
CAS CS 640
Artificial Intelligence
Lectures 5, 6, and 7, 2024

Margrit Betke

Machine Learning

Learning by Training Neural Nets

Forms of Machine Learning
AI system “learns” if it improves its performance based on

observations & feedback from its environment
Unsupervised learning (=clustering):
Input: vector of attributes (features). No explicit feedback.

Supervised learning:
Input: vector of attributes (= features). Feedback = output

of continuous or discrete value(s) = labels of input
examples.

Reinforcement Learning:
Actions are rewarded or punished.

Russell and Norvig

Supervised Learning
Training set = N example input-output pairs

(x1,y1), (x2,y2), , (xN,yN)

where each yj was generated by an unknown function f,
such that f(x) = y. Function f needs to be learned.

 The AI system designer finds a function h that
approximates f. The designer trains, e.g., a neural net that
computes h(xj)=yj for all examples in the training set.

 There are no guarantees that, for new inputs, h(xnew) ≈
f(xnew).

 To measure accuracy (Is h ≈ f?), we use a test set of
labeled examples = input-output pairs (≠ training set!):

A neural net is trained well if h(xtest) ≈ ytest for all test example
pairs (xtest , ytest).

Russell and Norvig

Example of Supervised Learning Task and Solution

Task: Predict if a Titanic
passenger survived

Training set = Example pairs (xi,yi)
= (Attributes of person i,
Survived? Yes/No)

3 attributes: gender, age, number
of siblings/spouse on board (sibsp)

Model: Decision Tree
Non-leaf nodes: decisions on
features
Leaf nodes = output label y

“Handcrafted tree”
Automated methods -> CS 542

Wikipedia link

https://en.wikipedia.org/wiki/Decision_tree_learning

Forms of Machine Learning
AI system “learns” if it improves its performance based on

observations & feedback from its environment
Unsupervised learning (=clustering):
Input: vector of attributes (features). No explicit feedback.

Supervised learning:
Input: vector of attributes (= features). Feedback = output

of continuous or discrete value(s) = labels of input
examples.

Reinforcement Learning:
Actions are rewarded or punished.

Russell and Norvig

CAS CS 640
Artificial Intelligence

Lectures by Margrit Betke

Learning by Training Neural Nets
Adopted from P. Winston, Artificial Intelligence, 1992

CAS CS 640
Artificial Intelligence

Lectures by Margrit Betke

Learning by Training Neural Nets, Part 1
Adopted from P. Winston, Artificial Intelligence, 1992

Real Neuron

Nucleus

Axon

Soma

Synapses
Dendrites

Input Output

When collective input at dendrites reaches threshold,
pulse travels down axon, causes excitation or inhibition
of next neuron.

Real Neural Nets

 Number of neurons in human brain: ~1011
 Synapses per neuron in cerebellum (motor

control): ~105
 Synapses per brain: ~1016

 Approximately equivalent to 300 times the characters in all books
of US Library of Congress

Simulated Neural Nets

 NN consists of neurons or nodes
 NN have links simulating axon-synapse-

dendrite connections
 Each link has weight. Like synapse,

weight determines nature & strength of
connection:
Large positive weight  strong excitation
Small negative weight  weak inhibition

 Like dendritic mechanisms, the
activation function combines input:
threshold function sums input values
and passes them through threshold;
output is 0 or 1.

0
1+

w1

w2

w3

Simulated Neuron

Activation function sums n
products of input xi and
weight wi and compares result
to threshold T:

 “Fire” if result >= T

0

1+

w1

w2

wn

T

x1

xn

x2 ok

i = 1

n

ok = 1 if Σ xi wi >= T

ok = 0 else

Inputs Outputs

Simulated Neuron: Trainable Node

Activation function sums n products
of input xi and weight wi,,
passes result S into function f,
and outputs f(S).

If f(S) above threshold T, output
>0.5, otherwise <0.5.

+

w1

w2

wn

x1

xn

x2 ok

ok = f(S)
 if f(S) >= T

ok >= 0

Inputs Outputs

0

1

T S

f(S)

i = 1

n

S = Σ xi wi

differentiable f

2-Layer Neural Networks

w11

o2

Inputs Outputs
+

0

1

T S

f(S)

+
0

1

T S

f(S)

+
0

1

T S

f(S)

o1

oz

ok

x2

x1

xn

xk

w2z

w2z

w22
wn1

wn2

wnz

wk2

1

z

2

Multilayer Neural Networks

o2

Inputs Outputs
o1

oz

ok

x2

x1

xn

xk

Hidden Layers Output
Layer

Tasks for Neural Networks

 Evaluation Problem
 Training Problem

Single Node Neural Net

Inputs Output

x1

x2

T=1.5
1

1

1

x1 x2

0 0
0 1
1 0
1 1

Computation Output

0(1)+0(1)=0<1.5 0
0(1)+1(1)=1<1.5 0
1(1)+0(1)=1<1.5 0
1(1)+1(1)=2>1.5 1

i = 1

n
ok = 1 if Σ xi wi >= T
ok = 0 else

How can we create a NN to recognize
Or(x1,x2)?

x1 x2

0 0
0 1
1 0
1 1

Computation Output

0(1)+0(1)=0 < T 0
0(1)+1(1)=1 > T 1
1(1)+0(1)=1 > T 1
1(1)+1(1)=2 > T 1

T ?

Example of a 3-layer Net

o2

Inputs Outputs

o1x2

x1

x5

x3

Hidden Layer Output Layer

x4

x6

H1

H2

T=0.5

T=0.5

T=1.5

T=-1.5

1
1

1

1

1

1

1

-1

1

-1

Acquaintance or Sibling Net

Siblings

Inputs Outputs

AcquaintancesRachel

Robert

James

Romeo

Hidden Layer Output Layer

Joan

Juliet

H1

H2

T=0.5

T=0.5

T=1.5

T=-1.5

1
1

1

1

1

1

1

-1

1

-1

Acquaintances or Siblings?

Siblings

Inputs Outputs

AcquaintancesRachel

Robert

James

Romeo

Joan

Juliet

T=0.5

T=0.5

T=1.5

T=-1.5

1
1

1

1

1

1

-1

1

-1

(1)+(1)+_(1)=2
 >0.5  fire

(1)+(1)+_(1)=_
 _0.5 fire/don’t fire

(1)+ (1)=_
_1.5 fire/don’t fire

(-1)+(-1)=_
_-1.5 fire/don’t fire

1

Acquaintances or Siblings?

Siblings

Inputs Outputs

AcquaintancesRachel

Robert

James

Romeo

Joan

Juliet

T=0.5

T=0.5

T=1.5

T=-1.5

1
1

1

1

1

1

-1

1

-1

0(1)+1(1)+1(1)=2
 >0.5  fire

0(1)+0(1)+0(1)=0
 <0.5 don’t fire

1(1)+0(1)=1
<1.5  don’t fire

1(-1)+0(-1)=-1
>-1.5  fire

Acquaintances or Siblings?

Siblings

Inputs Outputs

AcquaintancesRachel

Robert

James

Romeo

Joan

Juliet

T=0.5

T=0.5

T=1.5

T=-1.5

1
1

1

1

1

1

-1

1

-1

0(1)+0(1)+0(1)=0
 <0.5  don’t fire

1(1)+1(1)+0(1)=2
 >0.5  fire

0(1)+1(1)=1
<1.5  don’t fire

0(-1)+1(-1)=-1
>-1.5  fire

Acquaintances or Siblings?

Siblings

Inputs Outputs

AcquaintancesRachel

Robert

James

Romeo

Joan

Juliet

T=0.5

T=0.5

T=1.5

T=-1.5

1
1

1

1

1

1

-1

1

-1

0(1)+1(1)+0(1)=1
 >0.5  fire

1(1)+0(1)+0(1)=1
 >0.5  fire

1(1)+1(1)=2
>1.5  fire

1(-1)+1(-1)=-2
<-1.5  don’t fire

Tasks for Neural Networks

 Evaluation Problem
Given a neural net N and input vector X:
 Does N recognize X, i.e., N(X) = 1 ?

Solution: Compute output of nodes, layer by layer

Examples: “And” network
 “Or” network
 “Acquaintances/Siblings” network

Tasks for Neural Networks

 Evaluation Problem
Given a neural net N and input vector X:
 Does N recognize X, i.e., N(X) = 1 ?

 Training Problem
 Given training set Xtraining of input vectors:
 Find neural net N that recognizes inputs in
 training set Xtraining and
 test set Xtest.

Training Problem – Version 1

 Training set Xtraining = (Xpositive, Xnegative) of input
vectors is given

 Number of nodes is given
 Number of layers is given
 Shape of activation function is given
 Links are given

Goal: Learn weights and thresholds, such that
 N (Xpositive, i) = 1 and N(Xnegative, j) = 0
 for all inputs i in Xpositive and j in Xnegative

Training Problem – Version 2

You, the designer of the AI system, must determine:
 Number of nodes
 Number of layers
 Shape of each activation function and its threshold
 Links between nodes
 Weights on connections
 Representative set Xtraining

Goal: N (Xpositive, i) = 1 and N(Xnegative, j) = 0
 where Xpositive, i and Xnegative, j in Xtest

Training/Design Problem – Version 2

You, the designer of the AI system, must determine:
 Number of nodes
 Number of layers
 Shape of each activation function and its threshold
 Links between nodes
 Weights on connections
 Representative set Xtraining

Goal: N (Xpositive, i) = 1 and N(Xnegative, j) = 0
 where Xpositive, i and Xnegative, j in Xtest

Network Architecture

0

Training Problem – Version 1

 Assume number of nodes, number of layers, shape
of activation function, and links are given.

 Task: Learn weights and thresholds.
 1st step: Convert thresholds into weights and avoid

having to learn two kinds of parameters:

0

1+
w1

w2

wn

x1

xn

x2

ok
0
1+

w1

w2

wn

T

x1

xn

x2 ok

w0=T-1

convert
to

0

Training Problem – Version 1

 Assume number of nodes, number of layers, shape
of activation function, and links are given.

 Task: Learn weights and thresholds.
 1st step: Convert thresholds into weights and avoid

having to learn two kinds of parameters:

0

1+
w1

w2

wn

x1

xn

x2

ok
0
1+

w1

w2

wn

T

x1

xn

x2 ok

w0=T-1

convert
to

“BIAS”

Single Node Neural Net

x1 x2

0 0
0 1
1 0
1 1

Computation Output
0(1)+0(1)=0 < 0.5 0
0(1)+1(1)=1 > 0.5 1
1(1)+0(1)=1 > 0.5 1
1(1)+1(1)=2 > 0.5 1

Inputs

x1

x2

T=0.5
1

1

1 Or(x1,x2)

Example:
Converting Threshold to Weight

x2

x0 x1 x2

-1 0 0
-1 0 1
-1 1 0
-1 1 1

Computation Output
-1(.5)+ 0(1)+0(1)=-0.5 < 0 0
-1 (.5)+0(1)+1(1)=0.5 > 0 1
-1 (.5)+1(1)+0(1)=0.5 > 0 1
-1 (.5)+1(1)+1(1)=1.5> 0 1

Inputs

x0

x2

T=0
0.5

1
Or(x1,x2)1x1

“BIAS”

Acquaintance or Sibling Net
with converted thresholds

Siblings

Inputs Outputs

AcquaintancesRachel

Robert

James

Romeo

Hidden Layer Output Layer

Joan

Juliet

H1

H2

-1
-1

-1 -1

Training Problem – Version 1

Example:
Acquaintance/Sibling Network
After thresholds were converted to
weights, the only parameters to learn
are the weights.
Solution procedure: Backpropagation

Training Neural Networks

 Version 1:
Given a neural net N, Xtraining, Xvalidation, and Xtesting :

 Find weights of neural net
Solution: Backpropagation procedure

 Version 2:
Given dataset X:
1. Find neural network architecture
2. Design training protocol with Xtraining, Xvalidation,

and Xtesting
3. Run Backpropagation procedure

Training Neural Networks

 Version 1:
Given a neural net N, Xtraining, Xvalidation, and Xtesting :

 Find weights of neural net
Solution: Backpropagation procedure

 Version 2:
Given dataset X:
1. Find neural network architecture
2. Design training protocol with Xtraining, Xvalidation,

and Xtesting
3. Run Backpropagation procedure

Easier Problem!

Training Neural Networks

 Version 1:
Given a neural net N, Xtraining, Xvalidation, and Xtesting :

 Find weights of neural net
Solution: Backpropagation procedure

 Version 2:
Given dataset X:
1. Find neural network architecture
2. Design training protocol with Xtraining, Xvalidation,

and Xtesting
3. Run Backpropagation procedure

Toolbox or Research!

Training Neural Networks

 Version 1:
Given a neural net N, Xtraining, Xvalidation, and Xtesting :

 Find weights of neural net
Solution: Backpropagation procedure

 Version 2:
Given dataset X:
1. Find neural network architecture
2. Design training protocol with Xtraining, Xvalidation,

and Xtesting
3. Run Backpropagation procedure

NEXT TOPIC!!!

Part 1 Learning Objectives: Be able to
 Define machine learning terms such as supervised

learning, decision trees, neural networks, activation
function, hidden layer, output layer

 Explain the similarity of simulated neurons to real
neurons

 Solve the evaluation (inference) problem for a neural
net

 Design nodes to compute functions (AND, OR)
 Convert node thresholds into weights
 Explain the two versions of the training/design

problem

39

CAS CS 640
Artificial Intelligence

Learning by Training Neural Nets, Part 2
 Adopted from P. Winston, Artificial Intelligence, 1992

1. Understanding Backpropagation requires an Understanding of
Multivariate Functions, Derivates, and the General Chain Rule

2. Backprop Procedure on the Board (not all derivation details on the
board can be found in Winston’s book but main equations and
variable names match)

i

j

k

Learning Objectives: Be able to

 Implement the Backpropagation Procedure
 Explain how to initialize a neural net
 Explain how to compute performance (orloss) of a

network
 Explain the weight update equation
 Explain the recursive step
 Derive the weight update equation for an activation

function that is not the sigmoid as in our example

CAS CS 640
Artificial Intelligence

Lectures by Margrit Betke

Learning by Training Neural Nets, Part 3
Adopted from P. Winston, Artificial Intelligence, 1992

Training Problem – Version 1

Example:
Acquaintance/Sibling Network

First:
Simplified Network:
Acquaintance Net

Acquaintance Net
Inputs Output

AcquaintancesRachel

Robert

James

Romeo

Hidden Layer Output Layer

Joan

Juliet

H1

H2

If output > 0.9
Then the two “1 inputs”
 are acquaintances
If output < 0.1
Then not acquaintances
If 0.1<= output <=0.9
Then ambiguous

Only two inputs may be 1

Labeled Training Data: 15
Robert Raquel Romeo Joan James Juliet Acquaintan

1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 1
1 0 0 0 1 0 1
1 0 0 0 0 1 1
0 1 1 0 0 0 0
0 1 0 1 0 0 1
0 1 0 0 1 0 1
0 1 0 0 0 1 1
0 0 1 1 0 0 1
0 0 1 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 1 0

Acquaintance Net
Inputs Output

AcquaintancesRachel

Robert

James

Romeo

Hidden Layer Output Layer

Joan

Juliet

H1

H2

w1
w2
w3
w4

w5
w6
w7
w8

w9
w10
w11

Backprop for the Acquaintance Net
Initial Values of 11 Weights:

Weight Initial Value Value after
Backprop

w1 0.1 1.99
w2 0.2 4.65
w3 0.3 4.65
w4 0.4 4.65
w5 0.5 2.28
w6 0.6 5.28
w7 0.7 5.28
w8 0.8 5.28
w9 0.9 9.07

w10 1 6.27
w11 1.1 6.12 48

RMS error during Training of
Acquaintance Net

49

Satisfactory performance
after 225 weight changes

225 x 15 = 3,375 inputs
processed

Learning rate = 1

0 100 200 300 400 500

RMS
error

Weight change cycles

0.5

0.4

0.3

0.2

0.1

0

Characteristics of Back-Propagation

 Training a small network may require hundreds
of backpropagations, a larger network maybe
thousands

Characteristics of Back-Propagation

 Training can get stuck or become unstable:
 r = 1.0 225 weight changes
 r = 2.0 150 weight changes
 r = 0.25 900 weight changes
 r = 0.5 425 weight changes
 r = 4.0 serious instability
 r = 8.0 serious instability

Backprop can get stuck or
become unstable

52

0 100 200 300 400 500 600 700 800 900

RMS
error

Weight change cycles

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

8.0

2.0
4.0

0.51.0

0.25

Characteristics of Back-Propagation

 Training may require thousands of
backpropagations

 Training can get stuck or become unstable
- No general learning rate rule
- Rate selection is problem dependent

If learning rate too low: slow training
If learning rate too high: instability

Characteristics of Back-Propagation
 Training may require thousands of

backpropagations
 Training can get stuck or become unstable
 Training can be done in stages:

Later stages refine training of network in earlier
stages

Characteristics of Back-Propagation
 Training may require thousands of

backpropagations
 Training can get stuck or become unstable
 Training can be done in stages:

Later stages refine training of network in earlier
stages

 Example:
 To train Acquaintance or Sibling Net, use the

trained Acquaintance Net as the pre-trained
model and extent the model by one output
node

Acquaintance or Sibling Net

Siblings

Inputs Outputs

AcquaintancesRachel

Robert

James

Romeo

Joan

Juliet

H1

H2

w1
w2
w3
w4

w5
w6
w7
w8

w9
w10
W11

w12
w13
w14

2-Stage Training of Ac/Sib Net
Weight Initial

Value
Value after
Pretraining

Value after Sibling
Training

w1 0.1 1.99 2.71
w2 0.2 4.65 6.02
w3 0.3 4.65 6.02
w4 0.4 4.65 6.02
w5 0.5 2.28 2.89
w6 0.6 5.28 6.37
w7 0.7 5.28 6.37
w8 0.8 5.28 6.37
w9 0.9 9.07 10.29
w10 1 6.27 7.04
w11 1.1 6.12 6.97
w12 1.2 -8.32
w13 1.3 -5.72
w14 1.4 -5.68

Stage 1

Stage 2

RMS Error during Two-State Training

58

Extra 175 cycles

Initial 225 cycles

400 cycles total

0 100 200 300 400 500

RMS
error

Weight change cycles

0.5

0.4

0.

0.2

0.1

0

Acquaintance
Training

Sibling
Training

Simultaneous Training of 14 Weights of Full
Acquaintance/Sibling Net

59

0 100 200 300 400 500

RMS
error

Weight change cycles

0.5

0.4

0.

0.2

0.1

0

Sequential
Training

Simultaneous Training

Characteristics of Back-Propagation
 Training may require thousands of

backpropagations
 Training can get stuck or become unstable
 Training can be done in stages
 Trained neural nets can make predictions

Labeled Dataset: 15 Samples

61

Robert Raquel Romeo Joan James Juliet Acquaintance Sibling
1 1 0 0 0 0 0 1
1 0 1 0 0 0 0 1
1 0 0 1 0 0 1 0
1 0 0 0 1 0 1 0
1 0 0 0 0 1 1 0
0 1 1 0 0 0 0 1
0 1 0 1 0 0 1 0
0 1 0 0 1 0 1 0
0 1 0 0 0 1 1 0
0 0 1 1 0 0 1 0
0 0 1 0 1 0 1 0
0 0 1 0 0 1 1 0
0 0 0 1 1 0 0 1
0 0 0 1 0 1 0 1
0 0 0 0 1 1 0 1

Sheet1

		Robert		Raquel		Romeo		Joan		James		Juliet		Acquaintance		Sibling

		1		1		0		0		0		0		0		1

		1		0		1		0		0		0		0		1

		1		0		0		1		0		0		1		0

		1		0		0		0		1		0		1		0

		1		0		0		0		0		1		1		0

		0		1		1		0		0		0		0		1

		0		1		0		1		0		0		1		0

		0		1		0		0		1		0		1		0

		0		1		0		0		0		1		1		0

		0		0		1		1		0		0		1		0

		0		0		1		0		1		0		1		0

		0		0		1		0		0		1		1		0

		0		0		0		1		1		0		0		1

		0		0		0		1		0		1		0		1

		0		0		0		0		1		1		0		1

		Weight		Initial Value		Value after Backprop								Weight		Initial Value		Value after Pretraining		Value after Sibling Training

		w1		0.1		1.99								w1		0.1		1.99		2.71

		w2		0.2		4.65								w2		0.2		4.65		6.02

		w3		0.3		4.65								w3		0.3		4.65		6.02

		w4		0.4		4.65								w4		0.4		4.65		6.02

		w5		0.5		2.28								w5		0.5		2.28		2.89

		w6		0.6		5.28								w6		0.6		5.28		6.37

		w7		0.7		5.28								w7		0.7		5.28		6.37

		w8		0.8		5.28								w8		0.8		5.28		6.37

		w9		0.9		9.07								w9		0.9		9.07		10.29

		w10		1		6.27								w10		1		6.27		7.04

		w11		1.1		6.12								w11		1.1		6.12		6.97

														w12		1.2				-8.32

														w13		1.3				-5.72

														w14		1.4				-5.68

Sheet2

Sheet3

We used all 15 samples for training!
Nothing left for testing…

62

Robert Raquel Romeo Joan James Juliet Acquaintance Sibling
1 1 0 0 0 0 0 1
1 0 1 0 0 0 0 1
1 0 0 1 0 0 1 0
1 0 0 0 1 0 1 0
1 0 0 0 0 1 1 0
0 1 1 0 0 0 0 1
0 1 0 1 0 0 1 0
0 1 0 0 1 0 1 0
0 1 0 0 0 1 1 0
0 0 1 1 0 0 1 0
0 0 1 0 1 0 1 0
0 0 1 0 0 1 1 0
0 0 0 1 1 0 0 1
0 0 0 1 0 1 0 1
0 0 0 0 1 1 0 1

Sheet1

		Robert		Raquel		Romeo		Joan		James		Juliet		Acquaintance		Sibling

		1		1		0		0		0		0		0		1

		1		0		1		0		0		0		0		1

		1		0		0		1		0		0		1		0

		1		0		0		0		1		0		1		0

		1		0		0		0		0		1		1		0

		0		1		1		0		0		0		0		1

		0		1		0		1		0		0		1		0

		0		1		0		0		1		0		1		0

		0		1		0		0		0		1		1		0

		0		0		1		1		0		0		1		0

		0		0		1		0		1		0		1		0

		0		0		1		0		0		1		1		0

		0		0		0		1		1		0		0		1

		0		0		0		1		0		1		0		1

		0		0		0		0		1		1		0		1

		Weight		Initial Value		Value after Backprop								Weight		Initial Value		Value after Pretraining		Value after Sibling Training

		w1		0.1		1.99								w1		0.1		1.99		2.71

		w2		0.2		4.65								w2		0.2		4.65		6.02

		w3		0.3		4.65								w3		0.3		4.65		6.02

		w4		0.4		4.65								w4		0.4		4.65		6.02

		w5		0.5		2.28								w5		0.5		2.28		2.89

		w6		0.6		5.28								w6		0.6		5.28		6.37

		w7		0.7		5.28								w7		0.7		5.28		6.37

		w8		0.8		5.28								w8		0.8		5.28		6.37

		w9		0.9		9.07								w9		0.9		9.07		10.29

		w10		1		6.27								w10		1		6.27		7.04

		w11		1.1		6.12								w11		1.1		6.12		6.97

														w12		1.2				-8.32

														w13		1.3				-5.72

														w14		1.4				-5.68

Sheet2

Sheet3

Use 3 Samples for Testing, Train on
the Remaining 12 Samples

63

Robert Raquel Romeo Joan James Juliet Acquaintance Sibling
1 1 0 0 0 0 0 1
1 0 1 0 0 0 0 1
1 0 0 1 0 0 1 0
1 0 0 0 1 0 1 0
1 0 0 0 0 1 1 0
0 1 1 0 0 0 0 1
0 1 0 1 0 0 1 0
0 1 0 0 1 0 1 0
0 1 0 0 0 1 1 0
0 0 1 1 0 0 1 0
0 0 1 0 1 0 1 0
0 0 1 0 0 1 1 0
0 0 0 1 1 0 0 1
0 0 0 1 0 1 0 1
0 0 0 0 1 1 0 1

Sheet1

		Robert		Raquel		Romeo		Joan		James		Juliet		Acquaintance		Sibling

		1		1		0		0		0		0		0		1

		1		0		1		0		0		0		0		1

		1		0		0		1		0		0		1		0

		1		0		0		0		1		0		1		0

		1		0		0		0		0		1		1		0

		0		1		1		0		0		0		0		1

		0		1		0		1		0		0		1		0

		0		1		0		0		1		0		1		0

		0		1		0		0		0		1		1		0

		0		0		1		1		0		0		1		0

		0		0		1		0		1		0		1		0

		0		0		1		0		0		1		1		0

		0		0		0		1		1		0		0		1

		0		0		0		1		0		1		0		1

		0		0		0		0		1		1		0		1

		Weight		Initial Value		Value after Backprop								Weight		Initial Value		Value after Pretraining		Value after Sibling Training

		w1		0.1		1.99								w1		0.1		1.99		2.71

		w2		0.2		4.65								w2		0.2		4.65		6.02

		w3		0.3		4.65								w3		0.3		4.65		6.02

		w4		0.4		4.65								w4		0.4		4.65		6.02

		w5		0.5		2.28								w5		0.5		2.28		2.89

		w6		0.6		5.28								w6		0.6		5.28		6.37

		w7		0.7		5.28								w7		0.7		5.28		6.37

		w8		0.8		5.28								w8		0.8		5.28		6.37

		w9		0.9		9.07								w9		0.9		9.07		10.29

		w10		1		6.27								w10		1		6.27		7.04

		w11		1.1		6.12								w11		1.1		6.12		6.97

														w12		1.2				-8.32

														w13		1.3				-5.72

														w14		1.4				-5.68

Sheet2

Sheet3

Testing Result:

64

Desired Computed Desired Computed
Robert/Juliet 1 0.92 0 0.06
Romeo/Joan 1 0.92 0 0.06
James/Juliet 0 0.09 1 0.91

Acquaintance Sibling

Interpretation:
Trained Acq/Sib net deals successfully with
previously unseen data = it can predict!

Sheet1

		Robert		Raquel		Romeo		Joan		James		Juliet		Acquaintance		Sibling

		1		1		0		0		0		0		0		1										Acquaintance				Sibling

		1		0		1		0		0		0		0		1										Desired		Computed		Desired 		Computed

		1		0		0		1		0		0		1		0								Robert/Juliet 		1		0.92		0		0.06

		1		0		0		0		1		0		1		0								Romeo/Joan		1		0.92		0		0.06

		1		0		0		0		0		1		1		0								James/Juliet		0		0.09		1		0.91

		0		1		1		0		0		0		0		1

		0		1		0		1		0		0		1		0

		0		1		0		0		1		0		1		0

		0		1		0		0		0		1		1		0

		0		0		1		1		0		0		1		0

		0		0		1		0		1		0		1		0

		0		0		1		0		0		1		1		0

		0		0		0		1		1		0		0		1

		0		0		0		1		0		1		0		1

		0		0		0		0		1		1		0		1

		Weight		Initial Value		Value after Backprop								Weight		Initial Value		Value after Pretraining		Value after Sibling Training

		w1		0.1		1.99								w1		0.1		1.99		2.71

		w2		0.2		4.65								w2		0.2		4.65		6.02

		w3		0.3		4.65								w3		0.3		4.65		6.02

		w4		0.4		4.65								w4		0.4		4.65		6.02

		w5		0.5		2.28								w5		0.5		2.28		2.89

		w6		0.6		5.28								w6		0.6		5.28		6.37

		w7		0.7		5.28								w7		0.7		5.28		6.37

		w8		0.8		5.28								w8		0.8		5.28		6.37

		w9		0.9		9.07								w9		0.9		9.07		10.29

		w10		1		6.27								w10		1		6.27		7.04

		w11		1.1		6.12								w11		1.1		6.12		6.97

														w12		1.2				-8.32

														w13		1.3				-5.72

														w14		1.4				-5.68

Sheet2

Sheet3

Characteristics of Back-Propagation
 Training may require thousands of

backpropagations
 Training can get stuck or become unstable
 Training can be done in stages
 Trained neural nets can make predictions
 Excess weights lead to overfitting

Would a net with more
trainable weights do better?

Siblings

Inputs Outputs

AcquaintancesRachel

Robert

James

Romeo

Joan

Juliet

H1

H2

H3

Training only takes 300 cycles –
the extra weights make it too easy
to deal with the training set

Siblings

AcquaintancesRachel

Robert

James

Romeo

Joan

Juliet

H1

H2

H3

Testing Result:

68

Desired Computed Desired Computed
Robert/Juliet 1 0.99 0 0
Romeo/Joan 1 0.06 0 0.94
James/Juliet 0 0.97 1 0.01

Acquaintance Sibling

Interpretation: Overfitting Occurred
Trained Acq/Sib net does not deal successfully with
previously unseen data.
It cannot predict two of the three test cases correctly

Sheet1

		Robert		Raquel		Romeo		Joan		James		Juliet		Acquaintance		Sibling

		1		1		0		0		0		0		0		1										Acquaintance				Sibling

		1		0		1		0		0		0		0		1										Desired		Computed		Desired 		Computed

		1		0		0		1		0		0		1		0								Robert/Juliet 		1		0.99		0		0

		1		0		0		0		1		0		1		0								Romeo/Joan		1		0.06		0		0.94

		1		0		0		0		0		1		1		0								James/Juliet		0		0.97		1		0.01

		0		1		1		0		0		0		0		1

		0		1		0		1		0		0		1		0

		0		1		0		0		1		0		1		0

		0		1		0		0		0		1		1		0

		0		0		1		1		0		0		1		0

		0		0		1		0		1		0		1		0

		0		0		1		0		0		1		1		0

		0		0		0		1		1		0		0		1

		0		0		0		1		0		1		0		1

		0		0		0		0		1		1		0		1

		Weight		Initial Value		Value after Backprop								Weight		Initial Value		Value after Pretraining		Value after Sibling Training

		w1		0.1		1.99								w1		0.1		1.99		2.71

		w2		0.2		4.65								w2		0.2		4.65		6.02

		w3		0.3		4.65								w3		0.3		4.65		6.02

		w4		0.4		4.65								w4		0.4		4.65		6.02

		w5		0.5		2.28								w5		0.5		2.28		2.89

		w6		0.6		5.28								w6		0.6		5.28		6.37

		w7		0.7		5.28								w7		0.7		5.28		6.37

		w8		0.8		5.28								w8		0.8		5.28		6.37

		w9		0.9		9.07								w9		0.9		9.07		10.29

		w10		1		6.27								w10		1		6.27		7.04

		w11		1.1		6.12								w11		1.1		6.12		6.97

														w12		1.2				-8.32

														w13		1.3				-5.72

														w14		1.4				-5.68

Sheet2

Sheet3

Heuristic to Avoid Overfitting
Number of trainable weights influencing a particular
output should be less than the number of training
samples

 In Acquaintance/Sibling Network with two hidden
nodes: 11 trainable weights & 12 input-output
samples: a dangerously small margin!

 In Acquaintance/Sibling Network with three hidden
nodes: 19 trainable weights & 12 input-output
samples: 7 (>50%) more weights than i/o
samples – overfitting is inevitable! 69

Characteristics of Back-Propagation
shown for Sibling/Acquaintance Neural Net

generalizes to all neural networks

 Training may require thousands of
backpropagations

 Training can get stuck or become unstable
 Training can be done in stages
 Trained neural nets can make predictions
 Excess weights lead to overfitting

Patrick Winston
(1943–2019)

“Neural-net experts are
artists; they are not mere
handbook users.”

71

Occham's Razor
= Law of succinctness

Which hypothesis among h1, h2, h3 ... should the AI system
choose?

Choose the simplest hypothesis consistent with the data.

The simplest explanation will be the most plausible until
evidence is presented to prove it false.

Example: Prefer a degree-1 polynomial (line) over a degree-7
polynomial

Trade-off between complex hypothesis that fit training data
well and simpler hypotheses that may generalize better
(and can typically be computed faster)

Russell and Norvig

Occam’s Razor: Choose green over blue model
for h

Source: Wikipedia

Overfitting

 Avoid choosing an excessively complex learning
system= model= hypothesis=neural net h.

 h is too complex if it has too many parameters
relative to the number of observations.

 A model which has been overfitted will generally
have poor predictive performance, as it can
exaggerate minor fluctuations in the data.

 Higher-degree polynomials or complicated neural
nets with many hidden layers and nodes fit the data
better but may lead to overfitting.

Russell and Norvig

Overfitting
 Avoid choosing an excessively complex learning system= model=

hypothesis=neural net h.

 h is too complex if it has too many parameters relative to the number of
observations.

 A model which has been overfit will generally have poor predictive
performance, as it can exaggerate minor fluctuations in the data.

 Higher-degree polynomials or complicated neural nets with many hidden
layers and nodes fit the data better but may lead to overfitting.

Solutions:

1. Use “wrapper” to enumerate models h according to model size (e.g.,
number of nodes or layers in neural net). Select model with smallest error.

2. Feature selection: Simplify model by discarding irrelevant attributes
(dimensionality reduction). See below.

3. Minimum description length: Select model with smallest number of bits
required to encode program and data.

Russell and Norvig

Part 3 Learning Objectives: Understand that
 The AI network designer must monitor RMS error (or

some other metric) during network training
 The AI designer can train in stages by simplifying a

network, training that network, and then generalizing
to the larger network

 Training may require thousands of epochs
 Training may get stuck
 Training may become unstable
 Too many weights lead to overfitting
 Test and training data must be different
 Overfitting can be avoided by (1) starting simple and

enumerating models with a wrapper or (2) reducing
features

76

CAS CS 640
Artificial Intelligence
Lectures 5, 6, and 7, 2024

Margrit Betke

Machine Learning

Cross Validation

Cross-Validation

Holdout cross-validation =
Randomly split available (input,output) pairs into a single training set to
learn h and a single test set to test the learned h.

k-fold cross-validation =

 Split data into k equal subsets.

 Perform k rounds of learning. Each round leaves 1/k examples
out of the training set that can then be used as the test set.

 The average test set score should be a better estimate than a
single score (need to keep k h's around for prediction). Typically,
k=5 or 10.

Leave-one-out cross validation: k=N.

Simple 5-Fold Cross-Validation

5 Folds of Labeled Dataset: Training & Testing

Simple 5-Fold Cross-Validation
1. Create 5 folds of the labeled dataset for training & testing

2. Train 5 AI models

3. Conduct ROC analysis for each model

4. Report average performance (accuracy, etc.)

5. Use the best of 5 models in your application (external data)

5-Fold Cross-Validation with Random
Selection of Folds

What if you were simply lucky in your training & testing folds?

1. Randomly create a different set of 5 folds & report average
performance:

2. Do this n times & report 1/n performance sum, i.e.,
average performance

Training

Training

Training

Trai.

Training

g

Cross-Validation with
Train/Validation/Test Sets

Training, Validation, & Testing

Why Validation?

With the validation data, we tune the
hyperparameters of an AI model.

The validation process tells us whether training is
moving in the right direction. It can be performed
after each training epoch.

The validation process helps prevent our model from
overfitting to the training data by challenging it on
the unseen validation data.

The validation data must therefore be separate from
the training data (and of course from the test data).

What are common
Train/Validation/Test Splits?

Training, Validation, & Testing
 60%, 20%, 20% or 80%, 10%, 10%

5 folds 10 folds

How to Train/Test when feature
reduction is used to avoid overfitting

Feature selection: Simplify model by discarding
irrelevant attributes (reduction to k features).

Use the normalized correlation coefficient r for
feature reduction.

How to compare features x and desired
regression values y

Normalized correlation coefficient:

where
xi = value of ith feature, x mean feature value
yi = value of ith desired regression value (ground truth),

 y mean desired regression value
Properties of r: -1 <= r <= 1
 E[r]=0 in Gaussian case

Normalized Correlation Coefficient

The normalized correlation coefficient was discovered
by Auguste Bravais in 1844.

It was named after Karl Pearson (1857-1936), a
proponent of eugenics and scientific racism.

Please avoid using Pearson’s name to describe the
normalized correlation coefficient.

Source: Wikipedia link

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

Comparing Features and Labels:
Example involving Stroke Survivors

Features x Label y
 Age Language Test Score [0..100]

 Months since Stroke

 Spared Grey Matter in Region 1

 Spared Grey Matter in Region 2

 etc.

 Spared Grey Matter in Region 50

 Spared White Matter in Region 1’

 Spared White Matter in Region 2’

 etc.

Comparing Features and Labels:
Example involving Stroke Survivors

Feature Age x Label y
Age[patient 1] Language Test Score [patient 1]

Age[patient 2] Language Test Score [patient 2]

…

Age[patient n] Language Test Score [patient n]

Compute rage[x,y] = r[(x1, ..., xn)T,(y1,…,yn)T]

=> This determines how strong the correlation between the feature
age and the language test score of a stroke survivor is.

Comparing Features and Labels:
Example involving Stroke Survivors

Feature x=Months-since-stroke (MSS) Label y

MSS[patient 1] Language Test Score [patient 1]

MSS[patient 2] Language Test Score [patient 2]

…

MSS[patient n] Language Test Score [patient n]

Compute rMSS[x,y] = r[(x1, ..., xn)T,(y1,…,yn)T]

=> This determines how strong the correlation between the feature
MSS and the language test score of a stroke survivor is.

Feature Reduction:
Example involving Stroke Survivors

rAge

 r MSS

 r Spared Grey Matter in Region 1

…

 r Spared Grey Matter in Region n

 r Spared White Matter in Region 1’

…

 r Spared White Matter in Region n’

rAge

 r Spared Grey Matter in Region 5

…

 r Spared Grey Matter in Region 12

 r MSS

 r Spared White Matter in Region 29’

…

 r Spared White Matter in Region 33’

Sort
with
largest
r on
top

Select top k features (with k largest r’s)

How to Train/Test when feature
reduction is used to avoid overfitting

Feature selection: Simplify model by discarding
irrelevant attributes (reduction to k features).

Common questionable practice for regressors:
1) For each feature, compare the vector of feature

values for all samples in the dataset with the vector
of desired output values.

2) Sort features by result of this comparison
3) Use highest ranked k features (rank computed with

NCC) in subsequent usual cross-validation
procedure

How to Train/Test when feature
reduction is used to avoid overfitting

Feature selection: Simplify model by discarding
irrelevant attributes (reduction to k features).

Common better practice for regressors:
1) For each feature, compare the vector of feature

values for samples in the training dataset with the
vector of desired output values.

2) Sort features by result of this comparison
3) Use highest ranked k features (rank computed with

NCC) in subsequent nested cross-validation
procedure

Nested Cross Validation
Outer loop: 5 experiments

Inter loop: Not just [A|B]C but also [4 versions of A,B]C

Training, Validation, & Testing

A B C

Nested Cross Validation

Training, Validation, & Testing

1st outer fold

 Per outer fold:

4 inner folds Find best model among 4

 Hyperparameters could even
 include the number of
 features k

Here: 5 outer folds, 4 inner folds, report performance of 5 models

Research Paper with Nested Cross
Validation and Feature Selection:

Saurav Chennuri, Sha Lai, Anne Billot, Maria Varkanitsa, Emily J. Braun, Swathi
Kiran, Archana Venkataraman, Janusz Konrad, Prakash Ishwar, and Margrit
Betke. Fusion Approaches to Predict Post-stroke Aphasia Severity from
Multimodal Neuroimaging Data. Accepted at the International Conference
on Computer Vision Workshop on Computer vision for Automated Medical
Diagnosis (ICCV CVAMD 2023). Paris, France, October 2, 2023. 10 pages.

Abstract:

This paper explores feature selection and fusion methods for predicting the clinical outcome of
post-stroke aphasia from medical imaging data. Utilizing a multimodal neuroimaging dataset
derived from 55 individuals with chronic aphasia resulting from left-hemisphere lesions
following a stroke, two distinct approaches, namely Early Fusion and Late Fusion, were
developed using Support Vector Regression or Random Forest regression models for
prognosticating patients’ functional communication skills measured by Western Aphasia
Battery (WAB) test scores. A supervised learning method is proposed to reduce the number
of features derived from each imaging modality. …

Saurav was a BU MS AI student who graduated in May 2023. Link to paper

https://cvamd2023.github.io/
https://openaccess.thecvf.com/content/ICCV2023W/CVAMD/papers/Chennuri_Fusion_Approaches_to_Predict_Post-Stroke_Aphasia_Severity_from_Multimodal_Neuroimaging_ICCVW_2023_paper.pdf

Part 4 Learning Objectives: Be able to
 Define holdout cross validation, k-fold cross validation

and leave-one-out cross validation
 Explain the difference between a [train/test] and

[train/validate/test] cross-validation experiment
 Give typical split values
 Explain how to report the results of a cross-validation

experiment
 Define the normalized correlation coefficient
 Explain how to perform feature selection (reduction)

based on the normalized correlation coefficient
 Explain nested cross validation

97

	CAS CS 640 �Artificial Intelligence�Lectures 5, 6, and 7, 2024 �Margrit Betke �
	Forms of Machine Learning
	Supervised Learning
	Example of Supervised Learning Task and Solution
	Forms of Machine Learning
	CAS CS 640 �Artificial Intelligence�Lectures by Margrit Betke �
	CAS CS 640 �Artificial Intelligence�Lectures by Margrit Betke �
	Real Neuron
	Real Neural Nets
	Simulated Neural Nets
	Simulated Neuron
	Simulated Neuron: Trainable Node
	 2-Layer Neural Networks
	Multilayer Neural Networks
	Tasks for Neural Networks
	Single Node Neural Net
	How can we create a NN to recognize Or(x1,x2)?
	Example of a 3-layer Net
	Acquaintance or Sibling Net
	Acquaintances or Siblings?
	Acquaintances or Siblings?
	Acquaintances or Siblings?
	Acquaintances or Siblings?
	Tasks for Neural Networks
	Tasks for Neural Networks
	Training Problem – Version 1
	Training Problem – Version 2
	Training/Design Problem – Version 2
	Training Problem – Version 1
	Training Problem – Version 1
	Single Node Neural Net
	Example: �Converting Threshold to Weight
	Acquaintance or Sibling Net 	with converted thresholds
	Training Problem – Version 1 ���Example:��Acquaintance/Sibling Network��After thresholds were converted to weights, the only parameters to learn are the weights.��Solution procedure: Backpropagation ���
	Training Neural Networks
	Training Neural Networks
	Training Neural Networks
	Training Neural Networks
	Part 1 Learning Objectives: Be able to
	CAS CS 640 �Artificial Intelligence�
	Slide Number 41
	Learning Objectives: Be able to
	CAS CS 640 �Artificial Intelligence�Lectures by Margrit Betke �
	Training Problem – Version 1 ���Example:��Acquaintance/Sibling Network���First:��Simplified Network:��Acquaintance Net���
	Acquaintance Net
	Labeled Training Data: 15
	Acquaintance Net
	Backprop for the Acquaintance Net�Initial Values of 11 Weights:
	RMS error during Training of Acquaintance Net
	Characteristics of Back-Propagation
	Characteristics of Back-Propagation
	Backprop can get stuck or become unstable
	Characteristics of Back-Propagation
	Characteristics of Back-Propagation
	Characteristics of Back-Propagation
	Acquaintance or Sibling Net
	2-Stage Training of Ac/Sib Net
	RMS Error during Two-State Training
	Simultaneous Training of 14 Weights of Full Acquaintance/Sibling Net
	Characteristics of Back-Propagation
	Labeled Dataset: 15 Samples
	We used all 15 samples for training!�Nothing left for testing…
	Use 3 Samples for Testing, Train on the Remaining 12 Samples
	Testing Result:
	Characteristics of Back-Propagation
	Would a net with more trainable weights do better?
	Training only takes 300 cycles – the extra weights make it too easy to deal with the training set
	Testing Result:
	Heuristic to Avoid Overfitting
	Characteristics of Back-Propagation�shown for Sibling/Acquaintance Neural Net�generalizes to all neural networks
	Patrick Winston �(1943–2019)
	Occham's Razor�= Law of succinctness
	Occam’s Razor: Choose green over blue model for h
	Overfitting
	Overfitting
	Part 3 Learning Objectives: Understand that
	CAS CS 640 �Artificial Intelligence�Lectures 5, 6, and 7, 2024 �Margrit Betke �
	Cross-Validation
	Simple 5-Fold Cross-Validation
	Simple 5-Fold Cross-Validation
	5-Fold Cross-Validation with Random Selection of Folds
	Cross-Validation with Train/Validation/Test Sets
	Why Validation?
	What are common Train/Validation/Test Splits?
	How to Train/Test when feature reduction is used to avoid overfitting
	How to compare features x and desired regression values y
	Normalized Correlation Coefficient
	Comparing Features and Labels: Example involving Stroke Survivors
	Comparing Features and Labels: �Example involving Stroke Survivors
	Comparing Features and Labels: �Example involving Stroke Survivors
	Feature Reduction: �Example involving Stroke Survivors
	How to Train/Test when feature reduction is used to avoid overfitting
	How to Train/Test when feature reduction is used to avoid overfitting
	Nested Cross Validation�Outer loop: 5 experiments�Inter loop: Not just [A|B]C but also [4 versions of A,B]C
	Nested Cross Validation
	Research Paper with Nested Cross Validation and Feature Selection:
	Part 4 Learning Objectives: Be able to

