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Forms of Machine Learning
AI system “learns” if it improves its performance based on 

observations & feedback from its environment
Unsupervised learning (=clustering):
Input: vector of attributes (features). No explicit feedback.

Supervised learning: 
Input: vector of attributes (= features).  Feedback = output 

of continuous or discrete value(s) = labels of input 
examples.

Reinforcement Learning:
Actions are rewarded or punished.

Russell and Norvig



Supervised Learning
Training set = N example input-output pairs

(x1,y1),  (x2,y2),  ....,  (xN,yN)

where each yj was generated by an unknown function f, 
such that  f(x) = y.  Function f needs to be learned.

 The AI system designer finds a function h that 
approximates f.  The designer trains, e.g., a neural net that 
computes h(xj)=yj  for all examples in the training set.

 There are no guarantees that, for new inputs, h(xnew) ≈ 
f(xnew).

 To measure accuracy (Is h ≈ f?), we use a test set of 
labeled examples = input-output pairs (≠ training set!):

A neural net is trained well if h(xtest)  ≈ ytest for all test example 
pairs (xtest , ytest ).

Russell and Norvig



Example of Supervised Learning Task and Solution

Task: Predict if a Titanic 
passenger survived 

Training set = Example pairs (xi,yi) 
= (Attributes of person i, 
Survived? Yes/No)

3 attributes:  gender, age, number 
of siblings/spouse on board (sibsp) 

Model: Decision Tree
Non-leaf nodes: decisions on 
features
Leaf nodes = output label y

“Handcrafted tree”
Automated methods -> CS 542

Wikipedia link

https://en.wikipedia.org/wiki/Decision_tree_learning


Forms of Machine Learning
AI system “learns” if it improves its performance based on 

observations & feedback from its environment
Unsupervised learning (=clustering):
Input: vector of attributes (features). No explicit feedback.

Supervised learning: 
Input: vector of attributes (= features).  Feedback = output 

of continuous or discrete value(s) = labels of input 
examples.

Reinforcement Learning:
Actions are rewarded or punished.

Russell and Norvig
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Real Neuron

 
Nucleus

Axon

Soma

Synapses
Dendrites

Input Output

When collective input at dendrites reaches threshold,
pulse travels down axon, causes excitation or inhibition
of next neuron.



Real Neural Nets

 Number of neurons in human brain: ~1011    
 Synapses per neuron in cerebellum (motor 

control): ~105 
 Synapses per brain: ~1016

 Approximately equivalent to 300 times the characters in all books 
of US Library of Congress



Simulated Neural Nets

 NN consists of neurons or nodes
 NN have links simulating axon-synapse-

dendrite connections 
 Each link has weight.  Like synapse, 

weight determines nature & strength of 
connection:
Large positive weight  strong excitation
Small negative weight  weak inhibition

 Like dendritic mechanisms, the 
activation function combines input: 
threshold function sums input values 
and passes them through threshold; 
output is 0 or 1. 
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Simulated Neuron

Activation function sums n 
products of input  xi and 
weight wi  and compares result 
to threshold T:

            “Fire” if result >= T
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i = 1

n

ok = 1  if   Σ  xi wi  >= T

ok = 0  else

Inputs Outputs



Simulated Neuron: Trainable Node

Activation function sums n products 
of input  xi and weight wi,, 
passes result S into function f, 
and outputs f(S).

If f(S) above threshold T, output 
>0.5, otherwise <0.5.
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2-Layer Neural Networks
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Multilayer Neural Networks
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Tasks for Neural Networks

 Evaluation Problem
 Training Problem
 



Single Node Neural Net

Inputs Output 

x1 

x2

T=1.5
1

1

1

x1 x2

0 0
0 1
1 0
1 1

Computation Output

0(1)+0(1)=0<1.5 0
0(1)+1(1)=1<1.5 0
1(1)+0(1)=1<1.5 0
1(1)+1(1)=2>1.5 1

i = 1

n
ok = 1  if   Σ  xi wi  >= T
ok = 0  else



How can we create a NN to recognize 
Or(x1,x2)? 

x1 x2

0 0
0 1
1 0
1 1

Computation Output

0(1)+0(1)=0 < T 0
0(1)+1(1)=1 > T 1
1(1)+0(1)=1 > T 1
1(1)+1(1)=2 > T 1

T ?



Example of a 3-layer Net
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Acquaintance or Sibling Net

Siblings

Inputs Outputs
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Acquaintances or Siblings?

Siblings

Inputs Outputs
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         >0.5   fire
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Acquaintances or Siblings?

Siblings

Inputs Outputs
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>-1.5  fire



Acquaintances or Siblings?

Siblings

Inputs Outputs
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>-1.5  fire



Acquaintances or Siblings?

Siblings

Inputs Outputs
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 >0.5   fire

1(1)+0(1)+0(1)=1
   >0.5  fire

1(1)+1(1)=2
>1.5  fire

1(-1)+1(-1)=-2
<-1.5  don’t fire



Tasks for Neural Networks

 Evaluation Problem
Given a neural net N and input vector X:  
        Does N recognize X,  i.e.,        N(X)  = 1 ? 

Solution:  Compute output of nodes, layer by layer

Examples:  “And” network
      “Or” network
                   “Acquaintances/Siblings” network



Tasks for Neural Networks

 Evaluation Problem
Given a neural net N and input vector X:  
        Does N recognize X,  i.e.,        N(X)  = 1 ? 

 Training Problem
 Given training set Xtraining of input vectors:
    Find neural net N that recognizes inputs in 
   training set Xtraining and
    test set Xtest. 

         



Training Problem – Version 1

 Training set Xtraining = (Xpositive, Xnegative) of input 
vectors is given

 Number of nodes is given
 Number of layers is given
 Shape of activation function is given
 Links are given

Goal:  Learn weights and thresholds, such that
      N (Xpositive, i ) = 1 and N(Xnegative, j ) = 0
         for all inputs i in Xpositive and j in Xnegative



Training Problem – Version 2

You, the designer of the AI system, must determine:
 Number of nodes 
 Number of layers
 Shape of each activation function and its threshold
 Links between nodes
 Weights on connections
 Representative set Xtraining

Goal:   N (Xpositive, i ) = 1 and N(Xnegative, j ) = 0
   where Xpositive, i and Xnegative, j in  Xtest



Training/Design Problem – Version 2

You, the designer of the AI system, must determine:
 Number of nodes 
 Number of layers
 Shape of each activation function and its threshold
 Links between nodes
 Weights on connections
 Representative set Xtraining

Goal:   N (Xpositive, i ) = 1 and N(Xnegative, j ) = 0
   where Xpositive, i and Xnegative, j in  Xtest

Network Architecture



0

Training Problem – Version 1

 Assume number of nodes, number of layers, shape 
of activation function, and links are given.

 Task:  Learn weights and thresholds.
 1st step: Convert thresholds into weights and avoid 

having to learn two kinds of parameters:
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Training Problem – Version 1

 Assume number of nodes, number of layers, shape 
of activation function, and links are given.

 Task:  Learn weights and thresholds.
 1st step: Convert thresholds into weights and avoid 

having to learn two kinds of parameters:
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“BIAS”



Single Node Neural Net

x1 x2

0 0
0 1
1 0
1 1

Computation Output
0(1)+0(1)=0 < 0.5 0
0(1)+1(1)=1 > 0.5 1
1(1)+0(1)=1 > 0.5 1
1(1)+1(1)=2 > 0.5 1

Inputs

x1 

x2

T=0.5
1

1

1 Or(x1,x2)



Example: 
Converting Threshold to Weight

x2

x0 x1 x2

-1 0 0
-1 0 1
-1 1 0
-1 1 1

Computation Output
-1(.5)+ 0(1)+0(1)=-0.5 < 0 0
-1 (.5)+0(1)+1(1)=0.5 > 0 1
-1 (.5)+1(1)+0(1)=0.5 > 0 1
-1 (.5)+1(1)+1(1)=1.5> 0 1

Inputs

x0 

x2

T=0
0.5

1
Or(x1,x2)1x1 

“BIAS”



Acquaintance or Sibling Net   
with converted thresholds

Siblings

Inputs Outputs
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Training Problem – Version 1 

Example:
Acquaintance/Sibling Network
After thresholds were converted to 
weights, the only parameters to learn 
are the weights.
Solution procedure: Backpropagation 



Training Neural Networks

 Version 1:
Given a neural net N, Xtraining, Xvalidation, and Xtesting  :

                Find weights of neural net 
Solution:  Backpropagation procedure

 Version 2:
Given dataset X:
1. Find neural network architecture 
2. Design training protocol with Xtraining, Xvalidation, 

and Xtesting
3. Run Backpropagation procedure



Training Neural Networks

 Version 1:
Given a neural net N, Xtraining, Xvalidation, and Xtesting  :

                Find weights of neural net 
Solution:  Backpropagation procedure

 Version 2:
Given dataset X:
1. Find neural network architecture 
2. Design training protocol with Xtraining, Xvalidation, 

and Xtesting
3. Run Backpropagation procedure

Easier Problem!



Training Neural Networks

 Version 1:
Given a neural net N, Xtraining, Xvalidation, and Xtesting  :

                Find weights of neural net 
Solution:  Backpropagation procedure

 Version 2:
Given dataset X:
1. Find neural network architecture 
2. Design training protocol with Xtraining, Xvalidation, 

and Xtesting
3. Run Backpropagation procedure

Toolbox or Research!



Training Neural Networks

 Version 1:
Given a neural net N, Xtraining, Xvalidation, and Xtesting  :

                Find weights of neural net 
Solution:  Backpropagation procedure

 Version 2:
Given dataset X:
1. Find neural network architecture 
2. Design training protocol with Xtraining, Xvalidation, 

and Xtesting
3. Run Backpropagation procedure

NEXT TOPIC!!!



Part 1 Learning Objectives:  Be able to
 Define machine learning terms such as supervised 

learning, decision trees, neural networks, activation 
function, hidden layer, output layer

 Explain the similarity of simulated neurons to real 
neurons

 Solve the evaluation (inference) problem for a neural 
net

 Design nodes to compute functions (AND, OR)
 Convert node thresholds into weights
 Explain the two versions of the training/design 

problem 

39



CAS CS 640 
Artificial Intelligence

Learning by Training Neural Nets, Part 2
 Adopted from P. Winston, Artificial Intelligence, 1992

1. Understanding Backpropagation requires an Understanding of 
Multivariate Functions, Derivates, and the General Chain Rule

2. Backprop Procedure on the Board (not all derivation details on the 
board can be found in Winston’s book but main equations and 
variable names match)
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k



Learning Objectives:  Be able to

 Implement the Backpropagation Procedure
 Explain how to initialize a neural net
 Explain how to compute performance (orloss) of a 

network
 Explain the weight update equation
 Explain the recursive step 
 Derive the weight update equation for an activation 

function that is not the sigmoid as in our example 
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Training Problem – Version 1 

Example:
Acquaintance/Sibling Network

First:
Simplified Network:
Acquaintance Net



Acquaintance Net
Inputs Output

AcquaintancesRachel

Robert

James

Romeo

Hidden Layer Output Layer

Joan

Juliet

H1 

H2

If output > 0.9
Then the two “1 inputs”
         are acquaintances
If output < 0.1
Then not acquaintances
If 0.1<= output <=0.9
Then ambiguous 

Only two inputs may be 1



Labeled Training Data: 15 
Robert Raquel Romeo Joan James Juliet Acquaintan

1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 1
1 0 0 0 1 0 1
1 0 0 0 0 1 1
0 1 1 0 0 0 0
0 1 0 1 0 0 1
0 1 0 0 1 0 1
0 1 0 0 0 1 1
0 0 1 1 0 0 1
0 0 1 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 1 0



Acquaintance Net
Inputs Output

AcquaintancesRachel

Robert

James

Romeo

Hidden Layer Output Layer

Joan

Juliet

H1 

H2

w1
w2
w3
w4

w5
w6
w7 
w8

w9
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w11



Backprop for the Acquaintance Net
Initial Values of 11 Weights:

Weight Initial Value Value after 
Backprop

w1 0.1 1.99
w2 0.2 4.65
w3 0.3 4.65
w4 0.4 4.65
w5 0.5 2.28
w6 0.6 5.28
w7 0.7 5.28
w8 0.8 5.28
w9 0.9 9.07

w10 1 6.27
w11 1.1 6.12 48



RMS error during Training of 
Acquaintance Net

49

Satisfactory performance 
after 225 weight changes

225 x 15 = 3,375 inputs 
processed

Learning rate = 1
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Characteristics of Back-Propagation

 Training a small network may require hundreds 
of backpropagations, a larger network maybe 
thousands 

 



Characteristics of Back-Propagation

 Training can get stuck or become unstable:
 r = 1.0          225 weight changes
 r = 2.0 150 weight changes
 r = 0.25 900 weight changes
 r = 0.5 425 weight changes
 r = 4.0    serious instability
 r = 8.0  serious instability

 



Backprop can get stuck or 
become unstable

52
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Characteristics of Back-Propagation

 Training may require thousands of 
backpropagations

 Training can get stuck or become unstable
- No general learning rate rule  
- Rate selection is problem dependent

If learning rate too low:  slow training
If learning rate too high: instability

 



Characteristics of Back-Propagation
 Training may require thousands of 

backpropagations
 Training can get stuck or become unstable
 Training can be done in stages:  

Later stages refine training of network in earlier 
stages

 



Characteristics of Back-Propagation
 Training may require thousands of 

backpropagations
 Training can get stuck or become unstable
 Training can be done in stages:  

Later stages refine training of network in earlier 
stages

 Example:  
 To train Acquaintance or Sibling Net, use the 

trained Acquaintance Net as the pre-trained 
model and extent the model by one output 
node



Acquaintance or Sibling Net   

Siblings

Inputs Outputs

AcquaintancesRachel

Robert
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Juliet
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2-Stage Training of Ac/Sib Net
Weight Initial 

Value
Value after 
Pretraining

Value after Sibling 
Training

w1 0.1 1.99 2.71
w2 0.2 4.65 6.02
w3 0.3 4.65 6.02
w4 0.4 4.65 6.02
w5 0.5 2.28 2.89
w6 0.6 5.28 6.37
w7 0.7 5.28 6.37
w8 0.8 5.28 6.37
w9 0.9 9.07 10.29
w10 1 6.27 7.04
w11 1.1 6.12 6.97
w12 1.2 -8.32
w13 1.3 -5.72
w14 1.4 -5.68

Stage 1

Stage 2



RMS Error during Two-State Training
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Extra 175 cycles

Initial 225 cycles

400 cycles total
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Simultaneous Training of 14 Weights of Full 
Acquaintance/Sibling Net

59
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Characteristics of Back-Propagation
 Training may require thousands of 

backpropagations
 Training can get stuck or become unstable
 Training can be done in stages
 Trained neural nets can make predictions



Labeled Dataset:  15 Samples

61

Robert Raquel Romeo Joan James Juliet Acquaintance Sibling
1 1 0 0 0 0 0 1
1 0 1 0 0 0 0 1
1 0 0 1 0 0 1 0
1 0 0 0 1 0 1 0
1 0 0 0 0 1 1 0
0 1 1 0 0 0 0 1
0 1 0 1 0 0 1 0
0 1 0 0 1 0 1 0
0 1 0 0 0 1 1 0
0 0 1 1 0 0 1 0
0 0 1 0 1 0 1 0
0 0 1 0 0 1 1 0
0 0 0 1 1 0 0 1
0 0 0 1 0 1 0 1
0 0 0 0 1 1 0 1


Sheet1

		Robert		Raquel		Romeo		Joan		James		Juliet		Acquaintance		Sibling

		1		1		0		0		0		0		0		1

		1		0		1		0		0		0		0		1

		1		0		0		1		0		0		1		0

		1		0		0		0		1		0		1		0

		1		0		0		0		0		1		1		0

		0		1		1		0		0		0		0		1

		0		1		0		1		0		0		1		0

		0		1		0		0		1		0		1		0

		0		1		0		0		0		1		1		0

		0		0		1		1		0		0		1		0

		0		0		1		0		1		0		1		0

		0		0		1		0		0		1		1		0

		0		0		0		1		1		0		0		1

		0		0		0		1		0		1		0		1

		0		0		0		0		1		1		0		1

		Weight		Initial Value		Value after Backprop								Weight		Initial Value		Value after Pretraining		Value after Sibling Training

		w1		0.1		1.99								w1		0.1		1.99		2.71

		w2		0.2		4.65								w2		0.2		4.65		6.02

		w3		0.3		4.65								w3		0.3		4.65		6.02

		w4		0.4		4.65								w4		0.4		4.65		6.02

		w5		0.5		2.28								w5		0.5		2.28		2.89

		w6		0.6		5.28								w6		0.6		5.28		6.37

		w7		0.7		5.28								w7		0.7		5.28		6.37

		w8		0.8		5.28								w8		0.8		5.28		6.37

		w9		0.9		9.07								w9		0.9		9.07		10.29

		w10		1		6.27								w10		1		6.27		7.04

		w11		1.1		6.12								w11		1.1		6.12		6.97

														w12		1.2				-8.32

														w13		1.3				-5.72

														w14		1.4				-5.68





Sheet2





Sheet3







We used all 15 samples for training!
Nothing left for testing…

62

Robert Raquel Romeo Joan James Juliet Acquaintance Sibling
1 1 0 0 0 0 0 1
1 0 1 0 0 0 0 1
1 0 0 1 0 0 1 0
1 0 0 0 1 0 1 0
1 0 0 0 0 1 1 0
0 1 1 0 0 0 0 1
0 1 0 1 0 0 1 0
0 1 0 0 1 0 1 0
0 1 0 0 0 1 1 0
0 0 1 1 0 0 1 0
0 0 1 0 1 0 1 0
0 0 1 0 0 1 1 0
0 0 0 1 1 0 0 1
0 0 0 1 0 1 0 1
0 0 0 0 1 1 0 1


Sheet1

		Robert		Raquel		Romeo		Joan		James		Juliet		Acquaintance		Sibling

		1		1		0		0		0		0		0		1

		1		0		1		0		0		0		0		1

		1		0		0		1		0		0		1		0

		1		0		0		0		1		0		1		0

		1		0		0		0		0		1		1		0

		0		1		1		0		0		0		0		1

		0		1		0		1		0		0		1		0

		0		1		0		0		1		0		1		0

		0		1		0		0		0		1		1		0

		0		0		1		1		0		0		1		0

		0		0		1		0		1		0		1		0

		0		0		1		0		0		1		1		0

		0		0		0		1		1		0		0		1

		0		0		0		1		0		1		0		1

		0		0		0		0		1		1		0		1

		Weight		Initial Value		Value after Backprop								Weight		Initial Value		Value after Pretraining		Value after Sibling Training

		w1		0.1		1.99								w1		0.1		1.99		2.71

		w2		0.2		4.65								w2		0.2		4.65		6.02

		w3		0.3		4.65								w3		0.3		4.65		6.02

		w4		0.4		4.65								w4		0.4		4.65		6.02

		w5		0.5		2.28								w5		0.5		2.28		2.89

		w6		0.6		5.28								w6		0.6		5.28		6.37

		w7		0.7		5.28								w7		0.7		5.28		6.37

		w8		0.8		5.28								w8		0.8		5.28		6.37

		w9		0.9		9.07								w9		0.9		9.07		10.29

		w10		1		6.27								w10		1		6.27		7.04

		w11		1.1		6.12								w11		1.1		6.12		6.97

														w12		1.2				-8.32

														w13		1.3				-5.72

														w14		1.4				-5.68
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Use 3 Samples for Testing, Train on 
the Remaining 12 Samples

63

Robert Raquel Romeo Joan James Juliet Acquaintance Sibling
1 1 0 0 0 0 0 1
1 0 1 0 0 0 0 1
1 0 0 1 0 0 1 0
1 0 0 0 1 0 1 0
1 0 0 0 0 1 1 0
0 1 1 0 0 0 0 1
0 1 0 1 0 0 1 0
0 1 0 0 1 0 1 0
0 1 0 0 0 1 1 0
0 0 1 1 0 0 1 0
0 0 1 0 1 0 1 0
0 0 1 0 0 1 1 0
0 0 0 1 1 0 0 1
0 0 0 1 0 1 0 1
0 0 0 0 1 1 0 1


Sheet1

		Robert		Raquel		Romeo		Joan		James		Juliet		Acquaintance		Sibling

		1		1		0		0		0		0		0		1

		1		0		1		0		0		0		0		1

		1		0		0		1		0		0		1		0

		1		0		0		0		1		0		1		0

		1		0		0		0		0		1		1		0

		0		1		1		0		0		0		0		1

		0		1		0		1		0		0		1		0

		0		1		0		0		1		0		1		0

		0		1		0		0		0		1		1		0

		0		0		1		1		0		0		1		0

		0		0		1		0		1		0		1		0

		0		0		1		0		0		1		1		0

		0		0		0		1		1		0		0		1

		0		0		0		1		0		1		0		1

		0		0		0		0		1		1		0		1

		Weight		Initial Value		Value after Backprop								Weight		Initial Value		Value after Pretraining		Value after Sibling Training

		w1		0.1		1.99								w1		0.1		1.99		2.71

		w2		0.2		4.65								w2		0.2		4.65		6.02

		w3		0.3		4.65								w3		0.3		4.65		6.02

		w4		0.4		4.65								w4		0.4		4.65		6.02

		w5		0.5		2.28								w5		0.5		2.28		2.89

		w6		0.6		5.28								w6		0.6		5.28		6.37

		w7		0.7		5.28								w7		0.7		5.28		6.37

		w8		0.8		5.28								w8		0.8		5.28		6.37

		w9		0.9		9.07								w9		0.9		9.07		10.29

		w10		1		6.27								w10		1		6.27		7.04

		w11		1.1		6.12								w11		1.1		6.12		6.97

														w12		1.2				-8.32

														w13		1.3				-5.72

														w14		1.4				-5.68
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Testing Result:
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Desired Computed Desired Computed
Robert/Juliet 1 0.92 0 0.06
Romeo/Joan 1 0.92 0 0.06
James/Juliet 0 0.09 1 0.91

Acquaintance Sibling

Interpretation:
Trained Acq/Sib net deals successfully with 
previously unseen data = it can predict!


Sheet1

		Robert		Raquel		Romeo		Joan		James		Juliet		Acquaintance		Sibling

		1		1		0		0		0		0		0		1										Acquaintance				Sibling

		1		0		1		0		0		0		0		1										Desired		Computed		Desired 		Computed

		1		0		0		1		0		0		1		0								Robert/Juliet 		1		0.92		0		0.06

		1		0		0		0		1		0		1		0								Romeo/Joan		1		0.92		0		0.06

		1		0		0		0		0		1		1		0								James/Juliet		0		0.09		1		0.91

		0		1		1		0		0		0		0		1

		0		1		0		1		0		0		1		0

		0		1		0		0		1		0		1		0

		0		1		0		0		0		1		1		0

		0		0		1		1		0		0		1		0

		0		0		1		0		1		0		1		0

		0		0		1		0		0		1		1		0

		0		0		0		1		1		0		0		1

		0		0		0		1		0		1		0		1

		0		0		0		0		1		1		0		1

		Weight		Initial Value		Value after Backprop								Weight		Initial Value		Value after Pretraining		Value after Sibling Training

		w1		0.1		1.99								w1		0.1		1.99		2.71

		w2		0.2		4.65								w2		0.2		4.65		6.02

		w3		0.3		4.65								w3		0.3		4.65		6.02

		w4		0.4		4.65								w4		0.4		4.65		6.02

		w5		0.5		2.28								w5		0.5		2.28		2.89

		w6		0.6		5.28								w6		0.6		5.28		6.37

		w7		0.7		5.28								w7		0.7		5.28		6.37

		w8		0.8		5.28								w8		0.8		5.28		6.37

		w9		0.9		9.07								w9		0.9		9.07		10.29

		w10		1		6.27								w10		1		6.27		7.04

		w11		1.1		6.12								w11		1.1		6.12		6.97

														w12		1.2				-8.32

														w13		1.3				-5.72

														w14		1.4				-5.68
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Characteristics of Back-Propagation
 Training may require thousands of 

backpropagations
 Training can get stuck or become unstable
 Training can be done in stages
 Trained neural nets can make predictions
 Excess weights lead to overfitting 



Would a net with more 
trainable weights do better?  

Siblings

Inputs Outputs

AcquaintancesRachel

Robert

James

Romeo

Joan

Juliet

H1

H2

H3



Training only takes 300 cycles – 
the extra weights make it too easy 
to deal with the training set

Siblings

AcquaintancesRachel

Robert

James

Romeo

Joan

Juliet

H1

H2

H3



Testing Result:

   

68

Desired Computed Desired Computed
Robert/Juliet 1 0.99 0 0
Romeo/Joan 1 0.06 0 0.94
James/Juliet 0 0.97 1 0.01

Acquaintance Sibling

Interpretation:           Overfitting Occurred 
Trained Acq/Sib net does not deal successfully with 
previously unseen data.
It cannot predict two of the three test cases correctly
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		Robert		Raquel		Romeo		Joan		James		Juliet		Acquaintance		Sibling

		1		1		0		0		0		0		0		1										Acquaintance				Sibling

		1		0		1		0		0		0		0		1										Desired		Computed		Desired 		Computed

		1		0		0		1		0		0		1		0								Robert/Juliet 		1		0.99		0		0

		1		0		0		0		1		0		1		0								Romeo/Joan		1		0.06		0		0.94

		1		0		0		0		0		1		1		0								James/Juliet		0		0.97		1		0.01

		0		1		1		0		0		0		0		1

		0		1		0		1		0		0		1		0

		0		1		0		0		1		0		1		0

		0		1		0		0		0		1		1		0

		0		0		1		1		0		0		1		0

		0		0		1		0		1		0		1		0

		0		0		1		0		0		1		1		0

		0		0		0		1		1		0		0		1

		0		0		0		1		0		1		0		1

		0		0		0		0		1		1		0		1

		Weight		Initial Value		Value after Backprop								Weight		Initial Value		Value after Pretraining		Value after Sibling Training

		w1		0.1		1.99								w1		0.1		1.99		2.71

		w2		0.2		4.65								w2		0.2		4.65		6.02

		w3		0.3		4.65								w3		0.3		4.65		6.02

		w4		0.4		4.65								w4		0.4		4.65		6.02

		w5		0.5		2.28								w5		0.5		2.28		2.89

		w6		0.6		5.28								w6		0.6		5.28		6.37

		w7		0.7		5.28								w7		0.7		5.28		6.37

		w8		0.8		5.28								w8		0.8		5.28		6.37

		w9		0.9		9.07								w9		0.9		9.07		10.29

		w10		1		6.27								w10		1		6.27		7.04

		w11		1.1		6.12								w11		1.1		6.12		6.97

														w12		1.2				-8.32

														w13		1.3				-5.72

														w14		1.4				-5.68
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Heuristic to Avoid Overfitting
Number of trainable weights influencing a particular 
output should be less than the number of training 
samples

 In Acquaintance/Sibling Network with two hidden 
nodes: 11 trainable weights & 12 input-output 
samples:  a dangerously small margin!

 In Acquaintance/Sibling Network with three hidden 
nodes: 19 trainable weights & 12 input-output 
samples:  7 (>50%) more weights than  i/o 
samples – overfitting is inevitable!   69



Characteristics of Back-Propagation
shown for Sibling/Acquaintance Neural Net

generalizes to all neural networks

 Training may require thousands of 
backpropagations

 Training can get stuck or become unstable
 Training can be done in stages
 Trained neural nets can make predictions
 Excess weights lead to overfitting 



Patrick Winston  
(1943–2019)

“Neural-net experts are 
artists; they are not mere 
handbook users.”

71



Occham's Razor
= Law of succinctness

Which hypothesis among h1, h2, h3 ... should the AI system 
choose?

Choose the simplest hypothesis consistent with the data.

The simplest explanation will be the most plausible until 
evidence is presented to prove it false.

Example:  Prefer a degree-1 polynomial (line) over a degree-7 
polynomial

Trade-off between complex hypothesis that fit training data 
well and simpler hypotheses that may generalize better 
(and can typically be computed faster)

Russell and Norvig



Occam’s Razor:  Choose green over blue model 
for h

Source: Wikipedia



Overfitting

 Avoid choosing an excessively complex learning 
system= model= hypothesis=neural net h.

 h is too complex if it has too many parameters 
relative to the number of observations. 

 A model which has been overfitted will generally 
have poor predictive performance, as it can 
exaggerate minor fluctuations in the data.

 Higher-degree polynomials or complicated neural 
nets with many hidden layers and nodes fit the data 
better but may lead to overfitting.

Russell and Norvig



Overfitting
 Avoid choosing an excessively complex learning system= model= 

hypothesis=neural net h.

 h is too complex if it has too many parameters relative to the number of 
observations. 

 A model which has been overfit will generally have poor predictive 
performance, as it can exaggerate minor fluctuations in the data.

 Higher-degree polynomials or complicated neural nets with many hidden 
layers and nodes fit the data better but may lead to overfitting.

Solutions:

1. Use “wrapper” to enumerate models h according to model size (e.g., 
number of nodes or layers in neural net). Select model with smallest error.

2. Feature selection:  Simplify model by discarding irrelevant attributes 
(dimensionality reduction).  See below.

3. Minimum description length: Select model with smallest number of bits 
required to encode program and data.

Russell and Norvig



Part 3 Learning Objectives:  Understand that
 The AI network designer must monitor RMS error (or 

some other metric) during network training
 The AI designer can train in stages by simplifying a 

network, training that network, and then generalizing 
to the larger network

 Training may require thousands of epochs
 Training may get stuck 
 Training may become unstable
 Too many weights lead to overfitting
 Test and training data must be different
 Overfitting can be avoided by (1) starting simple and 

enumerating models with a wrapper or (2) reducing 
features   
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Cross-Validation

Holdout cross-validation =                                                                   
Randomly split available (input,output) pairs into a single training set to 
learn h and a single test set to test the learned h.

k-fold cross-validation = 

 Split data into k equal subsets.  

 Perform k rounds of learning.  Each round leaves 1/k examples 
out of the training set that can then be used as the test set.  

 The average test set score should be a better estimate than a 
single score (need to keep k h's around for prediction). Typically, 
k=5 or 10.

Leave-one-out cross validation: k=N. 



Simple 5-Fold Cross-Validation

5 Folds of Labeled Dataset:  Training & Testing



Simple 5-Fold Cross-Validation
1. Create 5 folds of the labeled dataset for training & testing

2. Train 5 AI models

3. Conduct ROC analysis for each model

4. Report average performance (accuracy, etc.)

5. Use the best of 5 models in your application (external data)



5-Fold Cross-Validation with Random 
Selection of Folds

What if you were simply lucky in your training & testing folds?

1.  Randomly create a different set of 5 folds & report average 
performance:

2. Do this n times & report 1/n performance sum, i.e., 
average performance

Training

Training

Training

Trai.

Training

g



Cross-Validation with 
Train/Validation/Test Sets

Training, Validation, & Testing



Why Validation?

With the validation data, we tune the 
hyperparameters of an AI model. 

The validation process tells us whether training is 
moving in the right direction.  It can be performed 
after each training epoch.

The validation process helps prevent our model from 
overfitting to the training data by challenging it on 
the unseen validation data.

The validation data must therefore be separate from 
the training data (and of course from the test data).



What are common 
Train/Validation/Test Splits?

Training, Validation, & Testing
    60%, 20%, 20%   or    80%, 10%, 10%

5 folds                                            10 folds



How to Train/Test when feature 
reduction is used to avoid overfitting

Feature selection:  Simplify model by discarding 
irrelevant attributes (reduction to k features).

Use the normalized correlation coefficient r for 
feature reduction.



How to compare features x and desired 
regression values y

Normalized correlation coefficient:

where
xi = value of ith feature, x mean feature value
yi = value of ith desired regression value (ground truth),      

  y mean desired regression value
Properties of r:   -1 <= r <= 1
               E[r]=0 in Gaussian case
                             



Normalized Correlation Coefficient

The normalized correlation coefficient was discovered 
by Auguste Bravais in 1844.

It was named after Karl Pearson (1857-1936), a 
proponent of eugenics and scientific racism.

Please avoid using Pearson’s name to describe the 
normalized correlation coefficient.

 
Source: Wikipedia link

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient


Comparing Features and Labels:  
Example involving Stroke Survivors

Features x            Label  y
 Age            Language Test Score [0..100]

 Months since Stroke

 Spared Grey Matter in Region 1

 Spared Grey Matter in Region 2

 etc.  

 Spared Grey Matter in Region 50

 Spared White Matter in Region 1’

 Spared White Matter in Region 2’

 etc.



Comparing Features and Labels:  
Example involving Stroke Survivors

Feature Age x           Label  y
Age[patient 1]                         Language Test Score [patient 1]

Age[patient 2]                         Language Test Score [patient 2]

…

Age[patient n]                         Language Test Score [patient n]

Compute  rage[x,y] = r[(x1, ..., xn)T,(y1,…,yn)T]

=> This determines how strong the correlation between the feature 
age and the language test score of a stroke survivor is.



Comparing Features and Labels:  
Example involving Stroke Survivors

Feature x=Months-since-stroke (MSS)    Label  y

MSS[patient 1]                                Language Test Score [patient 1]

MSS[patient 2]                                Language Test Score [patient 2]

…

MSS[patient n]                                Language Test Score [patient n]

Compute  rMSS[x,y] = r[(x1, ..., xn)T,(y1,…,yn)T]

=> This determines how strong the correlation between the feature 
MSS and the language test score of a stroke survivor is.



Feature Reduction:  
Example involving Stroke Survivors

rAge       

 r MSS

 r Spared Grey Matter in Region 1

…

 r Spared Grey Matter in Region n

 r Spared White Matter in Region 1’ 

…

     r Spared White Matter in Region n’  

rAge       

 r Spared Grey Matter in Region 5

…

 r Spared Grey Matter in Region 12

    r MSS

 r Spared White Matter in Region 29’ 

…

     r Spared White Matter in Region 33’  

Sort
with
largest
r on
top

Select top k features (with k largest r’s)



How to Train/Test when feature 
reduction is used to avoid overfitting

Feature selection:  Simplify model by discarding 
irrelevant attributes (reduction to k features).

Common questionable practice for regressors:
1) For each feature, compare the vector of feature 

values for all samples in the dataset with the vector 
of desired output values.  

2) Sort features by result of this comparison
3) Use highest ranked k features (rank computed with 

NCC) in subsequent usual cross-validation 
procedure  



How to Train/Test when feature 
reduction is used to avoid overfitting

Feature selection:  Simplify model by discarding 
irrelevant attributes (reduction to k features).

Common better practice for regressors:
1) For each feature, compare the vector of feature 

values for samples in the training dataset with the 
vector of desired output values.  

2) Sort features by result of this comparison
3) Use highest ranked k features (rank computed with 

NCC) in subsequent nested cross-validation 
procedure 



Nested Cross Validation
Outer loop: 5 experiments

Inter loop:  Not just [A|B]C but also [4 versions of A,B]C

Training, Validation, & Testing

A B C



Nested Cross Validation

Training, Validation, & Testing

1st outer fold

                                                                                                 Per outer fold:

4 inner folds                                                                              Find best model among 4
                                                                                                  

                Hyperparameters could even
                                                                                                  include the number of 
                                                                                                  features k

Here:  5 outer folds, 4 inner folds,  report performance of 5 models



Research Paper with Nested Cross 
Validation and Feature Selection:

Saurav Chennuri, Sha Lai, Anne Billot, Maria Varkanitsa, Emily J. Braun, Swathi 
Kiran, Archana Venkataraman, Janusz Konrad, Prakash Ishwar, and Margrit 
Betke. Fusion Approaches to Predict Post-stroke Aphasia Severity from 
Multimodal Neuroimaging Data. Accepted at the International Conference 
on Computer Vision Workshop on Computer vision for Automated Medical 
Diagnosis (ICCV CVAMD 2023). Paris, France, October 2, 2023. 10 pages.

Abstract:

This paper explores feature selection and fusion methods for predicting the clinical outcome of 
post-stroke aphasia from medical imaging data. Utilizing a multimodal neuroimaging dataset 
derived from 55 individuals with chronic aphasia resulting from left-hemisphere lesions 
following a stroke, two distinct approaches, namely Early Fusion and Late Fusion, were 
developed using Support Vector Regression or Random Forest regression models for 
prognosticating patients’ functional communication skills measured by Western Aphasia 
Battery (WAB) test scores. A supervised learning method is proposed to reduce the number 
of features derived from each imaging modality. …

Saurav was a BU MS AI student who graduated in May 2023.        Link to paper

https://cvamd2023.github.io/
https://openaccess.thecvf.com/content/ICCV2023W/CVAMD/papers/Chennuri_Fusion_Approaches_to_Predict_Post-Stroke_Aphasia_Severity_from_Multimodal_Neuroimaging_ICCVW_2023_paper.pdf


Part 4 Learning Objectives: Be able to
 Define holdout cross validation, k-fold cross validation 

and leave-one-out cross validation
 Explain the difference between a [train/test] and 

[train/validate/test] cross-validation experiment
 Give typical split values
 Explain how to report the results of a cross-validation 

experiment
 Define the normalized correlation coefficient
 Explain how to perform feature selection (reduction) 

based on the normalized correlation coefficient 
 Explain nested cross validation 
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