ega I * September 21, 2023 6:34 AM EDT - Updated 7 months ago u ] Aa ‘ ( <

Al & Ethics!
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All text on the

internet?
December 27, 2023

s that legal? The Times Sues OpenAl and Microsoft
Al & Ethics! Over A.I. Use of Copyrighted Work

Millions of articles from The New York Times were used to train
chatbots that now compete with it, the lawsuit said.

BOSTON CS 640: Artificial Intelligence, 2024 © Betke
UNIVERSITY



All text on the
internet?

Is that legal?

Al & Ethics!

BOSTON
UNIVERSITY

m — WORLD US. ELECTION2024 POLITICS SPORTS ENTERTAINMENT BUSINESS SCIENCE FACTCHECK ODDITIES HEALTH

srael-ran  Trump Mediastock  Copenhagenfire = BostonMarathon  Chelsea beat Everton

BUSINESS

ChatGPT-maker OpenAl signs deal wit
AP to license news stories

July 13, 2023

@ope“p‘ *
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96 layers (decoder blocks)
2048 tokens

Training the 175 biWrame’rers
of GPT-3 on

“all text on the internet”
on a single GPU or computer

would take 355 years
and $4,600,000

Lambdalabs.com

BOSTON CS 640: Artificial Intelligence, 2024
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How long did it take OpenAl to train GPT-3¢

a month

BOSTON CS 640: Artificial Intelligence, 2024
UNIVERSITY



What did OpenAl train on?

GPT-3 training datal'l°

Proportion
Dataset # tokens o o
within training

Common Crawl 410 billion 60%
WebText2 19 billion 22%
Books1 12 billion 8%
Books2 55 billion 8%
Wikipedia 3 billion 3%

Source: Wikipedia

BOSTON i .
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What about GPT-47

* 1 trillion parameters

e Sam Altman stated that the cost of training GPT-4 was
more than $100 million.

Source: Wikipedia

BOSTON
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What about GPT-47

* 1 trillion parameters

e Sam Altman stated that the cost of training GPT-4 was
more than $100 million.

Why are the lawsuits so costly?

* We don’t know how to “untrain” neural networks.

e “Unlearning” is an exciting research area!

Source: Wikipedia

BOSTON
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Learning Outcomes

e Understand how transformers work
o Encoder-Decoder ( e.g. THE Transformer, BERT )
o Decoder Only ( e.g. GPTs )
o Attention Mechanism
a self-attention,
= Masked self-attention,

m Cross-attention

BOSTON
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