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Abstract

We propose a multi-object multi-camera framework
for tracking large numbers of tightly-spaced objects that
rapidly move in three dimensions. We formulate the prob-
lem of finding correspondences across multiple views as
a multidimensional assignment problem and use a greedy
randomized adaptive search procedure to solve this NP-
hard problem efficiently. To account for occlusions, we re-
lax the one-to-one constraint that one measurement corre-
sponds to one object and iteratively solve the relaxed as-
signment problem. After correspondences are established,
object trajectories are estimated by stereoscopic recon-
struction using an epipolar-neighborhood search. We em-
bedded our method into a tracker-to-tracker multi-view fu-
sion system that not only obtains the three-dimensional tra-
jectories of closely-moving objects but also accurately set-
tles track uncertainties that could not be resolved from sin-
gle views due to occlusion. We conducted experiments to
validate our greedy assignment procedure and our tech-
nique to recover from occlusions. We successfully track
hundreds of flying bats and provide an analysis of their
group behavior based on 150 reconstructed 3D trajectories.

1. Introduction

The interpretation of the motion of large groups of indi-
viduals is a difficult problem in computer vision. A com-
plete tracking system typically consists of two phases: es-
timation of the state of each object andacross-timedata
association (i.e., the assignment of current measurements
to object tracks). State estimation is difficult when object
motion is not smooth; data association is difficult when the
population of objects is dense. This paper stresses the lat-
ter scenario in a multi-view setting. This means we also
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need to consider anacross-viewdata association problem:
the determination of corresponding measurements in multi-
ple views. Tracking is challenging here because it involves
solving the problem of matching hundreds of detected indi-
viduals from frame to frame and from camera view to cam-
era view and reasoning about their occlusions.

Past efforts have incorporated models of the occlusion
process [15] or the interaction of individuals [12, 22],
knowledge about the appearance of the objects [14, 10]
or the homography of the scene [11, 8], or have applied
trajectory relinking [21, 16, 23]. The tracking scenarios
that have been considered in the past have typically in-
volved interpreting the activities of fewer than ten individu-
als per image frame. Earlier methods typically do not scale
well in cases when there are hundreds of objects moving
in three-dimensional (3D) space and where objects differ
by only a few visual cues. Our work, on the other hand,
falls in the category of recent research efforts to understand
the interaction of significantly larger crowds of individu-
als [1, 2, 5, 6, 17]. Our contributions are:

• A new formulation for across-view data-association in
large crowds using a likelihood function that is based
on multi-view geometry.

• A new iterative search procedure (IGRASP) to solve
the across-view data-association problem.

• A stereoscopic method to reconstruct the trajectories
of objects moving in 3D space that employs a new
epipolar-neighborhood search.

• A new information fusion technique that ensures inter-
pretation of occlusion and consistency of tracking.

We formulate the problem of finding object correspon-
dences across multiple views as a multidimensional assign-
ment problem. This problem is known to be NP-hard, but
there are suboptimal algorithms that can determine assign-
ments efficiently. To handle scenarios where objects oc-
clude each other, we modified a greedy randomized adap-
tive search algorithm [18] that does not adhere to the tradi-



tional one-to-one correspondence assumption that each ob-
ject is represented by one measurement. After establishing
correspondences between the measurements in each view
and the objects that are being tracked, our method com-
putes the 3D trajectories of the objects via stereoscopic re-
construction. The accuracy of tracking in each camera view
was improved by examining the consistency of tracker-to-
tracker associations. We incorporated our algorithms into
a tracking system that can successfully reason about the
movements of hundreds of individuals recorded from mul-
tiple views.

In single-view tracking, ambiguity caused by occlu-
sion can be solved by optimizing some global function
that considers trajectory smoothness over several frames.
With this approach, trajectory pieces (“tracklets”) are linked
successfully and full trajectories can be recovered (e.g.,
[21, 16, 23]). The approach assumes that the occlusion will
disappear within the typical tracking period. However, this
assumption does not hold in situations when hundreds of
objects emerge at the same time in the scene and occlusion
occurs constantly, and for these situations, single-view ap-
proaches are not promising.

An alternative way is using more than one camera to pro-
vide tracking information from different views [13]. Most
of the previous multi-view works on tracking pedestrians
use homography [8, 11] as a natural and effective approach
to find the correspondence across different views. Occlu-
sion can then be resolved even if the object is completely
occluded in some views. Extending homography-based ap-
proaches to the case when objects are not moving in the
plane, as in our case, is not intuitive.

We stress the difficulties of our tracking problem: The
objects are not easily distinguishable based on appearance,
and, with a large number of objects moving in 3D space,
occlusion frequently occurs. This problem is relevant for
the analysis of group behavior of animals [5, 12, 19], the
application we chose in this paper, and for trajectory-based
abnormality detection in surveillance studies [1, 2, 6, 20].
The results of surveillance or animal-analysis systems usu-
ally depend on the trajectories that the tracker produced.
Our tracking system can therefore have an impact in these
applications when it uses, as a post processing step, the
same approaches to trajectory analysis. Our experiments
show not just the effectiveness of our tracking system, but
also provide information valuable to mammalogists, ecolo-
gist, and conservation biologists. In particular, we produced
the first stereoscopic analysis of the emergence behavior of
free-ranging bats. We report the first accurate and repro-
ducible estimates of 3D velocities of groups of emerging
bats and their spatio-temporal interactions.
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Figure 1. The hybrid architecture of our tracking system. Tracking
is performed at each sensor level and tracks and measurements are
sent to a central node for processing. Each sensor tracker adjusts
its across-time associations based on the fusion result it receives
from the central node.

2. Multi-object Multi-view Tracking

We first describe our multi-object tracking approach
and formulate the multi-view data-association problem
(Sec. 2.1). We then introduce an iterative search proce-
dure to efficiently solve this NP-hard problem (Sec. 2.3).
We use stereoscopic reconstruction to combine the two-
dimensional trajectories from each view into a single three-
dimensional trajectory for each object and introduce the
technique “epipolar-neighborhood search” (Sec. 2.2). We
explain how we ensure the consistency of this “sensor fu-
sion” in the presence of occlusions (Sec. 2.4). The architec-
ture of our tracking system is shown in Fig. 1.

2.1. Multidimensional Assignment Formulation

In this section, we describe how we adapted the recur-
sive Bayesian techniques from the radar literature [4, 7] to
address the across-camera data association problem. Our
contribution includes a formulation of the likelihood func-
tion that is based on multi-view geometry. The function de-
termines how likely it is that associated 2D measurements
are projections of an object in the 3D scene.

GivenN calibrated and synchronized cameras that share
overlapping fields of view andns measurements in the field
of view of cameras, the statex(t) (3D coordinates) of an
object of interest at timet can be assumed to evolve in time
according to the equations

x(t+1) = Ax(t) + v(t) (1)

as observed via measurements

z
(t)
s,is

= Hs x(t)+ w(ts) for s = 1, ..., N, is = 1, ..., ns, (2)

wherev(t) andw(ts) are independent zero-mean Gaussian
noise processes with respective covariancesQ(t) andRs(t),
A is the state transition matrix, andHs the projection matrix
for cameras. Each measurementz

(t)
s,is

is either the projected
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image of some objecta in cameras plus additive Gaus-
sian noiseN (0, Rs(t)), or a false-positive detection, which
is assumed to occur uniformly within the field of view of
cameras. For each camera, the detection rate isPDs

< 1.

We add “dummy” measurementsz(t)
s,0 to handle the case of

missed detections. In particular, when objecta is not de-
tected in cameras at timet, dummy measurementz

(t)
s,0 from

cameras is associated with objecta.
For ease of notation, we now drop the superscriptt. We

use the notationZi1i2...iN
to indicate that the measurements

z1,i1 , z2,i2 , . . . , zN,iN
originated from a common object in

the scene at timet. The likelihood thatZi1i2...iN
describes

object statexa is given as

p(Zi1i2...iN
|xa) =

N
∏

s=1

{[1 − PDs
]1−u(is)

× [PDs
p(zs,is

|xa)]u(is)} (3)

whereu(is) is an indicator function defined as

u(is) =

{

0 if is = 0
1 otherwise,

(4)

and the conditional probability density of a measure-
mentzs,is

, given it originated from objecta, is

p(zs,is
|xa) = N (zs,is

; Hs xa, Rs). (5)

The likelihood thatZi1i2...iN
is unrelated to objecta or re-

lated to dummy object⊘ is

p(Zi1i2...iN
|⊘) =

N
∏

s=1

[
1

Φs
]u(is), (6)

whereΦs is the volume of the field of view of cameras.
Since we do not know the true statexa in Eq. 5, we replace
it by

x̂a = arg min
xa

n
∑

s=1

d(zs,is
, Hs xa), (7)

whered is Euclidean distance betweenHs xa, the object
position projected onto the image planes, and the corre-
sponding measurementzs,is

. Using stereoscopy,1 we esti-
mate the statêxa to be the reconstructed 3D position based
on the corresponding measurementsz1,i1 , z2,i2 , ..., zN,iN

in
the N views. We now can define the cost of associating
N -tuple Zt

i1i2...iN
to objecta at time t is as the negative

1We selected the Direct Linear Transformation (DLT) algorithm [9] to
perform the 3D reconstruction because of its efficiency and sufficient ac-
curacy. Other methods may replace DLT in our framework.

log-likelihood ratio:2

ci1i2...iN
= − ln

p (Zi1i2...iN
| a)

p (Zt
i1i2...iN

| ⊘)

=

N
∑

s=1

{[u(is) − 1] ln(1 − PDs
)

−u(is) ln

(

PDs
Φs

|2πRs|1/2

)

+u(is)[
1

2
(zs,is

−Hsx̂a)T R−1
s (zs,is

−Hsx̂a)]} (8)

We use binary variablexi1i2...iN
to indicate ifZi1i2...iN

is
associated with a candidate object or not. Assuming that
such associations are independent, our goal is to find the
most likely set ofn-tuples that minimizes the linear cost
function

c = min

n1
∑

i1=0

n2
∑

i2=0

...

nN
∑

iN =0

ci1i2...iN
xi1i2...iN

(9)

s. t.
n2
∑

i2=0

n3
∑

i3=0

...

nN
∑

iN =0

xi1i2...iN
= 1; i1 = 1, 2, ..., n1

n1
∑

i1=0

n3
∑

i3=0

...

nN
∑

iN =0

xi1i2...iN
= 1; i2 = 1, 2, ..., n2

...
n1
∑

i1=0

n2
∑

i2=0

...

nN−1
∑

iN−1=0

xi1i2...iN
= 1; iN = 1, 2, ..., nN .

Eq. 9 is known as the multidimensional assignment prob-
lem, which it is NP-hard for the dimensionN ≥ 3. The
processing time for the optimal solution is unacceptable
in dense tracking scenarios, even if a branch-and-bound
search method is used, because such a method is inevitably
enumerative in nature. The alternative is to search for a
sub-optimal solution to this combinatorial problem, using
greedy approaches and its variants, Lagrangian relaxation,
simulated annealing or tabu search. We choose the Greedy
Randomized Adaptive Search Procedure (GRASP) [18] as
the basic paradigm and modified it to handle occlusion rea-
soning (Sec. 2.3).

2.2. Generic GRASP in Multi-view Scenario

We briefly outline a generic GRASP implementation for
the multidimensional assignment problem [18] and then ad-
just it to our multi-view scenario:

In the local search phase, we adopt the so-called 2-
assignment-exchange operation. That is, for two tuples

2We can append to this cost function other types of costs, e.g., the mea-
sures of object appearance, if such measures are available,and define a
reasonable weighing scheme to yield normalization.
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GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE:

Initialization by computing the costs for all possible associations
For i = 1, ..., maxIter

1. Randomly construct a feasible greedy solution,

2. Recursively improve the feasible solution by local search,

3. Update the best solution by comparing the total costs,

Output the best solution found so far.

Zi1...ij ...iN
andZi′

1
...i′

j
...i′

N
from the feasible solution, we

exchange the assignment toZi1...i′
j
...iN

andZi′
1
...ij ...i′

N
if

such operation decreases the total cost. The exchange takes
place recursively until no exchange can be made anymore.

We adopt a technique similar to “gating” during the ini-
tialization step to reduce the number of possible candidate
tuples as follows. Given a pair of calibrated views, our
technique establishes the correspondence of the two pro-
jected images of an object using epipolar geometry. Thus,
we only need to evaluate the candidate tuples that lie within
the neighborhood of corresponding epipolar lines. To en-
force this neighborhood search, we set the cost of associat-
ing measurements that violate the epipolar-geometry con-
straints to a large number. This pruning step in build-
ing the multidimensional assignment problem, which we
call epipolar-neighborhood search, becomes crucial for the
overall efficiency, which will be demonstrated in Sec. 3.

2.3. Iterative GRASP in Multi-view Scenario

The constraints in Eq. 9 imply the one-to-one correspon-
dence between measurements and objects, except for the
dummy measurement and its corresponding object. Each
measurement is either assigned to some object or claimed
to be a false-positive detection. An object is either mea-
sured in each view or it is missed. This strict formulation is
not desirable in the multi-view tracking scenario, as shown
in Fig. 2. With the one-to-one correspondence constraint,
the numeric optimal solution might associate(z1,1, z2,1) to
objecto1 and (z1,3, z2,2) to objecto2 or decide objecto2

is not detected in view 1. This ambiguity is difficult to re-
solve since both interpretations have acceptable total costs.
Our basic assumption is that if an occlusion occurs in one
view, it does not happen in other views at the same time.
This requires that we relax the one-to-one correspondence
constraint: Measurements that overlap due to occlusion or
imperfect segmentation during the detection stage and thus
are interpreted as a single measurement can be assigned to
multiple objects.

We denote the set of all possibleN -tuples asF =
Z1×...×Zi×...×ZN , whereZi is the set of all the measure-
ments in viewi plus the “dummy” measurement. Solving
Eq. 9 yields a set of assignments for theN -image measure-

o
1

o
2

z

z
1,1 z

1,3

2,2

2,1
z

Figure 2. Stereoscopic reasoning for assessing occlusion.From a
single view, two objectso1 ando2 occlude each other and yield
a single measurementz1,1. A single-view tracker may lose track
of one of the objects or may misinterpret the nearby false-positive
detectionz1,3 as one of the objects. If two views are available,
the objectso1 ando2 can be matched to their respective measure-
mentsz2,1 andz2,2. Stereoscopic reasoning reveals thatz1,1 is the
image of both objects andz1,3 an unrelated measurement.

ment setZ, where a specific assignment can be written as
{zi1i2...iN

|xi1i2...iN
= 1}. We divide the set of assignments

into two subsets as follows:

1. Confirmed associations:
Mc = {Zi1i2...iN

|xi1i2...iN
= 1; i1 6= 0; ...; iN 6= 0}.

2. Suspicious associations:
Ms = Z \ Mc.

Suspicious associations involve both dummy measurements
zs,0 that indicate an object was not detected in some view
and measurements that were assigned to the dummy ob-
ject⊘ (i.e., false positive detections).

Eq. 9 does not contain constraints with zeros for indexi.
Associations in setMs have at least one zero in their sub-
scripts.

The new version of GRASP that we propose here (see
pseudocode for Iterative GRASP below) computes a solu-
tion to an assignment problem that is described by Eq. 9,
except with the already confirmed assignments inMc re-
moved from the feasible assignment setF . During an it-
eration of Iterative GRASP, an assignment found greedily
in the construction phase can thus not involve a tuple al-
ready inMc. The algorithm generates two subsets from the
resulting solution and iterates until a maximum number of
iteration is reached orMc in the current iteration is empty.

2.4. Multi-Object Tracking with Fusion of Infor-
mation from Multiple Views

Thus far we described a method to solve multi-view data
association in a single time step. The resulting solution al-
lows us to estimate the current 3D position of each object
in the scene using Eq. 7, which selects the 3D position that
minimizes the sum of the stereoscopic reconstruction errors
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ITERATIVE GREEDY RANDOMIZED ADAPTIVE SEARCH PRO-
CEDURE(IGRASP):

Building Phase
Initialization by computing the costs for all possible associations
in setF ;
Solving Phase
For i = 1, ..., maxIter

1. Formulate multidimensional assignment problem on setF ,

2. Run standard GRASP described in Sec. 2.2,

3. Partition the computed solution into confirmed setMc and
suspicious setMs.

4. If SetMc is empty, terminate;else F = F \ Mc

Output the best solution found so far.

computed for each view. To construct 3D object trajecto-
ries, we must to solve another data association problem, the
assignment of current 3D object positions to the 3D tracks
established in previous time steps. We can solve this prob-
lem indirectly by determining, for each of theN camera
views separately, the assignment of the 2D projections of
current object positions to the 2D tracks established in pre-
vious time steps. For each object in each camera view, we
use a 2D Kalman filter to predict the object position in the
next frame. Across-frame data association can then be ac-
complished by matching each 2D object track to the 2D
measurement that is closest to the predicted 2D object posi-
tion.

The 2D across-time data association method will likely
result in ambiguities and mismatches due to occlusions in
densely populated scenes. If objects do not distinguish
themselves by unique moving directions, the occlusions
must be resolved to prevent track lost or track switch. We
therefore analyze the across-view correspondences, estab-
lished with IGRASP in each time step, which should be
consistent through time. In particular, measurements of
an object that are associated at timet should correspond
to tracks that have been associated at timet − 1. We
maintain a consistency table during tracking that records
the consistency of correspondence across views (Fig. 3).
If some measurements(z(t)

1,i1
, z

(t)
2,i2

, ..., z
(t)
N,iN

) are associ-
ated at current time step, their associated 2D trackers
(f1,j1 , f2,j2 , ..., fN,jN

) form an entry in the consistency ta-
ble. Here the trackerfk,jk

tracks measurementzk,ik
in view

k independently. If the 2D trackers perform well, this en-
try should be maintained in the table until some tracker
ends. However, if some 2D tracker incorrectly associates
a measurement in its own view, it will be corrected by
looking at the corresponding entry in the table and histor-
ically comparing its consistency. The correction is per-
formed only when the associations across at least⌈N/2⌉

t

z

t

z

z z

z

t
t

t

t2,1

2,1

1,1

1,1

1,2

3,2

3,1

3,2

2,2

2,2

3,1

1,1 2,1 3,1

1,2 2,2 3,2

(t     t     t    )

(t     t     t    )

Camera 1

Camera 2
Camera 3

Track Consistency Table

Figure 3. Example of the tracker-to-tracker fusion. Two objects are
observed in three cameras, and there are two separate 2D trackers
fi,1, fi,2 for each camerai. Based on the tracking history, the
tracker-to-tracker associations are maintained in the track consis-
tency table, e.g., trackerf1,1 from camera 1, trackerf2,1 from
camera 2, trackerf3,1 from camera 3 are associated to form an
entry in the table. When occlusion occurs in camera 1, either
f1,1 or f1,2 will lose track when they “compete” for measurement
z1,1. However, by looking at the solution of association across
views {(z1,1, z2,1, z3,1), (z1,1, z2,2, z3,2)} and checking the en-
tries in the table, the 2D tracker that initially lost the competition
for z1,1 in camera 1 can recover and “claim” measurementz1,1.
As a result,z1,1 is associated with the tracks maintained by both
trackers. By a similar mechanism, our system recovers from the
track-switch problem.

views are consistent (e.g., in 3-camera case, two consis-
tent interpretations are needed). The consistency table
also provides a good partial feasible solution for the as-
signment problem because measurements tracked by estab-
lished trackers(f1,j1 , f2,j2 , ..., fN,jN

) are very likely to be
associated again. By comparing the assignments computed
by IGRASP with the track tuples listed in the consistency
table, our system can also prevent assignments that could
mistakenly result in a switch of tracks.

The idea behind our method is essentially tracker-to-
tracker sensor fusion. We maintain sensor-level trackers for
each view and adjust their individual estimations after find-
ing correspondences across views. Our distributed tracking
style is extremely important if the communication overload
or burden of a central computing node need to be mini-
mized. The alternative is to collect all measurements from
each view, reconstruct their 3D positions, and apply recur-
sive Bayesian tracking in 3D space. We do not currently
follow this centralized style because the reconstructed 3D
positions are not sufficiently accurate due to sub-optimal
across-view associations and detection errors. Future work
will compare the performance of the two approaches.

3. Experiments and Results

Observing the flight behavior of large groups of bats or
birds is fascinating – their fast, collective movements pro-
vide some of the most impressive displays of nature. Quan-
titative studies of cooperative animal behavior have typi-
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OCCLUSION REASONING FOR3 VIEWS IN ONE TIME STEP

Input: Current measurements{zs,is} and 2D-tracks{fs,is}

I. Within each views, assign measurementszs,is to 2D-tracks
fs,js using bipartite matching.

II. Run IGRASP to find across-view associations of measure-
ments{(z1,i1 , z2,i2 , z3,i3)} and construct the track-to-track
associations{(f1,i1 , f2,i2 , f3,i3)}.

III. Check if the track-to-track association tuples are consistent
with entries in the Track Consistency Table (Fig. 3).

For each tuplef ∈ {f1,i1 , f2,i2 , f3,i3}:

• New Track: If tuple f consists of at least two track
labels that do not appear in the table, insertf into the
table as a new entry.

• Occlusion and Lost Track: If tuple f is partially
matched to some entry in the table (i.e., 2 of 3 track
labels match), its labelfs,is differs from fs,i

′

s
in the

table entry, and 2D-trackfs,i
′

s
was found lost in step I,

then assign measurementzs,is to fs,i
′

s
.

For remaining tuples, pair them and check:

• Track Switch: If two tuples are partially matched to
table entriesa andb (i.e., 2 of 3 track labels match),
labelfs1,is1

in tuple 1 differs from the label ina, label
fs2,is2

in tuple 2 differs from the label inb, and a track
label switch results in a match for botha andb, then
reassignzs1,is1

to fs2,is2
andzs2,is2

to fs1,is1
.

IV. Within each view, predict 2D-track state with Kalman filter
based on assignments updated in step III.

cally been limited to sparse groups of only a few individu-
als. The major limitation in these studies has been the lack
of tools to obtain accurate 3D positions of individuals in
dense formations. Although important progress has been
made [3], robust general solutions to 3D tracking, recon-
struction, and data association have been lacking. In our
experiments, we first validated our method using synthetic
data for which we had ground truth and then applied it to
infrared thermal video of colonies of Brazilian free-tailed
bats. We collected this video while the colony was emerg-
ing from its cave roost at night. We reconstructed the 3D
flight paths and thus provided the first stereoscopic analysis
of the emergence behavior of free-ranging bats.

3.1. Validation of Across-View Data Association

We generated synthetic data to test the performance of
our IGRASP using a particle dynamics environment (Au-
todesk Maya). To simulate the scene near a cave in Texas
where we recorded emerging bats, we generated spherical
particles, 28 cm in radius, to move in a 20 x 5 x 5 m3

space at a fixed speed of 2 m/s. We experimented with in-
crementally increasing emergence rates between 1 and 100

particles per second. Sample images with a high degree of
density of particles are shown in Fig. 4. The trajectories
were randomized by placing an axial and radial constraint
on the particle movement. Three virtual cameras with over-
lapping views were positioned laterally and slightly below
the average direction of travel of the particles. Since the cal-
ibration parameters for each camera and the 3D positions of
each particle are known (i.e., the “ground truth”), we can
test whether our solution of the multidimensional assign-
ment problem (Eq. 9) matches particles correctly that are
detected in the three views.

Camera A Camera B

Camera C

Figure 4. Data used for validation of across-view association. The
three views show a scenario in which particles emerged at theright
of the fields of view at a rate of 100 particles/s and moved towards
the left side.

We demonstrate the performance of our IGRASP as a
function of different particle densities in Fig. 5. As the num-
ber of particles increases, an increasing number of particles
share overlapping regions in each field of view, which can
then be detected as a single measurement. We measure as
the “overlap density,” the ratio of number of overlapping
particle projections over the total number of particles (Fig. 5
left), and also the ratio of correct matches as number of cor-
rect tuples found by IGRASP over the ground truth (Fig. 5
right). Our results show that even in very dense scenarios,
IGRASP can recover up to 65% matches correctly. When
20 particles/s are generated, 105 particles on average appear
in a frame with an overlap density of 16%, and 95 % of the
matches IGRASP computes are correct.
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Figure 5. Across-view data association performance of IGRASP.

IGRASP has very few parameters to be adjusted. The
execution time of the algorithm depends on the sparsity of
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the multidimensional assignment problem. We can use the
epipolar constraint to reduce the number of feasible candi-
date tuples (Sec. 2.1). This turns out to be very important
for the overall efficiency of the method. Computing the cost
for all feasible tuples is much more expensive than deter-
mining the assignments (Fig. 6). We limit the costs of the
time-consuming Building Phase using a critical thresholdτ
as follows: Only those measurements whose distances to
the epipolar lines are within thresholdτ are considered to
form feasible tuples. A drawback of using a reduced fea-
sible set is that IGRASP may not find the optimal set of
assignments. Thus, parameterτ plays an important role in
trading off accuracy and efficiency in dense tracking scenar-
ios. The number of iterationsmaxIter affects the optimal-
ity of IGRASP: when the number becomes large, IGRASP
approaches exhaustive enumeration. We setmaxIter = 20
throughout our experiments because its increase did not im-
prove the performance significantly.
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Figure 6. Execution time of IGRASP (our Matlab version) with
different values ofτ for the across-view data assignment. Left:
100 particles/s. Right: 50 particles/s.

3.2. Infrared Thermal Video Analysis

We recorded the emergence of a colony of Brazilian free-
tailed bats from a natural cave in Blanco County, Texas. We
used three FLIR SC6000 thermal infrared cameras with a
resolution of640 × 512 pixels at a frame rate of 125 Hz
(Fig. 7). We implemented our algorithms in C++ and tested
our system on a Intel Pentium 2.36 GHz platform. Pro-
cessing is performed in near real time and depends on the
density of the group (e.g., in a 100 bats/frame scenario, our
system took 3 s to process each frame).

Our experiments showed that we can track each individ-
ual bat in the emergence column, reconstruct their 3D flight
paths, and provide insights into their group behavior based
on trajectory analysis.

To detect moving bats, we applied adaptive background
subtraction to identify the connected components of inter-
est and then used the pixel with the highest intensity within
each component as the position of a bat. We implemented
2D Kalman filters to track bats in each view and solved the
across-time data association with bipartite matching. If a
2D tracker identifies a track loss, it keeps searching along
the projected 2D flight path of the bat for the next 5 frames
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Figure 7. Visualization of camera setup and 150 reconstructed 3D
trajectories. The camera baselines are approximately 1 m. We
adjusted camera pitch, yaw, and roll to capture the full volume of
the 3D column of emerging bats in overlapping field of views. In
each view, there were as many as 200 bats at the same time, with
an average size of5× 5 pixels. The average speed of an emerging
bat was 8.75 m/s. The average direction of the emerging column
can be described by the Euler angles127◦, 97◦ and38◦. The color
differences in the thermal images are due to a lack of radiometric
calibration of the cameras.

to see if it can resume tracking the bat or if it needs to wait
for a reassignment of a measurement when across-view as-
sociations are solved and tracker-to-tracker consistencyis
checked.

Our results show that our method correctly resolves am-
biguities due to occlusions (Fig. 8). However, we cannot ex-
pect to resolve all ambiguities in dense tracking situations
due to insufficient image resolution. We investigated the
performance of our system in resolving occlusions in sce-
narios with four different density levels of the column of
emerging bats (Table 1). We counted the number of times
each 2D tracker claimed to be lost for all three views. If
the system could not resolve occlusion, it generated a new
tracker once the bats were separated again. The number
of computed tracks is therefore usually higher than the true
number of bats. In relatively sparse scenarios, our system
successfully recovered from occlusions and avoided track
switches (40/56=74%). In the highly dense cases, occlu-
sions typically occurred in two or three views at the same
time, and so it was significant that we could correctly inter-
pret 88/368=24% of the occlusions.

We reconstructed the full 3D trajectories of 150 bats and
explored their group behavior during emergence. We mea-
sured the average emerging speed of a bat to be 8.75 m/s
(≈ 20 miles/h), which is consistent with the low end of
the range of emergence speeds reported in the mammal-
ogy literature. We have also resolved the question about
the Euclidean distance between emerging bats. Our results
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Camera A

Camera B
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Camera A Camera A
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Figure 8. Occlusion Interpretation. Bats tracked in infrared video
from multiple views are shown as segmented foreground objects
(blue) with their tracker number (white). Frames 43, 49, and63 are
snapshots before, during, and after occlusion occurred in the field
of view of Camera B, involving four bats that were flying closeto
each other. In particular, Bats 3 and 6 were difficult to distinguish
in frame 49 recorded by camera B. Since their projections were
well separated in the other two views during the period of occlu-
sion, our algorithm was able to correctly interpret the occlusion
by reasoning about the 3D positions of the four tracked bats.The
output from the algorithm indicates that Bat 3 occluded Bat 6in
frame 49 recorded by camera B.

Table 1. Performance of tracking system in resolving occlusions.
Ground truth was established by manual marking of four 100-
frame sequences.

Number of True Computed Number Number of
Bats per Number Number of of Oc- Recovered
Frame of Bats Tracks clusions Occlusions

20 25 33 56 40
40 50 63 94 54
60 71 90 140 86
100 119 185 368 88

show that when 1–15 bats emerge, their average distance is
90 cm. The average distance drops to 35–45 cm as soon
as the emergence column contains more than 25 bats per
second (Fig. 9).

4. Conclusions and Future Work

Our experiments showed that our method can reconstruct
3D trajectories of tightly-spaced, fast-moving objects and
can accurately settle track uncertainties that could not be
resolved from single views due to occlusion.

Our work can be extended to incorporate both across-
time and across-view associations at the same time in a
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Figure 9. Results of 3D trajectory analysis: Average distance be-
tween emerging bats as a function of emerging rate, expressed by
the average number of emerging bats per second.

single optimization framework. It would be interesting to
determine whether forward and backward inferences on the
assignment over time could enhance the performance of our
approach for highly dense groups. We also plan to do addi-
tional data mining on the group behavior of bats, once we
generated hundreds of thousands of trajectories, which will
be extremely valuable for scientists in other fields.
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