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Learning Objectives

. & ON uﬂ%
for this Lecture 7 B
Computer smenc;
0 Understand formats of images used as inputs to Al models: greyscale,
color, medical scans
0 Understand differences and similarities between pre-2012 “traditional
computer vision” and post-2012 neural-network-based computer vision
& see examples
0 Understand why convolution is powerful
0 Understand the connection between convolution and correlation
0 Understand template matching with image pyramids
0 Understand CNNs as a learning hierarchy of features
0 Learn about early CNN used in computer vision: LeCun’s work on
recognizing handwritten numbers
0 Understand CNN concepts, e.g., convolution layers, fully connected

(dense) layers, non-linearity (ReLU), pooling (downsampling)



Multi-Resolution Matching

Normalized correlation coefficient over

multi-resolution search space:
I =

1/n  2; (s, - mean(s)) (m,- mean(m))
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matched over all
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Finding the Face and its Movement by N
Locating the Best Match of a Face Template <

You can apply
template matching
to a small version
of your input image
and use that
search result to
start searching for
a match in the 2nd
smallest images.
Repeat until the
original size is
processed.

(a) Input (d) Correlation



Face Detection

- Data Variability

Shadows
Cluttered background
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Back to Neural Nets & their Success in
Solving Computer Vision Problems

output
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Large labeled Deep neural networks

datasets

GPU technology

Slide credit: Dinesh Jayaraman



Convolutional Neural Networks
(CNN, ConvNet, DCN)

2 CNN = a multi-layer neural network with

® Local connectivity:

- Neurons in a layer are only connected to a small
region of the layer before it

® Share weight parameters across spatial
positions:
- Learning shift-invariant filter kernels
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Image credit: A. Karpathy
Jia-Bin Huang and Derek Hoiem, UIUC
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(4 X 0) Computer Science
Center element of the kernel is placed over the (0 X 0)

source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

Source pixel

f(x,y)

...‘/,

Meraswwmm-

Convolution kernel
(emboss)

-
-”

-
”

T g

New pixel value (destination pixel)

Image Credit: Madhushree Basavarajaiah



LeNet [LeCun et al.]

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

28x28
32x32 6@28x S2: f. maps

C5: layer 4
120 F864 layer 018TPUT

‘ Full connection Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

1990: Zipcode recognition

http://lyann.lecun.com/exdb/lenet/multiples.html

Gradient-based learning applied to document
recognition [LeCun, Bottou, Bengio, Haffner 1998] LeNet-1 from 1993

Jia-Bin Huang and Derek Hoiem, UIUC


http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/lenet/multiples.html
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LeCun Interview, Oct. 5, 2023
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Q https://www.rsipvision.com/ICCV2023-Thursday/

Yann LeCun

® VP and Chief Al Scientist, Facebook

® Silver Professor of Computer Science, Data
Science, Neural Science, and Electrical and

Computer Engineering, New York University
® ACM Turing Award Laureate

® Member, National Academy of Engineering

11


https://www.rsipvision.com/ICCV2023-Thursday/

LeCun’s 2023 Focus: Predict Content of
Masked-out Images/Video Frames
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Image Credit: 2301.08243.pdf (arxiv.orqg) 12



https://arxiv.org/pdf/2301.08243.pdf

LeCun’s focus: Predict Content of Masked-
out Images/Video Frames v .

Image Credit: 2301.08243.pdf (arxiv.org) 13



https://arxiv.org/pdf/2301.08243.pdf







Another example of 2D Convolution

O Weighted moving sum

What do you think each
filter does?

Feature Activation Map
slide credit: S. Lazebnik



Another example of 2D Convolution

0 Weighted moving sum

Feature Activation Map
slide credit: S. Lazebnik



Traditional versus NN-based Computer Vision:

Engineered versus Learned Features
Label

Label

| Image | | Image

Jia-Bin Huang and Derek Hoiem, UIUC



Convolutional Neural Networks

i

[ Feature maps ]

i

[ Normalization J

i

[ Spatial pooling }

{}

[ Non-linearity ]

Feature Map

[ Input Image 1

slide credit: S. Lazebnik




Convolutional Neural Networks

i

[ Feature maps 1

-

[ Normalization }

-

[ Spatial pooling }

Non-linearity

Convolution
(Learned)

Input Image

I

Rectified Linear Unit (ReLU)

relulx)

i i i i i i i i i
---------------

slide credit: S. Lazebnik



Convolutional Neural Networks

Single depth slice

[ Feature maps 1 o [ .

5|6
3|2
i || 2

max pool with 2x2 filters
and stride 2 6 8

7 '8
110 314
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[ Normalization }
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Spatial pooling
224%224x64
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pool 7

[ Non-linearity ] o
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~ . 112
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Input Image

slide credit: S. Lazebnik




Convolutional Neural Networks

i

[ Feature maps ]

i

Max pooling

Convolution
(Learned)

Input Image

slide credit: S. Lazebnik




Visualizing what was learned

2 What would the learned filters look like?




Visualizing what was learned

2 What do the feature maps look like?
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https://cs231n.stanford.edu/slides/2023/lecture_7.pdf

The CNN Explainer

Thanks to CS640
alumni Mao Mao, we
have a link to the CNN .
Explainer: ) w

https://poloclub.github. ] ,,

o/cnn-explainer/

by Jay Wang, Robert Turko, Omar

Shaikh, Haekyu Park, Nilaksh Das,

Fred Hohman, Minsuk Kahng, and E
Polo Chau, a result of a research
collaboration between Georgia

Tech and Oregon State University



https://poloclub.github.io/cnn-explainer/
https://poloclub.github.io/cnn-explainer/

ImageNet —
The Data Set that Mattered and Still Matters!

14 million labeled images
» 20 thousand object classes

IMJ&AGE

[Deng et al. CVPR 2009]

* Images collected from the
Internet

« Human labels obtained by
crowdsourcing with Amazon
Turk

« Still very important in 2024
because it is widely used for
pretraining of “backbone
neural nets” of current
models




Analysis of Large Scale Visual

Recognition
Adapted for BU CS 440/640 by M. Betke

Olga Russakovsky, Jia Deng, Zhiheng Huang, Alex Berg, Li Fei-Fei
Detecting avocados to zucchinis: what have we done, and where are we going?
ICCV 2013 http://image-net.org/challenges/LSVRC/2012/analysis




Flute Strawberry Traffic light

- . -
s . ':F.‘;";.
- 3 e

Sea lion

*
- _/



*




B TR

: ﬂ;S“‘!’,~ A
¥ ¥y o0

T Ewn St Ne

Y
= =

benchmark datasets




PASCAL VOC 2005-2012

20 object classes 22,591 images

Classification: person, motorcycle

Segmentation

Action: riding bicycle

Everingham, Van Gool, Williams, Winn and Zisserman.
The PASCAL Visual Object Classes (VOC) Challenge. 1JCV 2010.



IMAGENET Large Scale Visual

Recognition Challenge (ILSVRC) 2010-2012

20 obi | 22 591 ]
1000 object classes 1,431,167 images
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http://image-net.org/challenges/LSVRC/{2010,2011,2012}



bottles birds

cars

Variety of object classes in ILSVRC

PASCAL

ruffed grouse  quail

rEnE

—‘ ]‘_:

pill bottle

Wl
5

@ &

~

race car  wagon " minivan



Variety of object classes in ILSVRC

Screwdriver Hatchet Ladybug Honeycomb
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Amount of Texture

Color Distinctiveness

Jigsaw Puzzle Foreland Lipstick Bell
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Shape Distinctiveness

Real-world Size

Low High



ILSVRC Task 1: Classification

Steel drum




ILSVRC Task 1: Classification

Allowed system output: 5 predictions per image
Goal: Get 1 of the 5 predictions correct

Steel drum

Indicator Function:

Output:
Scale
T-shirt
Steel drum

Drumstick
Mud turtle

1[System output correct on this image] =1

Output:
Scale
T-shirt
Giant panda
Drumstick
Mud turtle




ILSVRC Task 1: Classification

Steel drum

Accuracy =

Output:
Scale
T-shirt
Steel drum

Drumstick
Mud turtle

1
100,000

v

Output:
Scale
T-shirt
Giant panda
Drumstick
Mud turtle

X

z 1[correct on image i]

100,000
images



# Submissions

2010

ILSVRC Task 1: Classification

Accuracy (5 predictions/image)

| | | | | | |
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ILSVRC Task 2: Classification + Localization

Steel drum




ILSVRC Task 2: Classification + Localization




ILSVRC Task 2: Classification + Localization

Steel drum
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ILSVRC Task 2: Classification + Localization

Accuracy = z 1[correct on image i]

100,000
images



ILSVRC Task 2: Classification + Localization

O
0

O
N

ISI=Uni. Tokyo Team

Accuracy
(5 predictions)
O
N

VGG=Uni. Oxford Team

SuperVision =
) University of Toronto Team
\O Led by
N
O?\O g cj\\Qe Geoffrey Hinton,
Turing Award and Nobel
Price Winner




What happens under the hood?



Preliminaries:
e |JLSVRC-500 (2012) dataset
 Leading algorithms

What happens under the hood
on classification+localization?

A closer look at small objects
 Acloser look at textured objects

Olga Russakovsky, Jia Deng, Zhiheng Huang, Alex Berg, Li Fei-Fei
Detecting avocados to zucchinis: what have we done, and where are we going?
ICCV 2013 http://image-net.org/challenges/LSVRC/2012/analysis




ILSVRC (2012)

1000 object classes

La.d

Teapot Steel Drum

Easy to localize Hard to localize




ILSVRC-500 (2012)

500 classes with smallest objects

Ladl Steelem

Easy to localize Hard to localize




ILSVRC-500 (2012)

500 classes with smallest objects

T-shirt La.de )

AP
v ’. l | A.
© o st —— :
- ey |
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Steel Drum

Easy to localize Hard to localize

Object scale (fraction of image area occupied by target object)

ILSVRC-500 (2012) 500 object categories |25.3%
PASCAL VOC (2012) 20 object categories 25.2%




Level of clutter

Steel drum

- Generate candidate object
regions using method of

Selective Search for Object Detection
vanDeSande et al. ICCV 2011

- Filter out regions inside
object
- Count regions

ILSVRC-500 (2012) 500 object categories | 128 + 35
PASCAL VOC (2012) 20 object categories 130 + 29




SuperVision = AlexNet

Alex Krizhevsky, llya Sutskever, Geoffrey Hinton (Krizhevsky NIPS12)

Image classification: Deep convolutional neural networks

7 hidden “weight” layers, 650K neurons, 60M parameters,
630M connections

e Rectified Linear Units, max pooling, dropout trick

 Randomly extracted 224x224 patches for more data

* Trained with Stochastic Gradient Descent on two GPUs for
a week, fully supervised (50x speed-up over CPU)

Localization: Regression on (x,y,w,h)

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf



http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

AlexNet

e Similar to the model proposed by LeCun in 1998 but:

e Larger model (7 hidden layers, 650,000 units, 60,000,000 params)
* More data (10° vs. 103 images)

A. Krizhevsky, I. Sutskever, and G. Hinton,

57 128 |
27

Max 178

pooling

BF . ,. _} =
o 3,f:Q' =
'“1@1' 53 193 158 2048 2048
TER 13
+3 3--t1133a dense dense
192 192 128 Max L ||
o pooling 2048 2048
pooling

ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

Jia-Bin Huang and Derek Hoiem, UIUC

dense

1000


http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

Details of the Oxford VGG

This is not the neural net VGG but uses traditional computer vision techniques!

Karen Simonyan, Yusuf Aytar, Andrea Vedaldi, Andrew Zisserman

Image classification: Fisher vector + linear SVM (Sanchez CVPR11)
* Root-SIFT (Arandjelovic CVPR12), color statistics, augmentation
with patch location (x,y) (Sanchez PRL12)
Fisher vectors: 1024 Gaussians, 135K dimensions
Product quantization to compress
Semi-supervised learning to find additional bounding boxes
1000 one-vs-rest SVM trained with Pegasos SGD

e 135M parameters!

Localization: Deformable part-based models (Felzenszwalb
PAMI10), without parts (root-only)

https://image-net.org/static files/files/oxford vgg.pdf




Cls+loc accuracy

Results on ILSVRC-500

0.6
0.5¢
0.4
0.31
0.2}
0.1

54.3%

Alex Net

45.8%

VGG



Preliminaries:
 |LSVRC-500 (2012) dataset — similar to PASCAL
 Leading algorithms: Alex Net and VGG

What happens under the hood
on classification+localization?

* Alex Net always great at classification, but VGG
does better than Alex Net localizing small objects
 Acloser look at textured objects

Olga Russakovsky, Jia Deng, Zhiheng Huang, Alex Berg, Li Fei-Fei
Detecting avocados to zucchinis: what have we done, and where are we going?
ICCV 2013 http://image-net.org/challenges/LSVRC/2012/analysis




Cumulative cls. accuracy

Cumulative accuracy across scales

Classification+Localization

Classification-only

J Alex Net

Alex Net & 0.5
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Cumulative cls. accuracy

Cumulative accuracy across scales

0.9r

0.8

0.7r

0.6+

0.5t

Classification-only

VGG

\r/\/

0

0.1 0.2
Object scale

0.3

Cumulative cls+loc accuracy

Classification+Localization

e =
- N W Ao

-

205 smallest
object classes

Alex
Net

-

0.1

0.24

0.3

Object scale

0.4



Textured objects (ILSVRC-500)

Screwdrniver Hatchet Ladybug Honeycomb

&

Low Amount of texture High



Textured objects (ILSVRC-500)

o Honeycomb

Screwdrniver Hatchet Ladybu

TS
/s
Low Amount of texture High
No texture | Low texture | Medium texture High texture
# classes 116 189 143 52

Object scale 20.8% 23.7% 23.5% 25.0%




Localization accuracy

Localizing textured objects

(416 classes, same average object scale at each level of texture)

0.8

0.6

04

0.2

Alex Net VGG

On correctly classified images

O 1 2 3 O 1 2 3
Level of texture



Conclusions on analysis of
classification+localization results

 Alex Net always great at classification, but VGG
does better than Alex Net localizing small objects
 Textured objects: VGG broadly successful. Alex

Net better at higher textures, worse at smaller.

Olga Russakovsky, Jia Deng, Zhiheng Huang, Alex Berg, Li Fei-Fei
Detecting avocados to zucchinis: what have we done, and where are we going?
ICCV 2013 http://image-net.org/challenges/LSVRC/2012/analysis




Classification error

mageNet Classification Challenge
0.3 rozs
0.26
AlexNet
0.2 /
0.16
0.12
0.1
0.07
0.036 | 0.03
0

2010 2011 2012 2013 2014 2015 2016
ILSVRC year

http://image-net.org/challenges/talks/2016/ILSVRC2016_10 09 clsloc.pdf



Recap of NN-based Computer Vision

2 Neural networks

® View of neural networks as learning hierarchy of
features

2 Convolutional neural networks

® Architecture of network accounts for image
structure

® “End-to-end” recognition from pixels

® Together with large labeled datasets and lots of
computation - major success on benchmark
ImageNet, I.e., object classification and
localization



Learning Objectives

for this Lecture :

DL"'#‘ on uﬂ”fﬁ«

ALISE

U

Computer Science

Understand template matching with image pyramids
Understand CNNs as a learning hierarchy of features

Learn about early CNN used in computer vision: LeCun’s
work on recognizing handwritten numbers

Understand CNN concepts, e.g., convolution layers, fully
connected (dense) layers, non-linearity (RelLU), pooling
(downsampling)

Learn about breakthrough dataset ImageNet

63
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