
AI Problem Solving by Searching
&

Robot Path Planning

Lecture by Margrit Betke and Mahir Patel

Reading: Russell and Norvig, Chapter 3

Winston

Artificial Intelligence CS 640

What you need to do to specify an agent-
based AI Problem:

• Initial state that the agent starts in

• Actions available to agent

• Transition model & state space: Path through state space = sequence
of states = sequence of actions

• Goal test

• Path cost (e.g. sum of step costs)

Artificial Intelligence CS 640

“AI Toy Problems” useful for learning concepts

• 8 Puzzle: Start state: Goal state:

• 8 Queens Problem: 8x8 chess board

Place queens so that none attacks any other queen.

“Attack state” = 2 queens are on the same row, column or diagonal.

Artificial Intelligence CS 640

7 2 4
5 _ 6
8 3 1

_ 1 2
3 4 5
6 7 8

Problem Solving by Searching: “Real-World Problems”

• Route finding problems

• Touring problems, e.g., Traveling Salesperson (efficient path for
visiting every city once)

• VLSI layout

• Robot navigation

• Drone navigation

• Protein design

• Cancer detection

Artificial Intelligence CS 640

Solution: Sequence of Actions =
 Path through a Search Tree

initial state = root branching factor b, e.g. <= 3

 depth = 3

 redundant path to B

 loopy path to A goal state

Artificial Intelligence CS 640

A

S

B

B

A G

Evaluation of Search Algorithm Performance

•Completeness: Is it guaranteed to find a solution?

•Optimality:
➢Shortest path?
➢Lowest cost?

• Time Complexity

• Space Complexity

Artificial Intelligence CS 640

Path-based Search Algorithms

Task: Find shortest path through a graph

Applications: Games, robot path planning

Lots of algorithms!

Artificial Intelligence CS 640

Path-based Search Strategies

• Exhaustive search: Explore all paths

Artificial Intelligence CS 640

Exhaustive Search

• Winston calls this strategy the “British Museum Procedure”

• Find all paths and select the shortest

• Search tree: root level 1 node If b=10, d=10:

 2nd level b nodes 1010 = 10 billion paths

 3rd level b*b nodes Too many to test!

 4th level b*b*b nodes

 ….

 dth level bd nodes

Artificial Intelligence CS 640

Path-based Search Strategies

• Exhaustive search: Explore all paths

• Breadth-first search (BFS): Expand shallowest node

• Depth-first search (DFS): Expand deepest node

Cost per edge: 1

BFS & DFS typically covered in your previous classes

Artificial Intelligence CS 640 Illustrations: Drichel, Wikipedia

BFS

DFS

Path-based Search Strategies

• Exhaustive search: Explore all paths

• Breadth-first search (BFS): Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search: Expand node with smallest cost

• Beam search: BFS but only keep limited number of best nodes

• Depth-limited search: Predetermined depth limit

• Iterative Deepening: Gradually increasing depth d = 0, 1, 2, …

• Bidirectional search: Search from start S and goal G nodes, hoping to meet

Artificial Intelligence CS 640

Path-based Search Strategies

• Exhaustive search: Explore all paths

• Breadth-first search (BFS): Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search: Expand node with smallest cost

 Used in AI when graphs are extremely large or infinite

Artificial Intelligence CS 640

Example for Uniform Cost Search

• Exhaustive search: Explore all paths

• Breadth-first search (BFS): Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search: Expand node with smallest cost

Artificial Intelligence CS 640

A
B

S

C
E

D

4

4

3
5

2

5

4

Start A

S

C
3 4

3 4

1st min

Example for Uniform Cost Search

• Exhaustive search: Explore all paths

• Breadth-first search (BFS): Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search: Expand node with smallest cost

Artificial Intelligence CS 640

A
B

S

C
E

D

4

4

3
5

2

5

4

Start A

S

C
3 4

3 4 A

B

S

C

C 4
54

3

1st min

4

2nd min

Example for Uniform Cost Search

• Exhaustive search: Explore all paths

• Breadth-first search (BFS): Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search: Expand node with smallest cost

Artificial Intelligence CS 640

A
B

S

C
E

D

4

4

3
5

2

5

4

Start A

S

C
3 4

3 4 A

B

S

C

C
7 8

4
54

3

2nd min

A

B

S

C

DC A

4

25

3rd min

4

7 8 9 6

1st min

Beam Search

• Exhaustive search: Explore all paths

• Breadth-first search (BFS): Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search: Expand node with smallest cost

• Beam search: BFS but only keep limited number w of best nodes at each level,
the beam width w

Same as BFS with w = infinite

The greater w is the fewer states are pruned

Useful in AI if BFS search tree is too large to fit in memory

Not guaranteed to find optimal solution

Artificial Intelligence CS 640

Deep Learning Application!

• Beam Search isused in modern generative LLMs to generate better responses.

• At every decoding step, k possible words with highest likelihood are selected.

• Imagine generating a sentence starting with "The cat":
1. Initial beam (k=2):

1. Beam 1: "The cat is" (prob: 0.5)

2. Beam 2: "The cat jumps" (prob: 0.45)

2. Next step: Expand each beam by appending possible tokens:
1. "The cat is hungry" (prob: 0.4)

2. "The cat is happy" (prob: 0.3)
3. "The cat jumps high" (prob: 0.35)

4. "The cat jumps down" (prob: 0.25)

3. Prune to top k=2: Keep "The cat is hungry" and "The cat jumps high".
4. Repeat until termination.

Artificial Intelligence CS 440/640

Path-based Search Strategies

• Exhaustive search: Explore all paths

• Breadth-first search (BFS): Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search: Expand node with smallest cost

• Beam search: BFS but only keep limited number of best nodes

• Depth-limited search: Predetermined depth limit

Artificial Intelligence CS 640

Path-based Search Strategies

• Exhaustive search: Explore all paths

• Breadth-first search (BFS): Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search: Expand node with smallest cost

• Beam search: BFS but only keep limited number of best nodes

• Depth-limited search: Predetermined depth limit (Optimal? Complete?)

Artificial Intelligence CS 640

Path-based Search Strategies

• Exhaustive search: Explore all paths

• Breadth-first search (BFS): Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search: Expand node with smallest cost

• Beam search: BFS but only keep limited number of best nodes

• Depth-limited search: Predetermined depth limit

• Progressive Deepening (also called Iterative Deepening):
Gradually increasing depth d = 0, 1, 2, …

We have seen this algorithm used for adversarial game playing.

Artificial Intelligence CS 640

Path-based Search Strategies

• Exhaustive search: Explore all paths

• Breadth-first search (BFS): Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search: Expand node with smallest cost

• Beam search: BFS but only keep limited number of best nodes

• Depth-limited search: Predetermined depth limit

• Progressive Deepening (also called Iterative Deepening): (Optimal? Complete?)
Gradually increasing depth d = 0, 1, 2, …

We have seen this algorithm used for adversarial game playing.

Artificial Intelligence CS 640

Path-based Search Strategies

• Exhaustive search: Explore all paths

• Breadth-first search (BFS): Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search: Expand node with smallest cost (same as BFS with cost =1)

• Beam search: BFS but only keep limited number of best nodes

• Depth-limited search: Predetermined depth limit

• Iterative Deepening: Gradually increasing depth d = 0, 1, 2, …

• Bidirectional search: Search from start S and goal G nodes, hoping to meet

Artificial Intelligence CS 640

Path-based Search Strategies

• Exhaustive search: Explore all paths

• Breadth-first search (BFS): Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search: Expand node with smallest cost (same as BFS with cost =1)

• Beam search: BFS but only keep limited number of best nodes

• Depth-limited search: Predetermined depth limit

• Iterative Deepening: Gradually increasing depth d = 0, 1, 2, …

• Bidirectional search: Search from start S and goal G nodes, hoping to meet
(Optimal? Complete?)

Artificial Intelligence CS 640

Path-based Search Strategies

• Exhaustive search: Explore all paths

• Breadth-first search (BFS): Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search: Expand node with smallest cost (same as BFS with cost =1)

• Beam search: BFS but only keep limited number of best nodes

• Depth-limited search: Predetermined depth limit

• Iterative Deepening: Gradually increasing depth d = 0, 1, 2, …

• Bidirectional search: Search from start S and goal G nodes, hoping to meet

• Greedy search = branch & bound search

• Greedy search with pruning

• A* = Greedy search with pruning and underestimates of remaining distance

Artificial Intelligence CS 640

Greedy Search = Branch & Bound Search

Phase 1: Extend shortest partial path until goal is reached.

 Reject loops.

Phase 2: Extend all partial paths
 until their length >= complete path to goal

Artificial Intelligence CS 640

3 4

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal

A

S

C

Phase 1: 3 4

Phase 1: Extend shortest partial path until goal is reached.
 Reject loops.

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal

A

S

C
3 4

Phase 1: 3 4

1st min

Phase 1: Extend shortest partial path until goal is reached.
 Reject loops.

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal

A

S

C
A

B

S

C

C
7 8

4
3 4

Phase 1: 3

54

3
4

1st min

Phase 1: Extend shortest partial path until goal is reached.
 Reject loops.

4

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal

A

S

C
A

B

S

C

C
7 8

4

3 4

Phase 1: 3

54

3
4

1st min

2nd min

Phase 1: Extend shortest partial path until goal is reached.
 Reject loops.

4

7 8 9 6

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal

A

B

S

C

DC AA

S

C
A

B

S

C

C
7 8

4

3 4

Phase 1: 3

4

54

3
4 25

1st min

2nd min

Phase 1: Extend shortest partial path until goal is reached.
 Reject loops.

4

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal

A

B

S

C

DC A
7 8 9 6

A

S

C
A

B

S

C

C
7 8

4

3 4

Phase 1: 3

4

54

3
4 25

1st min

2nd min

3rd min

Phase 1: Extend shortest partial path until goal is reached.
 Reject loops.

4

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal

A

B

S

C

G

DC A

B

7 8 9 6

A

S

C
A

B

S

C

C
7 8

4

3 4

Phase 1:

End of phase 1: G reached

3

4

54

3
4

45

25

1st min

2nd min

Phase 1: Extend shortest partial path until goal is reached.
 Reject loops.

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal

Phase 2:

Phase 2: Extend all partial paths
 until their length >= complete path to goal

A

B

S

C

G

DC A

B End of
phase 1

4

45

25

7 8 9 6

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal

Phase 2:

Phase 2: Extend all partial paths
 until their length >= complete path to goal

A

B

S

C

G

DC A

B End of
phase 1

4

45

25

Beginning
 of phase 2

4th min

7 8 9 6

5

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal A

B

S

C

G

DC A

B
8 9

Phase 2:

3

4

5
D
12 11 10

Phase 2: Extend all partial paths
 until their length >= complete path to goal

5

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal A

B

S

C

G

DC A

B
8 9

Phase 2:

3

4

5
D
12 11 10

5th min

Phase 2: Extend all partial paths
 until their length >= complete path to goal

5

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal A

B

S

C

G

DC A

B

Phase 2:

3

2

5

D
12 10 11 10

D

5

4

Phase 2: Extend all partial paths
 until their length >= complete path to goal

9

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal A

B

S

C

G

DC A

B

Phase 2:

3

2

5

D
12 10 11 10

D

5

4

Phase 2: Extend all partial paths
 until their length >= complete path to goal

9
6th min

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal A

B

S

C

G

DC A

B

Phase 2:

3

2

5

D
12 10 13 11 10

BD
4

5

4

>= 10, can’t reach G in < 10

Phase 2: Extend all partial paths
 until their length >= complete path to goal

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal A

B

S

C

G

DC A

B

Phase 2:

2

D
12 10 13 11 10

BD
4

4

>= 10, can’t reach G in < 10

Phase 2: Extend all partial paths
 until their length >= complete path to goal

Final Path

Greedy Search with Pruning

Dynamic Programming Principle:

If two or more paths reach a common node, delete all paths except the
minimum cost path.

Artificial Intelligence CS 640

Artificial Intelligence CS 640

A
B

S

C G
D

4

4

3
5

2

5

4

Start

Goal A

B

S

C

G

DC A

B
8 9

Phase 2:

3

4

5
D
12 11 10

Phase 2: Extend all partial paths
 until their length >= complete path to goal

5

4

Greedy Search with Pruning

Artificial Intelligence CS 640

A
B

S

C G
D

4

4

3
5

2

5

4

Start

Goal A

B

S

C

G

DC A

B
8>4 9

Phase 2:

3

4

5
D
12 11 10

Phase 2: Extend all partial paths
 until their length >= complete path to goal

5

4

Prune
here

Greedy Search with Pruning

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal A

B

S

C

G

DC A

B

Phase 2:

3

D
12 11 10

5

4

Phase 2: Extend all partial paths
 until their length >= complete path to goal

9

Greedy Search with Pruning

Artificial Intelligence CS 640

A
B

S

C G
D

4

4

3
5

2

5

4

Start

Goal A

B

S

C

G

DC A

B

Phase 2:

3

5

D
12 11 10

5

4

Phase 2: Extend all partial paths
 until their length >= complete path to goal

9
Shorter

path
exists:

Prune!

Greedy Search with Pruning

Artificial Intelligence CS 640

A
B

S

C G
D

4

4

3
5

2

5

4

Start

Goal A

B

S

C

G

DC A

B

Phase 2:

D
12 11 10

4

>= 10, can’t reach G in < 10

Final Path

Phase 2: Extend all partial paths
 until their length >= complete path to goal

2

4

Greedy Search with Pruning

Implementation of Greedy Search with Pruning

Data Structure: Queue
Elements of queue: Partial paths

Initialize: Place start node in queue
Until a path in queue reaches goal node or queue is empty:
 Remove 1st queue element & extend path to its children
 Reject loops
 Add new paths to queue
 Prune
 Sort

Artificial Intelligence CS 640

Connection to Dijkstra’s Algorithm

Same as Greedy Search with Pruning except
Dijkstra’s algorithm computes the all-pairs shortest paths

while “Greedy Search with Pruning” computes the shortest path between a
single start state and a single goal state.

Artificial Intelligence CS 640

A* Algorithm = Greedy Search with Pruning
and Underestimates of Remaining Distance
• Remaining distance = e.g., straight-line distance on a highway map

• In each step:

 Estimate of total path length =

 length of partial path + underestimate of remaining

 “This path is at least this bad.”

Artificial Intelligence CS 640

An animation of the A* algorithm as it
explores the North American freight train
network to find the optimum path between
Washington, D.C. and Los Angeles.

Artificial Intelligence CS 640 Source: Wikipedia, Srossd, Wgullyn

A* pathfinding algorithm navigating
around a randomly-generated maze

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal

Phase 1: Extend shortest estimated partial path
 (= length of partial path + underestimate of

 remaining)
 until goal is reached.
 Reject loops.

6

5

8
7

A* Example

Phase 2: Extend all estimated partial paths
 until their length >= complete path to goal

A*

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal

A

S

C

Phase 1:

3 4

Phase 1: Extend shortest estimated partial path
 (= length of partial path + underestimate of

 remaining)
 until goal is reached.
 Reject loops.

6

5

8
7

A* Example

3+7 4+5

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal

A

S

C

Phase 1:

3 4

1st min

Phase 1: Extend shortest estimated partial path
 (= length of partial path + underestimate of

 remaining)
 until goal is reached.
 Reject loops.

6

5

8
7

A* Example

3+7 4+5

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal

A

S

C A

S

C

--- 6+4

Phase 1:

3 434

1st min 2nd min
tie with D but A

1st in queue

Phase 1: Extend shortest estimated partial path
 (= length of partial path + underestimate of

 remaining)
 until goal is reached.
 Reject loops.

6

5

8
7

DA
25

3+7

A* Example

3+7 4+5

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal

A

S

C A

S

C

--- 6+4

Phase 1:

3 434

1st min 2nd min
tie with D but A

1st in queue

Phase 1: Extend shortest estimated partial path
 (= length of partial path + underestimate of

 remaining)
 until goal is reached.
 Reject loops.

6

5

8
7

DA
25

3+7

A

S

C

--- 6+4

43

3rd min

DA
25

B C
4

7+6 ---

A* Example

13 --- --- 3+7 4+5

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal

A

B

S

C

G

DC A

B

A

S

C A

S

C

--- 6+4

Phase 1:

3 434

45

25

1st min 2nd min
tie with D but A

1st in queue

Phase 1: Extend shortest estimated partial path
 (= length of partial path + underestimate of

 remaining)
 until goal is reached.
 Reject loops.

6

5

8
7

DA
25

3+7

4

3A

S

C

--- 6+4

43

3rd min

DA
25

B C
4

7+6 ---

4

--- 6+4

A* Example

13 --- --- 3+7 4+5

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal

A

B

S

C

G

DC A

B

A

S

C A

S

C

--- 6+4

Phase 1:

End of phase 1: G reached

3 434

45

25

1st min 2nd min
tie with D but A

1st in queue

Phase 1: Extend shortest estimated partial path
 (= length of partial path + underestimate of

 remaining)
 until goal is reached.
 Reject loops.

6

5

8
7

DA
25

3+7

4

3A

S

C

--- 6+4

43

3rd min

DA
25

B C
4

7+6 ---

4

--- 6+4

A* Example

13 --- --- 3+7 4+5

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal

A

B

S

C

G

DC A

B

A

S

C A

S

C

--- 6+4

Phase 1:

End of phase 1: G reached
End of phase 2: 13>10

3 434

45

25

1st min 2nd min
tie with D but A

1st in queue

Phase 1: Extend shortest estimated partial path
 (= length of partial path + underestimate of

 remaining)
 until goal is reached.
 Reject loops.

6

5

8
7

DA
25

3+7

4

3A

S

C

--- 6+4

43

3rd min

DA
25

B C
4

7+6 ---

4

--- 6+4

Phase 2: Extend all estimated partial paths
 until their length >= complete path to goal

A* Example

Admissible Heuristic

• If the heuristic function never overestimates the actual cost to get to
the goal, then A* is guaranteed to return a least-cost path from start
to goal.

Artificial Intelligence CS 640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal

6

5

8
7

Admissible Heuristic

• If the heuristic function never overestimates the actual cost to get to
the goal, then A* is guaranteed to return a least-cost path from start
to goal.

Time Complexity
• If goal state exists and is reachable from start state:

 Worst case O(bd) where d = depth(start,goal), b branching factor

• Otherwise, A* will not terminate

• A good heuristic function allows A* to prune away many of the bd nodes.

Artificial Intelligence CS 640

Monotone Underestimates of Remaining Distance

Heuristic function h(n) is “monotone” if and only if it satisfies the
triangle inequality:

❑ h(n) = 0 if n=goal state

❑ 0 <= h(n) <= cost(n, n’) + h(n’)

With a monotone heuristic, A* is guaranteed to find an optimal path
without processing any node more than once.

Artificial Intelligence CS 640

cost(n, n’)
n’

n

G

h(n’)

h(n)

Example of Bad Heuristic

Artificial Intelligence CS 440/640

A
B

S

C
G

D

4

4

3
5

2

5

4

Start

Goal

6

5 20

8
7

Robot Path Planning with A*

Artificial Intelligence CS 640 Illustration: P. Winston

• Convert 2D Map into

 “Configuration Space” C
• Robot represented as point

• Obstacles represented as obstacles + fence
= O

• Run A* on Visibility Graph in

 “Free Space” F = C - O

Artificial Intelligence CS 640

Obstacle 2

Obstacle 1

Robot modeled
as triangleAI System Task:

Find shortest path for
robot to move from initial
to goal position without
robot hitting the obstacles

1. Reference point:

2. Eight unique shape positions

3. Fence: Thick black line

Artificial Intelligence CS 640 Illustration: P. Winston

Create a fence around each obstacle:

1. Select robot reference point
2. Slide robot shape around obstacle
3. Mark locations of reference point as fence

HERE:

Artificial Intelligence CS 640

Artificial Intelligence CS 640

Artificial Intelligence CS 640

Artificial Intelligence CS 640

Visibility Graph

Artificial Intelligence CS 640

Visibility Graph

Artificial Intelligence CS 640

Visibility Graph

Artificial Intelligence CS 640

Run A* Algorithm on
Visibility Graph:

S A

F

E D

C

B

G
H I

J

K

L M

N

P

O

Goal

S

A B C L D E F

Node-to-node distance
+
Underestimate to Goal

Artificial Intelligence CS 640

Run A* Algorithm on
Visibility Graph:

S A

F

E D

C

B

G
H I

J

K

L M

N

P

O

Goal

S

A B C L D E F

Node-to-node distance
+
Underestimate to Goal

L K

Artificial Intelligence CS 640

Run A* Algorithm on
Visibility Graph:

S A

F

E D

C

B

G
H I

J

K

L M

N

P

O

Goal

S

A B C L D E F

Node-to-node distance
+
Underestimate to Goal

L K

Artificial Intelligence CS 640

Run A* Algorithm on
Visibility Graph:

S A

F

E D

C

B

G
H I

J

K

L M

N

P

O

Goal

S

A B C L D E F

Node-to-node distance
+
Underestimate to Goal

L K

J M Goal

Artificial Intelligence CS 640

Shortest path computed by A*

Your task:
Define Fence for the following robots & obstacles

1. Robot: Obstacle:

2. Robot: Obstacle:

Artificial Intelligence CS 640

1

1

3

2

1

1 2

1

2

1

3

Define Fence for the following robots & obstacles

1. Robot: Obstacle:

2. Robot: Obstacle:

Artificial Intelligence CS 640

1

1

3

2

1

1 2

1

2

1

3

Define Fence for the following robots & obstacles

1. Robot: Obstacle:

2. Robot: Obstacle:

Artificial Intelligence CS 640

1

1

1

1 2

1

2

1

3

Define Fence for the following robots & obstacles

1. Robot: Obstacle:

2. Robot: Obstacle:

Artificial Intelligence CS 640

1

1

1

1 2

1

2

1

3

Define Fence for the following robots & obstacles

1. Robot: Obstacle:

2. Robot: Obstacle:

Artificial Intelligence CS 640

1

1

1

1 2

1

2

1

3

Define Fence for the following robots & obstacles

1. Robot: Obstacle:

2. Robot: Obstacle:

Artificial Intelligence CS 640

1

1

1

1 2

Define Fence for the following robots & obstacles

1. Robot: Obstacle:

2. Robot: Obstacle:

Artificial Intelligence CS 640

1

1

1

1 2

Define Fence for the following robots & obstacles

1. Robot: Obstacle:

2. Robot: Obstacle:

Artificial Intelligence CS 640

1

1

1

1

Fence for the following robots & obstacles:

1. Robot: Obstacle:

2. Robot: Obstacle:

Artificial Intelligence CS 640

1

1

1

1

General Problem of Robot Motion Planning

• Robot with k degrees of freedom:

 State or configuration of robot: (q1, q2, …, qk)

• So far (q1, q2) for two-dimensional position

• PUMA robot: 6 joint angles: (q1, q2, …, q6)

 6D configuration space

Artificial Intelligence CS 640

General Problem of Robot Motion Planning

Given initial point c1 and destination point c2, in configuration space C:

Robot can safely move between corresponding points in physical space

 if and only if

There exists a continuous path between c1 and c2 that lies entirely in
the free space.

Artificial Intelligence CS 640

Robot Obstacle Avoidance

Artificial Intelligence CS 640

Zhao et al., 2020

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9093029

Learning Outcomes of this Lecture

• Understand how search
algorithms are evaluated

• Understand the unique
properties of AI searching
tasks (versus general search
algorithms)

• Can explain 11 path-based
search algorithms and run
them on an example

• Can explain the dynamic
programming principle

Artificial Intelligence CS 440/640

• Know what an admissible and a
monotone heuristic function is for the
A* algorithm

• Can design a configuration space from a
2D obstacle map & a translating robot

• Can design a visibility graph in free
space

• Can run A* on a visibility graph for robot
path planning

• Understand configuration spaces of
robot arms

	Slide 1: AI Problem Solving by Searching & Robot Path Planning
	Slide 2: What you need to do to specify an agent-based AI Problem:
	Slide 3: “AI Toy Problems” useful for learning concepts
	Slide 4: Problem Solving by Searching: “Real-World Problems”
	Slide 5: Solution: Sequence of Actions = Path through a Search Tree
	Slide 6: Evaluation of Search Algorithm Performance
	Slide 7: Path-based Search Algorithms
	Slide 8: Path-based Search Strategies
	Slide 9: Exhaustive Search
	Slide 10: Path-based Search Strategies
	Slide 11: Path-based Search Strategies
	Slide 12: Path-based Search Strategies
	Slide 13: Example for Uniform Cost Search
	Slide 14: Example for Uniform Cost Search
	Slide 15: Example for Uniform Cost Search
	Slide 16: Beam Search
	Slide 17: Deep Learning Application!
	Slide 18: Path-based Search Strategies
	Slide 19: Path-based Search Strategies
	Slide 20: Path-based Search Strategies
	Slide 21: Path-based Search Strategies
	Slide 22: Path-based Search Strategies
	Slide 23: Path-based Search Strategies
	Slide 24: Path-based Search Strategies
	Slide 25: Greedy Search = Branch & Bound Search
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Greedy Search with Pruning
	Slide 42: Greedy Search with Pruning
	Slide 43: Greedy Search with Pruning
	Slide 44: Greedy Search with Pruning
	Slide 45: Greedy Search with Pruning
	Slide 46: Greedy Search with Pruning
	Slide 47: Implementation of Greedy Search with Pruning
	Slide 48: Connection to Dijkstra’s Algorithm
	Slide 49: A* Algorithm = Greedy Search with Pruning and Underestimates of Remaining Distance
	Slide 50: An animation of the A* algorithm as it explores the North American freight train network to find the optimum path between Washington, D.C. and Los Angeles.
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Admissible Heuristic
	Slide 60: Admissible Heuristic
	Slide 61: Monotone Underestimates of Remaining Distance
	Slide 62: Example of Bad Heuristic
	Slide 63: Robot Path Planning with A*
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77: Your task: Define Fence for the following robots & obstacles
	Slide 78: Define Fence for the following robots & obstacles
	Slide 79: Define Fence for the following robots & obstacles
	Slide 80: Define Fence for the following robots & obstacles
	Slide 81: Define Fence for the following robots & obstacles
	Slide 82: Define Fence for the following robots & obstacles
	Slide 83: Define Fence for the following robots & obstacles
	Slide 84: Define Fence for the following robots & obstacles
	Slide 85: Fence for the following robots & obstacles:
	Slide 86: General Problem of Robot Motion Planning
	Slide 87: General Problem of Robot Motion Planning
	Slide 88: Robot Obstacle Avoidance
	Slide 89: Learning Outcomes of this Lecture

