
Logic and Resolution Proof

R1: IF ?x has feathers

THEN ?x is a bird

R2: IF ?x flies

?x lays eggs

THEN ?x is a bird

Predicate =

Function: Objects −→ {True, False}

Example predicates:

Feathers(x)⇒ Bird(x)

(Flies(x) ∧ LaysEggs(x))⇒ Bird(x)

¬Feathers (Suzie)

Feathers (Suzie)⇒ Bird(Suzie)

¬Feathers (Suzie) ∨ Bird(Suzie)

∀x [Feathers(x)⇒ Bird(x)]
Scope of variable x

Logic – Propositional Calculus

No variables allowed. Only objects, e.g., E1, E2.

Commutative Laws :

E1 ∧ E2 ⇔ E2 ∧ E1

E1 ∨ E2 ⇔ E2 ∨ E1

Distributive Laws :

E1 ∧ (E2 ∨ E3) ⇔ (E1 ∧ E2) ∨ (E1 ∧ E3)

E1 ∨ (E2 ∧ E3) ⇔ (E1 ∨ E2) ∧ (E1 ∨ E3)

Associative Laws :

E1 ∧ (E2 ∧ E3) ⇔ (E1 ∧ E2) ∧ E3

E1 ∨ (E2 ∨ E3) ⇔ (E1 ∨ E2) ∨ E3

DeMorgan′s Laws :

¬ (E1 ∧ E2) ⇔ (¬E1) ∨ (¬E2)

¬ (E1 ∨ E2) ⇔ (¬E1) ∧ (¬E2)

Double Negation Law :

¬ (¬ E1) ⇔ E1

Precedence of operators in following order:

¬, ∧, ∨, ⇒.

Logic – 1st Order Predicate Calculus

Variables allowed, e.g., x. Variables cannot represent predicates P .
Existential quantifier ∃ and universal quantifier ∀.

¬ ∀xP (x) ⇔ ∃x ¬P (x)

¬ ∃xP (x) ⇔ ∀x ¬P (x)

Obey De Morgan′s rules

Order Matters.

Term

– constant (object)
– variable

– function: term → term

Predicate

– function: term → {True, False}

Atomic formula = predicate with argument

Literal = atomic formula or negated atomic formula

Well-formed formula (wff)

– literals

– wff ∨ wff, wff ∧ wff, ¬ wff, wff ⇒ wff

– ∀x [wff], ∃x [wff]

clause = wff consisting of a disjunction of literals

sentence = wff with all variables (if any) within scope

Example of sentences:

∀x [Feathers(x) ⇒ Bird(x)]
Feathers(Albatross) ⇒ Bird(Albatross)]

Sentence?

∀x [Feathers(x) ∨ ¬Feathers(y)]

y is free variable

Axioms:

Feathers (Squigs)

∀x [Feathers(x)⇒ Bird(x)]

Theorem:

Bird (Squigs)

A proof ties axioms to consequences

A proof shows theorem is true given axioms

A proof needs inference rules to derive new expressions from axioms

A proof needs substitution rules to derive expressions from axioms

Substitution rule: Specialization

Feathers(Squigs)⇒ Bird(Squigs)

Inference rule: Modus Ponens

If axioms of form (E1 ⇒ E2) and E1 are given, then E2 is a new

true expression.

Feathers (Squigs)

Feathers(Squigs)⇒ Bird(Squigs)

Bird (Squigs)

Inference rule: Resolution

Resolution

Axiom 1 E1∨ E2

Axiom 2 ¬E2 ∨ E3

Resolvent E1∨ E3

Modus ponens is a special case of resolution:

Axiom 1 ¬E1∨ E2

Axiom 2 E1

Resolvent E2

Contradiction is a special case of resolution:

Axiom 1 ¬E1

Axiom 2 E1

Resolvent NIL

Resolution proof = proof by refutation (= show theorem is false)

Show theorem’s negation cannot be true.

Example:

Theorem: Bird(Squigs)

Proof:

Axiom 1 Feathers(Squigs)

Specialized Axiom 2 ¬ Feathers(Squigs) ∨ Bird(Squigs)

Negation of Theorem (step 3) ¬ Bird(Squigs)

Resolvent of 1 & 2 (step 4) Bird(Squigs)

Resolvent of steps 3 & 4 NIL

To prove a theorem using resolution:

– Negate theorem

– Add negated theorem to list of axioms

– Transform axioms into clause form

– REAT UNITL there is no resolvable pair of clauses:

* Find resolvable clauses and resolve them

* Add results to list of clauses

* If NIL produced, STOP. Report theorem is TRUE.

– STOP. Report theorem is FALSE.

Strategies to search for resolvable clauses:

– Unit-preference strategy: Clauses with smallest # of literals first

– Set-support strategy: Only work with resolutions involving negated

theroem or clauses derived from it

– Breadth-first strategy: First reduce all possible pairs of initial

clauses then all pairs of resulting sets with initial set, level by level

Exponential explosion problem

Halting problem:

Completion of proof procedures is “semidecidable” =

* Guaranteed to find proof if theorem logically follows from axioms

* Search is not guaranteed to terminate unless there is a proof

Informally: “While the search is going on, we don’t know if it hasn’t

found the proof yet, or there is no proof.”

Example

Axiom:
∀x ∀y [On(x, y) ⇒ Above(x, y)]

∀x ∀y ∀z [Above(x, y) ∧ Above(y, z) ⇒ Above(x, z)]
On(B, A)

On(A, T able)
Theorem:

Above(B, T able)

Wednesday,	December	4,	2024 12:41

Learning outcomes:
● know the termology covered in the previous pages
● be able to prove a theorem by refutation with the given axioms
● be able to transform a well-formed formula into clause form

Extra:
The example in the following pages demonstrates step by
step how to transform a complicated axiom into clause form.
Students are encouraged to read and understand how it was
done. Note those existential qualifiers included in the axiom
and how they are handled.

Example

Transform the following Axiom into the clause form

∀x [Brick(x)⇒ (∃y [On(x, y) ∧ ¬Pyramid(y)] ∧
¬∃y [On(x, y) ∧On(y, x)] ∧

∀y [¬Brick(y)⇒ ¬Equal(x, y)])]

1. Eliminate implications: Use (E1 ⇒ E2)⇔ (¬E1 ∨ E2).

∀x [¬Brick(x) ∨ (∃y [On(x, y) ∧ ¬Pyramid(y)] ∧
¬∃y [On(x, y) ∧On(y, x)] ∧

∀y [¬¬Brick(y) ∨ ¬Equal(x, y)])]

2. Move negations down to atomic formulas:

∀x [¬Brick(x) ∨ (∃y [On(x, y) ∧ ¬Pyramid(y)] ∧
∀y [¬On(x, y) ∨ ¬On(y, x)] ∧
∀y [Brick(y) ∨ ¬Equal(x, y)])]

3. Eliminate existential quantifiers using Skolem functions:

∀x [¬Brick(x) ∨ (On(x, Support(x)) ∧ ¬Pyramid(Support(x)) ∧
∀y [¬On(x, y) ∨ ¬On(y, x)] ∧
∀y [Brick(y) ∨ ¬Equal(x, y)])]

4. Rename variables:

∀x [¬Brick(x) ∨ (On(x, Support(x)) ∧ ¬Pyramid(Support(x)) ∧
∀y [¬On(x, y) ∨ ¬On(y, x)] ∧
∀z [Brick(z) ∨ ¬Equal(x, z)])]

Skolem functions are helper
functions. You can name
them whatever way you like,
preferably meaningful though.
In this example, we have x on
y so we consider y is a
support of x; hence the name.

Yiwen Gu

Yiwen Gu

Yiwen Gu

Yiwen Gu

Yiwen Gu

Yiwen Gu

4. Rename variables:

∀x [¬Brick(x) ∨ (On(x, Support(x)) ∧ ¬Pyramid(Support(x)) ∧
∀y [¬On(x, y) ∨ ¬On(y, x)] ∧
∀z [Brick(z) ∨ ¬Equal(x, z)])]

5. Move universal quantifiers to left:

∀x∀y∀z [¬Brick(x) ∨ (On(x, Support(x)) ∧ ¬Pyramid(Support(x))

∧ (¬On(x, y) ∨ ¬On(y, x))

∧ (Brick(z) ∨ ¬Equal(x, z)))]

6. Move disjunctions down to literals: Use E1∨(E2∧E3)⇔ (E1∨E2)∧(E1∨E3).

∀x∀y∀z [(¬Brick(x)∨ (On(x, Support(x)) ∧ ¬Pyramid(Support(x))))

∧(¬Brick(x)∨ (¬On(x, y) ∨ ¬On(y, x)))

∧(¬Brick(x)∨ (Brick(z) ∨ ¬Equal(x, z)))]

∀x∀y∀z [(¬Brick(x) ∨On(x, Support(x)))

∧(¬Brick(x) ∨ ¬Pyramid(Support(x)))

∧(¬Brick(x) ∨ ¬On(x, y) ∨ ¬On(y, x))

∧(¬Brick(x) ∨Brick(z) ∨ ¬Equal(x, z))]

7. Eliminate conjunctions:

∀x [¬Brick(x) ∨On(x, Support(x))]

∀x [¬Brick(x) ∨ ¬Pyramid(Support(x))]

∀x∀y [¬Brick(x) ∨ ¬On(x, y) ∨ ¬On(y, x)]

∀x∀z [¬Brick(x) ∨Brick(z) ∨ ¬Equal(x, z))]

7. Eliminate conjunctions:

∀x [¬Brick(x) ∨On(x, Support(x))]

∀x [¬Brick(x) ∨ ¬Pyramid(Support(x))]

∀x∀y [¬Brick(x) ∨ ¬On(x, y) ∨ ¬On(y, x)]

∀x∀z [¬Brick(x) ∨Brick(z) ∨ ¬Equal(x, z))]

8. Rename variables:

∀x [¬Brick(x) ∨On(x, Support(x))]

∀w [¬Brick(w) ∨ ¬Pyramid(Support(w))]

∀u∀y [¬Brick(u) ∨ ¬On(u, y) ∨ ¬On(y, x)]

∀v∀z [¬Brick(v) ∨Brick(z) ∨ ¬Equal(v, z))]

9. Eliminate universal quantifiers:

¬Brick(x) ∨On(x, Support(x))

¬Brick(w) ∨ ¬Pyramid(Support(w))

¬Brick(u) ∨ ¬On(u, y) ∨ ¬On(y, x)

¬Brick(v) ∨Brick(z) ∨ ¬Equal(v, z))

	Blank Page

