
Adversarial Search for Games

CS 640 Lecture Notes

Slides by Margrit Betke, Zheng Wu, and Mahir Patel based

on materials from Patrick Winston’s book Artificial

Intelligence, and Wikipedia pages

Chess World Championship, November 9, 1985

Chess
16 pieces per player:

1 king

1 queen

2 rooks

2 bishops

2 knights

8 pawns
8 x 8 board

Pawn, rook, knight, bishop,

queen, king

Abstract strategy two-player game

Artificial Intelligence CS 640 Image Credits: Wikipedia: Bubba73, F. Camaratta

Initial Board and Moves of Pieces

Artificial Intelligence CS 640 Image Credit: Wikipedia

Chess History

• 1400 years ago from India & Persia; through

Arabia to Europe to US

• “Chaturanga” = army

• 1886: 1st World Championship

• Current Champion: Ding Liren from China

• Gary Kasparov was ranked world No. 1 for 255

months overall in his career (1985-2005)

Artificial Intelligence CS 640

Chess History & AI

• First Question: Why research algorithms for

solving an abstract strategy game?

Source: WikipediaArtificial Intelligence CS 640

Chess History & AI

• First Question: Why research AI algorithms for

game theory?

• Lot of real-world problems can be categorized as

adversarial or cooperative system.

Source: WikipediaArtificial Intelligence CS 640

Chess History & AI

• First Question: Why research AI algorithms for

game theory?

• Lot of real-world problems can be categorized as

adversarial or cooperative system.

• Chess provides a well-defined (deterministic) yet

complex environment.

Source: WikipediaArtificial Intelligence CS 640

Chess History & AI

• In 1997 Gary Kasparov became the first

world champion to lose a match to a

computer under standard time controls,

when he lost to the IBM supercomputer

Deep Blue in a highly publicized match.

Source: WikipediaArtificial Intelligence CS 640

1996: Kasparov vs IBM DeepBlue

Source: WikipediaArtificial Intelligence CS 640

1997: Kasparov vs IBM DeepBlue

Source: WikipediaArtificial Intelligence CS 640

Three matches ended in draws, with Kasparov

appearing to weaken psychologically. Deep Blue

went on to win the decisive sixth game, marking the

first time in history that a computer defeated the

World Champion in a match of several games. From

this experience, particularly the second game of the

match, Kasparov accused the IBM team of cheating.

He suspected that a human player was used during

the games to improve the strategic strength of the

computer.

1997: Kasparov vs IBM DeepBlue

Artificial Intelligence CS 640

2016 Podcast with Kasparov: Change of

heart in his views of this match

"I did a lot of research – analysing the games

with modern computers, also soul-searching –

and I changed my conclusions. I am not

writing any love letters to IBM, but my

respect for the Deep Blue team went up, and

my opinion of my own play, and Deep Blue's

play, went down. Today you can buy a chess

engine for your laptop that will beat Deep

Blue quite easily.”
Source: Wikipedia

Famous AI Chess Programs

• IBM Deep Blue:

– IBM dismantled DeepBlue due to dispute

– Evaluation function: 8,000 parts

– Opening: 4,000 positions from 700,000 grand master games

– End game: 6 pieces left; dedicated database

– IBM did not let Kasparov know about database of games to study

opponent

• Deep Fritz:

– https://en.wikipedia.org/wiki/Fritz_(chess)

– In 1995, Fritz 3 won the World Computer Chess Championship in

Hong Kong

– March 2022: Fritz 18 Neuronal release

https://en.wikipedia.org/wiki/Fritz_(chess)

Machine vs. Human Chess Champions

https://srconstantin.wordpress.com/2017/01/28/performance-trends-in-ai/

Swedish Chess

Computer

Association data

State of the Art in 2023: Alpha-beta technique

• Stockfish (strongest CPU chess engine in the world)

Rating: 3546

Open-source engine available for various desktop and mobile

platforms. It is based on another open-source chess engine named

Glaurung and uses the alpha-beta procedure.

• Hannibal

Rating: 3229

Hannibal is a Universal Chess Interface (UCI) engine that

incorporates ideas from earlier engines, Twisted Logic, and

LearningLemming. It uses the alpha-beta technique with many other

chess specific heuristics and relies on a selective search method.

Board Games like Chess

AI system evaluates board configurations with a

 Static Evaluator :

 Compute a number = Static Evaluation Score

The static evaluator checks the merit of a move by

 looking ahead (potentially several moves)

Artificial Intelligence CS 640

Minimax Procedure

• Static Evaluation Score reflects board quality in a

single number

• 1st player is the Maximizer: Player aiming for

maximum score

• 2nd player is the Minimizer: Player aiming for

minimum score

• Game Tree: nodes, branches, depth

• Game = Path through Game Tree

Artificial Intelligence CS 640

Chess
16 pieces per player:

1 king

1 queen

2 rooks

2 bishops

2 knights

8 pawns
8 x 8 board

Pawn, rook, knight, bishop, queen, king

IBM Deep Blue static evaluator:

Pawn: 1

Knight: 3, Bishop: 3.25

Rook: 5

Queen: 9

Piece count

King safety

Abstract strategy two-player game

Artificial Intelligence CS 640 Image Credits: Wikipedia: Bubba73, F. Camaratta

Minimax Procedure

• If at Look-ahead Depth:

 Compute & report static value

• Otherwise:
❖ If choice of minimizer: Recursive call on children

 & Report minimum

❖ If choice of maximizer: Recursive call on children

 & Report maximum

Artificial Intelligence CS 640

Examples on Black Board

a maximizer choice

 b c minimizer choice

d e f g

2 7 1 8 static values

Lookahead depth: maximizer 2, minimizer 1

Examples on Black Board

a maximizer choice

 b c minimizer choice

d e f g

2 7 1 8 static values

Lookahead depth: maximizer 2, minimizer 1

Examples on Black Board

a maximizer choice

 b c minimizer choice

d e f g maximizer choice

2 7 1 8 static values

h i j k

20 1 9 8 static values

Lookahead depth: maximizer 2, minimizer 2

Examples on Black Board

a maximizer choice

 b c minimizer choice

d e f g maximizer choice

2 7 1 8 static values

h i j k

20 1 9 8 static values

Lookahead depth: maximizer 2, minimizer 2

Examples on Black Board

a maximizer choice

 b c minimizer choice

d e f g maximizer choice

h i j k minimizer choice

 l m n o

 5 9 2 8

Examples on Black Board

a maximizer choice

 b c minimizer choice

d e f g maximizer choice

h i j k minimizer choice

 l m n o

 5 9 2 8

Examples on Black Board

a maximizer choice

 b c minimizer choice

d e f g maximizer choice

h i j k minimizer choice

 l m n o

 5 9 2 8
Opportunity to prune

since 2 < 5

Alpha-Beta Procedure

• Principle

 If you have an idea that is surely bad, do not

take time to see how truly awful it is

• Key idea

 The best move score at some child node

provides a bound at parent node, which can

be used to possibly prune other children

branches

Alpha-Beta Procedure

• Use alpha to keep track of the lower bound for the

maximizer

• Use beta to keep track of the upper bound for the

minimizer

• For the maximizing level, the node might update its

alpha, and return its alpha

• For the minimizing level, the node might update its

beta, and return its beta

• The alpha and beta can be interpreted as the

minimum risk for the maximizer and minimizer,

respectively

void Alpha_Beta_Procedure(alpha, beta, &score)

1. If at the root, set alpha=-∞, beta = ∞

2. If at the leaf, *score = static_evaluator(current_board, role); return

3. If at a minimizing level,

 until all children are examined or alpha >= beta,

 (a) Recursive call Alpha_Beta_Procedure on a child;

 (b) If *score < beta, beta = *score; // update upper bound

 *score = beta;

4. Else if at a maximizing level,

 until all children are examined or alpha >= beta,

 (a) Recursive call Alpha_Beta_Procedure on a child;

 (b) If *score > alpha, alpha = *score; // update lower bound

 *score = alpha;

Example from Patrick Winston’s AI book

Maximizing Level

Minimizing Level

α = -∞,

β = ∞

void Alpha_Beta_Procedure(alpha, beta, &score)

1. If at the root, set alpha=-∞, beta = ∞

2. If at the leaf, *score = static_evaluator(current_board, role); return

3. If at a minimizing level,

 until all children are examined or alpha >= beta,

 (a) Recursive call Alpha_Beta_Procedure on a child;

 (b) If *score < beta, beta = *score; // update upper bound

 *score = beta;

4. Else if at a maximizing level,

 until all children are examined or alpha >= beta,

 (a) Recursive call Alpha_Beta_Procedure on a child;

 (b) If *score > alpha, alpha = *score; // update lower bound

 *score = alpha;

Maximizing Level

Minimizing Level

8

Step 1

α = -∞,

β = ∞

α = -∞,

β = ∞

α = -∞,

β = ∞

void Alpha_Beta_Procedure(alpha, beta, &score)

1. If at the root, set alpha=-∞, beta = ∞

2. If at the leaf, *score = static_evaluator(current_board, role); return

3. If at a minimizing level,

 until all children are examined or alpha >= beta,

 (a) Recursive call Alpha_Beta_Procedure on a child;

 (b) If *score < beta, beta = *score; // update upper bound

 *score = beta;

4. Else if at a maximizing level,

 until all children are examined or alpha >= beta,

 (a) Recursive call Alpha_Beta_Procedure on a child;

 (b) If *score > alpha, alpha = *score; // update lower bound

 *score = alpha;

Maximizing Level

Minimizing Level

8

>=8

Step 2

α = -∞,

β = ∞

α = -∞,

β = ∞

α = 8,

β = ∞

void Alpha_Beta_Procedure(alpha, beta, &score)

1. If at the root, set alpha=-∞, beta = ∞

2. If at the leaf, *score = static_evaluator(current_board, role); return

3. If at a minimizing level,

 until all children are examined or alpha >= beta,

 (a) Recursive call Alpha_Beta_Procedure on a child;

 (b) If *score < beta, beta = *score; // update upper bound

 *score = beta;

4. Else if at a maximizing level,

 until all children are examined or alpha >= beta,

 (a) Recursive call Alpha_Beta_Procedure on a child;

 (b) If *score > alpha, alpha = *score; // update lower bound

 *score = alpha;

In loop

Maximizing Level

Minimizing Level

8

>=8

7

Step 3

α = -∞,

β = ∞

α = -∞,

β = ∞

α = 8,

β = ∞

Maximizing Level

Minimizing Level

8

>=8

7 2

Step 4

α = -∞,

β = ∞

α = -∞,

β = ∞

α = 8,

β = ∞

Maximizing Level

Minimizing Level

8

=8

7 2

Step 5

α = -∞,

β = ∞

α = -∞,

β = ∞

α = 8,

β = ∞

void Alpha_Beta_Procedure(alpha, beta, &score)

1. If at the root, set alpha=-∞, beta = ∞

2. If at the leaf, *score = static_evaluator(current_board, role); return

3. If at a minimizing level,

 until all children are examined or alpha >= beta,

 (a) Recursive call Alpha_Beta_Procedure on a child; (second child)

 (b) If *score < beta, beta = *score; // update upper bound

 *score = beta;

4. Else if at a maximizing level,

 until all children are examined or alpha >= beta,

 (a) Recursive call Alpha_Beta_Procedure on a child;

 (b) If *score > alpha, alpha = *score; // update lower bound

 *score = alpha;

Maximizing Level

Minimizing Level

8

=8

7 2

<=8

Step 6

α = -∞,

β = ∞

α = -∞,

β = 8

Maximizing Level

Minimizing Level

8

=8

7 2

<=8

9

Step 7

α = -∞,

β = ∞

α = -∞,

β = 8

α = -∞,

β = 8

void Alpha_Beta_Procedure(alpha, beta, &score)

1. If at the root, set alpha=-∞, beta = ∞

2. If at the leaf, *score = static_evaluator(current_board, role); return

3. If at a minimizing level,

 until all children are examined or alpha >= beta,

 (a) Recursive call Alpha_Beta_Procedure on a child;

 (b) If *score < beta, beta = *score; // update upper bound

 *score = beta;

4. Else if at a maximizing level,

 until all children are examined or alpha >= beta,

 (a) Recursive call Alpha_Beta_Procedure on a child;

 (b) If *score > alpha, alpha = *score; // update lower bound

 *score = alpha;

Maximizing Level

Minimizing Level

8

=8

7 2

<=8

9

>=9

Step 8

α = -∞,

β = ∞

α = -∞,

β = 8

α = 9,

β = 8

void Alpha_Beta_Procedure(alpha, beta, &score)

1. If at the root, set alpha=-∞, beta = ∞

2. If at the leaf, *score = static_evaluator(current_board, role); return

3. If at a minimizing level,

 until all children are examined or alpha >= beta, PRUNE now

 (a) Recursive call Alpha_Beta_Procedure on a child;

 (b) If *score < beta, beta = *score; // update upper bound

 *score = beta;

4. Else if at a maximizing level,

 until all children are examined or alpha >= beta,

 (a) Recursive call Alpha_Beta_Procedure on a child;

 (b) If *score > alpha, alpha = *score; // update lower bound

 *score = alpha;

Maximizing Level

Minimizing Level

8

=8

7 2

<=8

9

>=9

2

Step 9

α = -∞,

β = ∞

α = -∞,

β = 8

α = -∞,

β = 8

void Alpha_Beta_Procedure(alpha, beta, &score)

1. If at the root, set alpha=-∞, beta = ∞

2. If at the leaf, *score = static_evaluator(current_board, role); return

3. If at a minimizing level,

 until all children are examined or alpha >= beta,

 (a) Recursive call Alpha_Beta_Procedure on a child;

 (b) If *score < beta, beta = *score; // update upper bound

 *score = beta;

4. Else if at a maximizing level,

 until all children are examined or alpha >= beta,

 (a) Recursive call Alpha_Beta_Procedure on a child;

 (b) If *score > alpha, alpha = *score; // update lower bound

 *score = alpha;

Maximizing Level

Minimizing Level

8

=8

7 2

<=8

9

>=9

2

>=2

Step 10

α = -∞,

β = ∞

α = -∞,

β = 8

α = 2,

β = 8

Maximizing Level

Minimizing Level

8

=8

7 2

<=8

9

>=9

2 4

Step 11

α = -∞,

β = ∞

α = -∞,

β = 8

α = 2,

β = 8
>=2

Maximizing Level

Minimizing Level

8

=8

7 2

<=8

9

>=9

2 4

Step 12

>=4

α = -∞,

β = ∞

α = -∞,

β = 8

α = 4,

β = 8

Maximizing Level

Minimizing Level

8

=8

7 2

<=8

9

>=9

2 4 1

Step 13

α = -∞,

β = ∞

α = -∞,

β = 8

α = 4,

β = 8
>=4

void Alpha_Beta_Procedure(alpha, beta, &score)

1. If at the root, set alpha=-∞, beta = ∞

2. If at the leaf, *score = static_evaluator(current_board, role); return

3. If at a minimizing level,

 until all children are examined or alpha >= beta,

 (a) Recursive call Alpha_Beta_Procedure on a child;

 (b) If *score < beta, beta = *score; // update upper bound

 *score = beta;

4. Else if at a maximizing level,

 until all children are examined or alpha >= beta,

 (a) Recursive call Alpha_Beta_Procedure on a child;

 (b) If *score > alpha, alpha = *score; // update lower bound

 *score = alpha;

Maximizing Level

Minimizing Level

8

=8

7 2

<=8

9

>=9

2

=4

4 1

Step 14

α = -∞,

β = ∞

α = -∞,

β = 8

α = 4,

β = 8

void Alpha_Beta_Procedure(alpha, beta, &score)

1. If at the root, set alpha=-∞, beta = ∞

2. If at the leaf, *score = static_evaluator(current_board, role); return

3. If at a minimizing level,

 until all children are examined or alpha >= beta,

 (a) Recursive call Alpha_Beta_Procedure on a child;

 (b) If *score < beta, beta = *score; // update upper bound

 *score = beta;

4. Else if at a maximizing level,

 until all children are examined or alpha >= beta,

 (a) Recursive call Alpha_Beta_Procedure on a child;

 (b) If *score > alpha, alpha = *score; // update lower bound

 *score = alpha;

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2 4 1

Step 15

=4

α = -∞,

β = ∞

α = -∞,

β = 4

void Alpha_Beta_Procedure(alpha, beta, &score)

1. If at the root, set alpha=-∞, beta = ∞

2. If at the leaf, *score = static_evaluator(current_board, role); return

3. If at a minimizing level,

 until all children are examined or alpha >= beta,

 (a) Recursive call Alpha_Beta_Procedure on a child;

 (b) If *score < beta, beta = *score; // update upper bound

 *score = beta;

4. Else if at a maximizing level,

 until all children are examined or alpha >= beta,

 (a) Recursive call Alpha_Beta_Procedure on a child;

 (b) If *score > alpha, alpha = *score; // update lower bound

 *score = alpha;

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2

=4

4 1

Step 16

>=4
α = 4,

β = ∞

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2

=4

4 1

Step 17

1

>=4
α = 4,

β = ∞

α = 4,

β = ∞

α = 4,

β = ∞

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2

=4

4 1

Step 18

1

>=1

>=4
α = 4,

β = ∞

α = 4,

β = ∞

α = 4,

β = ∞

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2

=4

4 1

Step 19

1

>=1

3

>=4
α = 4,

β = ∞

α = 4,

β = ∞

α = 4,

β = ∞

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2

=4

4 1

Step 20

1

>=3

3

>=4
α = 4,

β = ∞

α = 4,

β = ∞

α = 4,

β = ∞

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2

=4

4 1

Step 21

1

>=3

3 5

>=4
α = 4,

β = ∞

α = 4,

β = ∞

α = 4,

β = ∞

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2

=4

4 1

Step 22

1

=5

3 5

>=4
α = 4,

β = ∞

α = 4,

β = ∞

α = 5,

β = ∞

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2

=4

4 1

Step 23

1

=5

3 5

<=5

>=4
α = 4,

β = ∞

α = 4,

β = 5

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2

=4

4 1

Step 24

1

=5

3 5 3

<=5

>=4
α = 4,

β = ∞

α = 4,

β = 5

α = 4,

β = 5

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2

=4

4 1

Step 25

1

=5

3 5 3

>=3

<=5

>=4
α = 4,

β = ∞

α = 4,

β = 5

α = 4,

β = 5

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2

=4

4 1

Step 26

1

=5

3 5 3

>=3

9

<=5

>=4
α = 4,

β = ∞

α = 4,

β = 5

α = 4,

β = 5

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2

=4

4 1

Step 27

1

=5

3 5 3

>=9

9

<=5

>=4
α = 4,

β = ∞

α = 4,

β = 5

α = 9,

β = 5

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2

=4

4 1

Step 28

1

=5

3 5 3

>=9

9 6

<=5

>=4
α = 4,

β = ∞

α = 4,

β = 5

α = 4,

β = 5

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2

=4

4 1

Step 29

1

=5

3 5 3

>=9

9 6

>=6

<=5

>=4
α = 4,

β = ∞

α = 4,

β = 5

α = 6,

β = 5

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2

=4

4 1

Step 30

1

=5

3 5 3

>=9

9 6

>=6

=5

>=4
α = 4,

β = ∞

α = 4,

β = 5

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2

=4

4 1

Step 31

1

=5

3 5 3

>=9

9 6

>=6

=5

>=5
α = 5,

β = ∞

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2

=4

4 1

Step 32

1

=5

3 5 3

>=9

9 6 1

>=6

=5

>=5
α = 5,

β = ∞

α = 5,

β = ∞

α = 5,

β = ∞

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2

=4

4 1

Step 33

1

=5

3 5 3

>=9

9 6 1

>=1>=6

=5

>=5
α = 5,

β = ∞

α = 5,

β = ∞

α = 5,

β = ∞

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2

=4

4 1

Step 34

1

=5

3 5 3

>=9

9 6 1

>=1

2

>=6

=5

>=5
α = 5,

β = ∞

α = 5,

β = ∞

α = 5,

β = ∞

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2

=4

4 1

Step 35

1

=5

3 5 3

>=9

9 6 1

>=2

2

>=6

=5

>=5
α = 5,

β = ∞

α = 5,

β = ∞

α = 5,

β = ∞

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2

=4

4 1

Step 36

1

=5

3 5 3

>=9

9 6 1

>=2

2 3

>=6

=5

>=5
α = 5,

β = ∞

α = 5,

β = ∞

α = 5,

β = ∞

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2

=4

4 1

Step 37

1

=5

3 5 3

>=9

9 6 1

=3

2 3

>=6

=5

>=5
α = 5,

β = ∞

α = 5,

β = ∞

α = 5,

β = ∞

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2

=4

4 1

Step 38

1

=5

3 5 3

>=9

9 6 1

=3

2 3

<=3

>=6

=5

>=5
α = 5,

β = ∞

α = 5,

β = 5

Maximizing Level

Minimizing Level

8

=8

7 2

=4

9

>=9

2

=4

4 1

Step 39

1

=5

3 5 3

>=9

9 6 1

=3

2 3

<=3

>=6

=5

=5
α = 5,

β = ∞

void Alpha_Beta_Procedure(alpha, beta, &score)

1. If at the root, set alpha=-∞, beta = ∞

2. If at the leaf, *score = static_evaluator(current_board, role); return

3. If at a minimizing level,

 until all children are examined or alpha >= beta,

 (a) Recursive call Alpha_Beta_Procedure on a child;

 (b) If *score < beta, beta = *score; // update upper bound

 *score = beta;

4. Else if at a maximizing level,

 until all children are examined or alpha >= beta,

 (a) Recursive call Alpha_Beta_Procedure on a child;

 (b) If *score > alpha, alpha = *score; // update lower bound

 *score = alpha;

• Worst Case

 = Minimax = Exhaustive search to look ahead depth d with

branching factor b

 # static evaluations

• Best Case

 (Assume the best move happens to be on the left most)

ds b=

Critique of α-β Procedure

Maximizing Level: You have a chance to update alpha

Minimizing Level: You have a chance to update beta

Best case: 11 Worst case: 3^3 = 27

update beta update beta update beta

re
p
o

rt
 a

lp
h

a

re
p
o

rt
 a

lp
h

a

re
p
o

rt
 a

lp
h

a

rep
o

rt b
eta

update alpha

• Worst Case

• Best Case

 Proof by Induction

 Best case analysis provides lower bound on # evaluations in real game

• In real game

1 1

2 2

2

1,

2 ,

d d

d

b b if d is odd
s

b if d is even

+ −
+ −

= 



22
d

db s b 

Critique of α-β Procedure

ds b=

• Worst Case

• Best Case

 Proof by Induction

 Best case analysis provides lower bound on # evaluations in real game

• In real game

1 1

2 2

2

1,

2 ,

d d

d

b b if d is odd
s

b if d is even

+ −
+ −

= 



22
d

db s b 

Critique of α-β Procedure

ds b= 33 = 27

3(3+1)/2

+ 3(3-1)/2

- 1

= 9+3-1

=11

2 x 33/2=11

<=S <=

33 =27

The ALPHA-BETA procedure reduces the rate of explosive growth but does not prevent it.

The branching factor here is assumed to be 10.

10,000,000

1,000,000

100,000

10,000

1,000

100

10

763 541 2

Minimax

Without alpha-beta pruning

With alpha-beta pruning

Static evaluations

Depth

Heuristic Methods
• The goal is to reduce

 b → prune children

 d → reduce lookahead depth

• Minimax/Alpha-Beta

 1) compute static value at leaves of game tree

 2) pass up value to parents and make decision at root

 3) prune branches (i.e. when alpha >= beta)

• Whether or not Alpha-Beta can prune depends on game

situation

• If time limits on moves (e.g. chess), a conservative d may waste

time

ds b=

Heuristic Methods

• Progressive Deepening

• Continuation Heuristic

 Search-until-quiescent Heuristic

 Singular-extension Heuristic

• Tapered Search

Progressive Deepening

• Analyze game situation to d=1,d=2,d=3,…until time is

up

• Choice is determined by the analysis at one level less

deep than the one in progress when time runs out

Progressive Deepening

• Analyze game situation to d=1,d=2,d=3,…until time is

up

• Choice is determined by the analysis at one level less

deep than the one in progress when time runs out

Progressive Deepening

• Analyze game situation to d=1,d=2,d=3,…until time is

up

• Choice is determined by the analysis at one level less

deep than the one in progress when time runs out

• Lots of extra work ? Not really

Progressive Deepening

0 1 2 1 1
...

1

d
d b

b b b b
b

− −
+ + + + =

−

Non-leaf nodes:

leaf nodes: db

Progressive Deepening

0 1 2 1 1
...

1

d
d b

b b b b
b

− −
+ + + + =

−

Non-leaf nodes:

leaf nodes: db

#
1

1#

1

d

d

leaves b
b

bnon leaves

b

=  −
−−

−

=>

Overhead of progressive

deepening is only a factor of b-1

Continuation Heuristics handle

Horizon Effect

Horizon Effect:

horizon

Fixed look ahead depth

Disaster behind horizon missed,

e.g. your Queen is captured

Maximizing level

Maximizing level

Maximizing level

Minimizing level

Minimizing level

Capture

Capture

Capture

Capture

+6

+6

+6

+1

+1

+7

+7

-1-1-2

-5

-5-6 -6

+5

+5

+5

00Horizon

Continuation Heuristic

• Search-until-quiescent Heuristic

 Stop search only if a capture (you or your opponent

captures a piece) is not imminent.

• Singular-extension Heuristic

 Search as long as one move’s static value is much

better than the rest. This move would “force”

decision, but could be wrong!

Heuristic Pruning
• Principle: prune apparently “bad” moves and spend

time on more promising moves

• Tapered Search

 1) Rank each child by using a fast static evaluator

 2) Compute # of branches to explore at each child

based on its rank,

 i.e. # branches at child = # children – rank(child)
P

42513

Summary of Learning Goals
You should know about:

• Chess

• Some of the history of AI tackling chess

• Static Evaluator

• Minimax Procedure

• Alpha-beta Procedure → prune branches

• Progressive Deepening → reduce depth

• Continuation Heuristic → look deeper

 Search-until-quiescent Heuristic

 Singular-extension Heuristic

• Tapered Search → prune branches

	Slide 1: Adversarial Search for Games CS 640 Lecture Notes
	Slide 2: Chess World Championship, November 9, 1985
	Slide 3: Chess
	Slide 4: Initial Board and Moves of Pieces
	Slide 5: Chess History
	Slide 6: Chess History & AI
	Slide 7: Chess History & AI
	Slide 8: Chess History & AI
	Slide 9: Chess History & AI
	Slide 10: 1996: Kasparov vs IBM DeepBlue
	Slide 11: 1997: Kasparov vs IBM DeepBlue
	Slide 12
	Slide 13: 2016 Podcast with Kasparov: Change of heart in his views of this match
	Slide 14: Famous AI Chess Programs
	Slide 15: Machine vs. Human Chess Champions
	Slide 16: State of the Art in 2023: Alpha-beta technique
	Slide 17: Board Games like Chess
	Slide 18: Minimax Procedure
	Slide 19: Chess
	Slide 20: Minimax Procedure
	Slide 21: Examples on Black Board
	Slide 22: Examples on Black Board
	Slide 23: Examples on Black Board
	Slide 24: Examples on Black Board
	Slide 25: Examples on Black Board
	Slide 26: Examples on Black Board
	Slide 27: Examples on Black Board
	Slide 28: Alpha-Beta Procedure
	Slide 29: Alpha-Beta Procedure
	Slide 30: void Alpha_Beta_Procedure(alpha, beta, &score)
	Slide 31
	Slide 32
	Slide 33: void Alpha_Beta_Procedure(alpha, beta, &score)
	Slide 34
	Slide 35: void Alpha_Beta_Procedure(alpha, beta, &score)
	Slide 36
	Slide 37: void Alpha_Beta_Procedure(alpha, beta, &score)
	Slide 38
	Slide 39
	Slide 40
	Slide 41: void Alpha_Beta_Procedure(alpha, beta, &score)
	Slide 42
	Slide 43
	Slide 44: void Alpha_Beta_Procedure(alpha, beta, &score)
	Slide 45
	Slide 46: void Alpha_Beta_Procedure(alpha, beta, &score)
	Slide 47
	Slide 48: void Alpha_Beta_Procedure(alpha, beta, &score)
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: void Alpha_Beta_Procedure(alpha, beta, &score)
	Slide 54
	Slide 55: void Alpha_Beta_Procedure(alpha, beta, &score)
	Slide 56
	Slide 57: void Alpha_Beta_Procedure(alpha, beta, &score)
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82: void Alpha_Beta_Procedure(alpha, beta, &score)
	Slide 83
	Slide 84
	Slide 85: Critique of α-β Procedure
	Slide 86: Critique of α-β Procedure
	Slide 87
	Slide 88: Heuristic Methods
	Slide 89: Heuristic Methods
	Slide 90: Progressive Deepening
	Slide 91: Progressive Deepening
	Slide 92: Progressive Deepening
	Slide 93: Progressive Deepening
	Slide 94: Progressive Deepening
	Slide 95: Continuation Heuristics handle Horizon Effect
	Slide 96
	Slide 97: Continuation Heuristic
	Slide 98: Heuristic Pruning
	Slide 99: Summary of Learning Goals You should know about:

