
AI Neural Networks: Backpropagation

Margrit Betke

September 2024

Backpropagation is the name of the neural net training algorithm.

1



Measuring Performance P

Performance P = negative loss function
(see previous slides on loss functions)

Input sample = ~xs

Desired output = Label of sample = ~ds

Computed output = ~os

Z = # components of output vector

M = # training samples

P = Sum over all samples and output components of the squared error per
labeled training sample s = {~xs, ~ds}

P = −
M∑
s=1

Z∑
z=1

(ds,z − os,z)2

In Acquaintance/Sibling network:

P = negative Root Mean Squared (RMS) error



Main Ingredients for Training Algorithm

P: Performance of neural net (depends on ~o)

~o: output vector of a node (depends on ~w)

~w: weight vector for node

Most general chain rule:

P : RW → RJ

Change in performance P when adjusting ith weight wi during training:

∂P

∂wi
=
∂P (~o(~w))

∂wi
=

J∑
j=1

∂P (~o)

∂oj
· ∂oj(~w)

∂wi

Example: o : R3 → R2 and P : R2 → R1

P (~o) = P (o1, o2) = 3o1 − 7o2

o1(~w) = w1 − 2w2 + 5w3

o2(~w) = 2w1 − w2 − 6

∂P
∂w1

=

∂P
∂w2

=

∂P
∂w3

=

Interpretation:

3



Gradient = ∇P (~w) = (∆w1,∆w2,∆w3)
T = (−11, 1, 15)T

Symbol Delta ∆ is for Difference or Change

Solution space for P? Can only draw 2D:

Figure 1: Solution space of P if P is more complicated than in our example
[Source of images: Wikipedia.]

Climbing uphill, following gradient direction (1, 15)T

Update Rule of Backprop Algorithm:

w1,new = w1,old + ∆w1 = w1,old − 11

w2,new = w2,old + ∆w2 = w2,old + 1

w3,new = w3,old + ∆w3 = w3,old + 15

Adjust weights in each iteration of back prop proportional to the gradient
length. Here the learning rate r = 1. If r = 2, the update rules above
would add r∆~w = (−22, 2, 30) to the old weight estimates.

4



Backpropagation Neural Net Training Algorithm

Input: NN structure (# nodes, # layers),
Labeled training data = input/output pairs {~x, ~odesired}

1) Choose weights randomly (or some other way)

2) Compute performance P on training data

3) WHILE performance P not satisfactory:

{ FOR EACH input vector ~x:
{

Compute ~olast (= evaluate NN)

Compute βj’s (explained later)

Compute weight changes: ∆wi→j = r oi oj(1− oj) βj
}

Add all ∆w’s computed for all input vectors

}

Output: Weights (= trained neural net)
Performance P on trained net

Some remarks on training:

5



Above, we showed how to compute ∆wi→j for an example with specific linear
functions P and ~o. Now we need to derive a general solution, which will lead
us to the update rule ∆wi→j = r oi oj(1− oj) βj

What is the change in the output oj when weight wi→j is adjusted?
This means: What is the following?

∂oj(σ(~w))

∂wi→j

=
doj(σ)

dσ
· ∂σ(~w)

∂wi→j

. (1)

A few explanations:

• Here is the general chain rule again that we used for our performance
function P :

∂P (~o(~w))

∂wi
=

Z∑
z=1

∂P (~o)

∂oz
· ∂oz(~w)

∂wi

• No
∑

in the chain rule applied to a single node because oj is a scalar.

• “Regular” derivative notation d and not ∂ because σ is a scalar and so
the output oj of node j is a function dependent on a single variable σ.

• Note that σ(~w) =

Let us solve Equation (1) above in two steps:
1) What is

∂σ(~w)

∂wi→j

=

2) What is
doj(σ)

dσ
? This depends on the type of activation function we use.

6



We here use a sigmoid function for f(σ):

oj(σ) = f (σ) = 1
1+e−σ

d f
d σ =

7



Now we have the answer to: What is the change in the output oj when
weight wi→j is changed?

∂oj(σ(~w))

∂wi→j
=
doj(σ)

dσ
· ∂σ(~w)
∂wi→j

=

Backpropagation Neural Net Training Algorithm

Input: NN structure (# nodes, # layers),
Labeled training data = input/output pairs {~x, ~odesired}

1) Choose weights randomly (or some other way)
2) Compute performance P on training data
3) WHILE performance P not satisfactory:

{ FOR EACH input vector ~x:
{

Compute ~olast (= evaluate NN)
Compute βj’s (explained later)
Compute weight changes: ∆wi→j = r oi oj(1− oj) βj

}
Add all ∆w’s computed for all input vectors

}
Output: Weights (= trained neural net)

Performance P on trained net

Missing piece? Backpropagation of β’s.

8



∂ P

∂wi→j
=
∂P (~o(~w))

∂wi→j
=

J∑
j=1

∂P (~o)

∂oj
· ∂oj(~w)

∂wi
=

J∑
j=1

oj (1− oj) oi βj

How to compute the β’s:

Last network layer:

Performance P (~olast) =

Change in performance
∂P (~olast)
∂oz

=

Earlier network layer:

∂P (~olast)

∂oj
=

K∑
k=1

∂P (~olast)

∂ok
· ∂ok
∂oj

Simplify notation:

∂ok
∂oj

=

9



∂ok
∂oj

=

Equations in Backpropagation Algorithm now fully derived.

Patrick Winston’s book: pp. 453-457, 458-468

10


