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What you need to do to specify an agent-
based AI Problem:

• Initial state that the agent starts in 

• Actions available to agent

• Transition model & state space:  Path through state space = sequence 
of states = sequence of actions

• Goal test

• Path cost (e.g. sum of step costs)
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“AI Toy Problems” useful for learning concepts

• 8 Puzzle:    Start state:                   Goal state:

• 8 Queens Problem:    8x8 chess board

Place queens so that none attacks any other queen.   

“Attack state” = 2 queens are on the same row, column or diagonal.
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Problem Solving by Searching: “Real-World Problems”

• Route finding problems

• Touring problems, e.g., Traveling Salesperson (efficient path for 
visiting every city once)

• VLSI layout

• Robot navigation

• Drone navigation

• Protein design

• Cancer detection
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Solution:  Sequence of Actions = 
                  Path through a Search Tree

initial state = root                                              branching factor b, e.g. <= 3

                                                        depth = 3           

                                                                                                redundant path to B

         loopy path to A                                                                    goal state
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Evaluation of Search Algorithm Performance

•Completeness:  Is it guaranteed to find a solution?

•Optimality:   
➢Shortest path?   
➢Lowest cost?  

• Time Complexity

• Space Complexity
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Path-based Search Algorithms

Task:  Find shortest path through a graph

Applications:  Games, robot path planning

Lots of algorithms!
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Path-based Search Strategies

• Exhaustive search:  Explore all paths
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Exhaustive Search

• Winston calls this strategy the “British Museum Procedure”

• Find all paths and select the shortest

• Search tree:  root level  1 node                                If b=10, d=10:

                             2nd level  b nodes                                  1010  = 10 billion paths

                             3rd level   b*b nodes                                     Too many to test!

                             4th level   b*b*b nodes

                     ….

                             dth   level    bd  nodes  
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Path-based Search Strategies

• Exhaustive search:  Explore all paths

• Breadth-first search (BFS):  Expand shallowest node

• Depth-first search (DFS): Expand deepest node

Cost per edge: 1

BFS & DFS typically covered in your previous classes

Artificial Intelligence CS 640 Illustrations: Drichel, Wikipedia

BFS

DFS



Path-based Search Strategies

• Exhaustive search:  Explore all paths

• Breadth-first search (BFS):  Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search:  Expand node with smallest cost 

• Beam search:  BFS but only keep limited number of best nodes

• Depth-limited search:  Predetermined depth limit 

• Iterative Deepening:  Gradually increasing depth d = 0, 1, 2, …

• Bidirectional search: Search from start S and goal G nodes, hoping to meet
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Path-based Search Strategies

• Exhaustive search:  Explore all paths

• Breadth-first search (BFS):  Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search:  Expand node with smallest cost 

  Used in AI when graphs are extremely large or infinite
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Example for Uniform Cost Search

• Exhaustive search:  Explore all paths

• Breadth-first search (BFS):  Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search:  Expand node with smallest cost 
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Example for Uniform Cost Search

• Exhaustive search:  Explore all paths

• Breadth-first search (BFS):  Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search:  Expand node with smallest cost 
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Example for Uniform Cost Search

• Exhaustive search:  Explore all paths

• Breadth-first search (BFS):  Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search:  Expand node with smallest cost 
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Beam Search

• Exhaustive search:  Explore all paths

• Breadth-first search (BFS):  Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search:  Expand node with smallest cost 

• Beam search:  BFS but only keep limited number w of best nodes at each level, 
the beam width w

Same as BFS with w = infinite

The greater w is the fewer states are pruned

Useful in AI if BFS search tree is too large to fit in memory

Not guaranteed to find optimal solution
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Deep Learning Application!

• Beam Search isused in modern generative LLMs to generate better responses.

• At every decoding step, k possible words with highest likelihood are selected.

• Imagine generating a sentence starting with "The cat":
1. Initial beam (k=2):

1. Beam 1: "The cat is" (prob: 0.5)

2. Beam 2: "The cat jumps" (prob: 0.45)

2. Next step: Expand each beam by appending possible tokens:
1. "The cat is hungry" (prob: 0.4)

2. "The cat is happy" (prob: 0.3)
3. "The cat jumps high" (prob: 0.35)

4. "The cat jumps down" (prob: 0.25)

3. Prune to top k=2: Keep "The cat is hungry" and "The cat jumps high".
4. Repeat until termination.
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Path-based Search Strategies

• Exhaustive search:  Explore all paths

• Breadth-first search (BFS):  Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search:  Expand node with smallest cost 

• Beam search:  BFS but only keep limited number of best nodes

• Depth-limited search:  Predetermined depth limit 
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Path-based Search Strategies

• Exhaustive search:  Explore all paths

• Breadth-first search (BFS):  Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search:  Expand node with smallest cost 

• Beam search:  BFS but only keep limited number of best nodes

• Depth-limited search:  Predetermined depth limit (Optimal? Complete?)
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Path-based Search Strategies

• Exhaustive search:  Explore all paths

• Breadth-first search (BFS):  Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search:  Expand node with smallest cost 

• Beam search:  BFS but only keep limited number of best nodes

• Depth-limited search:  Predetermined depth limit 

• Progressive Deepening (also called Iterative Deepening): 
Gradually increasing depth d = 0, 1, 2, …

We have seen this algorithm used for adversarial game playing.
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Path-based Search Strategies

• Exhaustive search:  Explore all paths

• Breadth-first search (BFS):  Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search:  Expand node with smallest cost 

• Beam search:  BFS but only keep limited number of best nodes

• Depth-limited search:  Predetermined depth limit 

• Progressive Deepening (also called Iterative Deepening): (Optimal? Complete?)
Gradually increasing depth d = 0, 1, 2, …

We have seen this algorithm used for adversarial game playing.
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Path-based Search Strategies

• Exhaustive search:  Explore all paths

• Breadth-first search (BFS):  Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search:  Expand node with smallest cost (same as BFS with cost =1)

• Beam search:  BFS but only keep limited number of best nodes

• Depth-limited search:  Predetermined depth limit 

• Iterative Deepening:  Gradually increasing depth d = 0, 1, 2, …

• Bidirectional search: Search from start S and goal G nodes, hoping to meet
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Path-based Search Strategies

• Exhaustive search:  Explore all paths

• Breadth-first search (BFS):  Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search:  Expand node with smallest cost (same as BFS with cost =1)

• Beam search:  BFS but only keep limited number of best nodes

• Depth-limited search:  Predetermined depth limit 

• Iterative Deepening:  Gradually increasing depth d = 0, 1, 2, …

• Bidirectional search: Search from start S and goal G nodes, hoping to meet 
(Optimal? Complete?)
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Path-based Search Strategies

• Exhaustive search:  Explore all paths

• Breadth-first search (BFS):  Expand shallowest node

• Depth-first search (DFS): Expand deepest node

• Uniform cost search:  Expand node with smallest cost (same as BFS with cost =1)

• Beam search:  BFS but only keep limited number of best nodes

• Depth-limited search:  Predetermined depth limit 

• Iterative Deepening:  Gradually increasing depth d = 0, 1, 2, …

• Bidirectional search: Search from start S and goal G nodes, hoping to meet

• Greedy search = branch & bound search

• Greedy search with pruning

• A* = Greedy search with pruning and underestimates of remaining distance
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Greedy Search =  Branch & Bound Search

Phase 1:   Extend shortest partial path until goal is reached.  

                  Reject loops. 

Phase 2:   Extend all partial paths                                                                                  
       until their length  >=  complete path to goal 
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Greedy Search with Pruning

Dynamic Programming Principle:

If two or more paths reach a common node, delete all paths except the 
minimum cost path.
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Implementation of Greedy Search with Pruning

Data Structure:  Queue
Elements of queue:  Partial paths

Initialize:    Place start node in queue
Until a path in queue reaches goal node or queue is empty:
 Remove 1st queue element & extend path to its children
 Reject loops
 Add new paths to queue
 Prune
 Sort
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Connection to Dijkstra’s Algorithm

Same as Greedy Search with Pruning except
Dijkstra’s algorithm computes the all-pairs shortest paths

while “Greedy Search with Pruning” computes the shortest path between a 
single start state and a single goal state.
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A* Algorithm = Greedy Search with Pruning 
and Underestimates of Remaining Distance
• Remaining distance  = e.g., straight-line distance on a highway map

• In each step:  

   Estimate of total path length   =  

             length of partial path +  underestimate of remaining

    

     “This path is at least this bad.”
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An animation of the A* algorithm as it 
explores the North American freight train 
network to find the optimum path between 
Washington, D.C. and Los Angeles. 

Artificial Intelligence CS 640                                                              Source: Wikipedia, Srossd, Wgullyn 

A* pathfinding algorithm navigating 
around a randomly-generated maze
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Admissible Heuristic

• If the heuristic function never overestimates the actual cost to get to 
the goal, then A* is guaranteed to return a least-cost path from start 
to goal.
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Admissible Heuristic

• If the heuristic function never overestimates the actual cost to get to 
the goal, then A* is guaranteed to return a least-cost path from start 
to goal.

Time Complexity
• If goal state exists and is reachable from start state:

 Worst case O(bd) where d = depth(start,goal), b branching factor

• Otherwise, A* will not terminate

• A good heuristic function allows A* to prune away many of the bd nodes.
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Monotone Underestimates of Remaining Distance

Heuristic function h(n) is “monotone” if and only if it satisfies the 
triangle inequality:  

❑ h(n) = 0 if n=goal state  

❑ 0 <= h(n) <= cost(n, n’) + h(n’) 

With a monotone heuristic, A* is guaranteed to find an optimal path 
without processing any node more than once.
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Example of Bad Heuristic
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Robot Path Planning with A*

Artificial Intelligence CS 640                                               Illustration: P. Winston

• Convert 2D Map into 

    “Configuration Space” C
• Robot represented as point

• Obstacles represented as obstacles + fence  
=  O

• Run A* on Visibility Graph in 

  “Free Space” F = C - O 
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Obstacle 2

Obstacle 1

Robot modeled 
as triangleAI System Task:

Find shortest path for
robot to move from initial 
to goal position without
robot hitting the obstacles  



1. Reference point:

2. Eight unique shape positions

3. Fence:  Thick black line 

Artificial Intelligence CS 640                                                                        Illustration: P. Winston

Create a fence around each obstacle:

1. Select robot reference point
2. Slide robot shape around obstacle
3. Mark locations of reference point as fence

HERE:
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Visibility Graph
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Visibility Graph
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Visibility Graph
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Run A* Algorithm on 
Visibility Graph:
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Run A* Algorithm on 
Visibility Graph:

S A

F

E D

C

B

G
H I

J

K

L M

N

P

O

Goal

S

A     B    C    L    D    E    F

Node-to-node distance
+
Underestimate to Goal

L               K  

J      M  Goal  
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Shortest path  computed by A*



Your task:   
Define Fence for the following robots & obstacles

1. Robot:                               Obstacle:

2. Robot:                               Obstacle:  
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Define Fence for the following robots & obstacles
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Fence for the following robots & obstacles:

1. Robot:                               Obstacle:

2. Robot:                               Obstacle:  
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General Problem of Robot Motion Planning

• Robot with k degrees of freedom:  

   State or configuration of robot:  (q1, q2, …,  qk )

• So far (q1, q2) for two-dimensional position

• PUMA robot:   6 joint angles:    (q1, q2, …, q6 )

    6D configuration space
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General Problem of Robot Motion Planning

Given initial point c1 and destination point c2, in configuration space C: 

Robot can safely move between corresponding points in physical space

                                             if and only if

There exists a continuous path between c1 and c2 that lies entirely in 
the free space.
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Robot Obstacle Avoidance

Artificial Intelligence CS 640                                 

Zhao et al., 2020

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9093029


Learning Outcomes of this Lecture

• Understand how search 
algorithms are evaluated

• Understand the unique 
properties of AI searching 
tasks (versus general search 
algorithms)

• Can explain 11 path-based 
search algorithms and run 
them on an example

• Can explain the dynamic 
programming principle

Artificial Intelligence CS 440/640

• Know what an admissible and a 
monotone heuristic function is for the 
A* algorithm

• Can design a configuration space from a 
2D obstacle map & a translating robot 

• Can design a visibility graph in free 
space

• Can run A* on a visibility graph for robot 
path planning

• Understand configuration spaces of 
robot arms
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