Boston University CAS CS 640: AI

Lecture on Introduction to Computer Vision

Mahir Patel and Margrit Betke October 17, 2024

Learning Objectives for this Lecture

Computer Science

- Understand formats of images used as inputs to AI models: greyscale, color, medical scans
- Understand differences and similarities between pre-2012 "traditional computer vision" and post-2012 neural-network-based computer vision & see examples
- Understand why convolution is powerful
- Understand the connection between convolution and correlation
- Understand template matching with image pyramids
- Understand CNNs as a learning hierarchy of features
- Learn about early CNN used in computer vision: LeCun's work on recognizing handwritten numbers
- Understand CNN concepts, e.g., convolution layers, fully connected (dense) layers, non-linearity (ReLU), pooling (downsampling)

Multi-Resolution Matching

Computer Science

Normalized correlation coefficient over multi-resolution search space:

 $r = \frac{1/n}{\sum_{i} (s_{i} - mean(s)) (m_{i} - mean(m))}{(\sigma_{s} \sigma_{m})}$

←Template matched over all resolutions →

Finding the Face and its Movement by Locating the Best Match of a Face Template

(a) Input

You can apply template matching to a small version of your input image and use that search result to start searching for a match in the 2nd smallest images. Repeat until the original size is processed.

(d) Correlation

Face Detection

Computer Science

Data Variability

Shadows Cluttered background

Large Face

Small Face

Back to Neural Nets & their Success in Solving Computer Vision Problems

Large labeled datasets

Deep neural networks

GPU technology

Slide credit: Dinesh Jayaraman

Convolutional Neural Networks (CNN, ConvNet, DCN)

CNN = a multi-layer neural network with

- Local connectivity:
 - Neurons in a layer are only connected to a small region of the layer before it
- Share weight parameters across spatial positions:
 - Learning shift-invariant filter kernels

Image credit: A. Karpathy

Jia-Bin Huang and Derek Hoiem, UIUC

Image Credit: Madhushree Basavarajaiah

LeNet [LeCun et al.]

1990: Zipcode recognition

http://yann.lecun.com/exdb/lenet/multiples.html

Gradient-based learning applied to document recognition [LeCun, Bottou, Bengio, Haffner 1998] Jia-Bin Huang and Derek Hoiem, UIUC

LeNet-1 from 1993

LeCun Interview, Oct. 5, 2023

Computer Science

https://www.rsipvision.com/ICCV2023-Thursday/

Yann LeCun

- VP and Chief AI Scientist, Facebook
- Silver Professor of Computer Science, Data Science, Neural Science, and Electrical and Computer Engineering, New York University
- ACM Turing Award Laureate

Member, National Academy of Engineering

LeCun's 2023 Focus: Predict Content of Masked-out Images/Video Frames

Computer Science

I-JEPA Image Credit: <u>2301.08243.pdf (arxiv.org)</u>

LeCun's focus: Predict Content of Maskedout Images/Video Frames

Computer Science

Image Credit: 2301.08243.pdf (arxiv.org)

Another example of 2D Convolution

Weighted moving sum

What do you think each filter does?

Feature Activation Map slide credit: S. Lazebnik

Another example of 2D Convolution

Weighted moving sum

Feature Activation Map slide credit: S. Lazebnik

Traditional versus NN-based Computer Vision: Engineered versus Learned Features

Jia-Bin Huang and Derek Hoiem, UIUC

Rectified Linear Unit (ReLU)

slide credit: S. Lazebnik

slide credit: S. Lazebnik

slide credit: S. Lazebnik

Visualizing what was learned

What would the learned filters look like?

Visualizing what was learned

What do the feature maps look like?

source

The CNN Explainer

Thanks to CS640 alumni Mao Mao, we have a link to the CNN Explainer.

https://poloclub.github.i o/cnn-explainer/

by Jay Wang, Robert Turko, Omar Shaikh, Haekyu Park, Nilaksh Das, Fred Hohman, Minsuk Kahng, and Polo Chau, a result of a research collaboration between Georgia Tech and Oregon State University

ImageNet – The Data Set that Mattered and Still Matters!

IM & GENET

[Deng et al. CVPR 2009]

- 14 million labeled images
- 20 thousand object classes
- Images collected from the Internet
- Human labels obtained by crowdsourcing with Amazon Turk
- Still very important in 2024 because it is widely used for pretraining of "backbone neural nets" of current models

Analysis of Large Scale Visual Recognition Adapted for BU CS 440/640 by M. Betke

Fei-Fei Li and Olga Russakovsky

Olga Russakovsky, Jia Deng, Zhiheng Huang, Alex Berg, Li Fei-FeiDetecting avocados to zucchinis: what have we done, and where are we going?ICCV 2013http://image-net.org/challenges/LSVRC/2012/analysis

Flute

Matchstick

Sea lion

Strawberry

Backpack

Traffic light

Bathing cap

Racket

Large-scale recognition

terren aneren finnen ert sitt finge sit erte

Large-scale recognition

AND THE PERSON AND A PARTY OF A PARTY OF A

PASCAL VOC 2005-2012

20 object classes

22,591 images

Segmentation

Classification: person, motorcycle

Action: riding bicycle

Everingham, Van Gool, Williams, Winn and Zisserman. The PASCAL Visual Object Classes (VOC) Challenge. IJCV 2010.

IM GENET Large Scale Visual Recognition Challenge (ILSVRC) 2010-2012

20 object classes 22,591 images

1000 object classes 1,431,167 images

http://image-net.org/challenges/LSVRC/{2010,2011,2012}

Variety of object classes in ILSVRC

PASCAL

birds

bottles

cars

flamingo

pill bottle

cock

ruffed grouse

beer bottle wine bottle water bottle pop bottle

race car wagon

minivan

cab

. . .

partridge

- quail

Variety of object classes in ILSVRC

Steel drum

Allowed system output: 5 predictions per image Goal: Get 1 of the 5 predictions correct

Steel drum

Output: Scale T-shirt Giant panda Drumstick Mud turtle

Indicator Function:1[System output correct on this image]= 1

= 0

Steel drum

Accuracy =
$$\frac{1}{100,000}$$
 $\sum_{\substack{100,000 \text{ images}}} 1[\text{correct on image i}]$

Accuracy (5 predictions/image)

Steel drum

Steel drum

Output

Steel drum

Output (bad localization)

Output

Output (bad classification)

Steel drum

Output

Accuracy =
$$\frac{1}{100,000} \sum_{\substack{100,000 \text{ images}}} 1[\text{correct on image i}]$$

ISI=Uni. Tokyo Team

VGG=Uni. Oxford Team

SuperVision = University of Toronto Team Led by Geoffrey Hinton, Turing Award and Nobel Price Winner

What happens under the hood?

Preliminaries:

- <u>ILSVRC-500 (2012) dataset</u>
- Leading algorithms

What happens under the hood on classification+localization?

- A closer look at small objects
- A closer look at textured objects

Olga Russakovsky, Jia Deng, Zhiheng Huang, Alex Berg, Li Fei-Fei Detecting avocados to zucchinis: what have we done, and where are we going? ICCV 2013 http://image-net.org/challenges/LSVRC/2012/analysis

ILSVRC (2012)

ILSVRC-500 (2012)

ILSVRC-500 (2012)

Object scale (fraction of image area occupied by target object)

ILSVRC-500 (2012)	500 object categories	25.3%
PASCAL VOC (2012)	20 object categories	25.2%

Level of clutter

Steel drum

Generate candidate object
regions using method of
Selective Search for Object Detection
vanDeSande et al. ICCV 2011
Filter out regions inside
object

- Count regions

ILSVRC-500 (2012)	500 object categories	128 ± 35
PASCAL VOC (2012)	20 object categories	130 ± 29

SuperVision = AlexNet

Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton (Krizhevsky NIPS12)

Image classification: Deep convolutional neural networks

- 7 hidden "weight" layers, 650K neurons, 60M parameters, 630M connections
- Rectified Linear Units, max pooling, dropout trick
- Randomly extracted 224x224 patches for more data
- Trained with Stochastic Gradient Descent on two GPUs for a week, fully supervised (50x speed-up over CPU)

Localization: Regression on (x,y,w,h)

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

AlexNet

- Similar to the model proposed by LeCun in 1998 but:
 - Larger model (7 hidden layers, 650,000 units, 60,000,000 params)
 - More data (10⁶ vs. 10³ images)

A. Krizhevsky, I. Sutskever, and G. Hinton,

ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012 Jia-Bin Huang and Derek Hoiem, UIUC

Details of the Oxford VGG

This is **not** the neural net VGG but uses traditional computer vision techniques!

Karen Simonyan, Yusuf Aytar, Andrea Vedaldi, Andrew Zisserman

Image classification: Fisher vector + linear SVM (Sanchez CVPR11)

- Root-SIFT (Arandjelovic CVPR12), color statistics, augmentation with patch location (x,y) (Sanchez PRL12)
- Fisher vectors: 1024 Gaussians, 135K dimensions
- Product quantization to compress
- Semi-supervised learning to find additional bounding boxes
- 1000 one-vs-rest SVM trained with Pegasos SGD
 - 135M parameters!

Localization: Deformable part-based models (Felzenszwalb PAMI10), without parts (root-only)

https://image-net.org/static_files/files/oxford_vgg.pdf

Results on ILSVRC-500

Preliminaries:

- ILSVRC-500 (2012) dataset similar to PASCAL
- Leading algorithms: Alex Net and VGG

What happens under the hood on classification+localization?

- Alex Net always great at classification, but VGG does better than Alex Net localizing small objects
- A closer look at textured objects

Olga Russakovsky, Jia Deng, Zhiheng Huang, Alex Berg, Li Fei-Fei Detecting avocados to zucchinis: what have we done, and where are we going? ICCV 2013 http://image-net.org/challenges/LSVRC/2012/analysis

Cumulative accuracy across scales

Classification-only

Classification+Localization

Cumulative accuracy across scales

Classification-only

Classification+Localization

Textured objects (ILSVRC-500)

Screwdriver Hatchet Ladybug Honeycomb

Amount of texture

High

Low

Textured objects (ILSVRC-500)

Screwdriver Hatchet Ladybug Honeycomb

Low

Amount of texture

High

	No texture	Low texture	Medium texture	High texture
# classes	116	189	143	52
Object scale	20.8%	23.7%	23.5%	25.0%

Localizing textured objects

(416 classes, same average object scale at each level of texture)

Conclusions on analysis of classification+localization results

- Alex Net always great at classification, but VGG does better than Alex Net localizing small objects
- Textured objects: VGG broadly successful. Alex Net better at higher textures, worse at smaller.

Olga Russakovsky, Jia Deng, Zhiheng Huang, Alex Berg, Li Fei-FeiDetecting avocados to zucchinis: what have we done, and where are we going?ICCV 2013http://image-net.org/challenges/LSVRC/2012/analysis

ImageNet Classification Challenge

http://image-net.org/challenges/talks/2016/ILSVRC2016_10_09_clsloc.pdf

Recap of NN-based Computer Vision

Neural networks

 View of neural networks as learning hierarchy of features

Convolutional neural networks

- Architecture of network accounts for image structure
- "End-to-end" recognition from pixels
- Together with large labeled datasets and lots of computation → major success on benchmark ImageNet, i.e., object classification and localization

Learning Objectives for this Lecture

Computer Science

- Understand template matching with image pyramids
- Understand CNNs as a learning hierarchy of features
- Learn about early CNN used in computer vision: LeCun's work on recognizing handwritten numbers
- Understand CNN concepts, e.g., convolution layers, fully connected (dense) layers, non-linearity (ReLU), pooling (downsampling)
- Learn about breakthrough dataset ImageNet