
Boston University Computer Science Technical Report No. BUCS-TR-2009-006

Active Hidden Models for Tracking with Kernel Projections

Samuel Epstein and Margrit Betke
Department of Computer Science

Boston University
{samepst, betke } @cs.bu.edu, www.cs.bu.edu/groups/ivc

Abstract

We introduce Active Hidden Models (AHM) that utilize
kernel methods traditionally associated with classification.
We use AHMs to track deformable objects in video se-
quences by leveraging kernel projections. We introduce the
“subset projection” method which improves the efficiency
of our tracking approach by a factor of ten. We success-
fully tested our method on facial tracking with extreme head
movements (including full 180-degree head rotation), facial
expressions, and deformable objects. Given a kernel and a
set of training observations, we derive unbiased estimates
of the accuracy of the AHM tracker. Kernels are gener-
ally used in classification methods to make training data
linearly separable. We prove that the optimal (minimum
variance) tracking kernels are those that make the training
observations linearly dependent.

1. Introduction
The design of visual tracking methods is a fundamental

goal of computer vision. Tracking methods are needed to
solve important video understanding problems such as in-
terpreting human activities for video-conferencing, surveil-
lance, human-computer interaction, sign-language recogni-
tion, and driver assistance. In this paper, we introduce a new
approach to visual tracking that differs significantly from
prior work described in the computer vision literature. Our
approach is based on techniques from classification theory,
in particular, kernel projections. We show how this funda-
mental technique can become extremely valuable in the new
context of tracking.

Our exemplar based method tracks rigid or deformable
objects by uncovering their hidden states. We introduce Ac-
tive Hidden Models (AHMs) to describe the feasible object
states in the hidden state space. We train a Active Hidden
Model in advance of the tracking process by applying a ker-

nel function to a large set of training images. Using a kernel
function, we can map the training images, which are consid-
ered points in an observation space, to their corresponding
points in the feature/state space. We select training images
that show the objects of interest in representative rigid or
nonrigid transformations. We then define tracking as the
problem of identifying the image in the observation space
that best describes the rigid or non-rigid object transforma-
tion seen in the current video frame. To find the best match-
ing image, we map the current object image into the hidden
space via the same kernel function and project the result-
ing point onto the subspace that defines the Active Hidden
Model of the object. We then reconstruct a fundamental
appearance of this hidden point, resulting in the best-effort
reconstruction of the object.

To design a practical tracking system that runs in real
time, we introduce a method to approximate the kernel pro-
jection. Our experiments show that only a small subset of
the training set (∼ 1/10) is needed to approximate a projec-
tion accurately. In some of our experiments, a subset of size
of 2 is sufficient for an accurate projection.

We provide unbiased estimates of the accuracy of our
AHM tracking approach given a kernel function and a train-
ing set. We show that the optimal (minimum variance) ker-
nels are those that make the training data linearly dependent
in the state space.

We successfully applied our AHM-based tracking
method to three problem domains – recovering face pose
and location, understanding facial expressions, and track-
ing the deformations of candy wrapper. For each domain,
we show that our tracking method can recognize the object
transformations accurately and in real time.

The computer vision literature includes various tracking
approaches that also leverage results of classification the-
ory; for example, tracking can be interpreted as a model-
based binary classification problem which decides whether
a region in the current image matches the object model or

1

background [1, 16]. In contrast, our approach does not use
a decision function.

Approaches that use kernels for tracking have received
much attention (e.g., [4, 10]). The way kernels are applied
in these previous works is very different from our approach
and it is important to note the difference. In “kernel-based
tracking” [4], kernels are convolved with image data to pro-
vide spatial smoothness. In contrast, we use a kernel func-
tion to map image data of an object into a hidden state space
and thus instantiate the Active Hidden Model of the ob-
ject. Comaniciu et al. [4] used kernels to spatially mask
histogram-based object representations, such as color. De-
wan and Hager [10] proposed the use of a family of kernel-
based sampling functions to produce object-specific kernel
configurations. Han et al. [8] used kernels to better approx-
imate the posterior densities propagated in particle filtering.

As in “eigentracking,” e.g., [3], our method uses a least-
squares approach to find an approximate representation of
the object of interest. Instead of projecting the current mea-
surement onto a select number of principal components,
we approximate the projection onto the entire subspace
spanned by the training data in the state space.

Our approach is not an extension of deformable template
matching (e.g. [17]) because we do not use explicit parame-
terization of the object transformation. Our approach there-
fore also differs from Active Blobs [14], Active Shape Mod-
els (ASM) [6] and Active Appearance Models (AAM) [5],
which use parameterized models of object features, such as
polygons and textures. These approaches track instantia-
tions of their models by projecting the current frame onto
the space spanned by the principal components of the re-
spective features. In contrast to Active Blobs, ASMs, and
AAMs, which are explicit models, Active Hidden Models
are represented by the linear span of the training images in
a hidden state space. Like the Active Blob, ASM, and AAM
approaches, instantiations of AHMs are computed by a pro-
jection from real-time video. Unlike Active Blobs, ASMs
and AAMs, these instantiations are not directly accessible.

De La Torre and Frade [9] recently proposed to ex-
tend parameterized appearance models (AAMs, etc.) so
that the non-linear structure of the data can be represented.
Their approach uses Kernel Principal Component Analysis
(e.g.,[15]), which must rely on the whole data set. In con-
trast, our approach only requires the use of a small subset
of training images to yield an accurate approximation of
kernel projection onto the linear subspace that defines the
AHM of the object. We summarize our contributions and
their novelty:

• We introduce Active Hidden Models that utilize kernel
methods traditionally associated with classification.

• We introduce the approach of subset projection to en-
able real-time tracking.

• We describe a method for tracking with Active Hid-
den Models that uses subset projections and factored
sampling.

• We provide a theoretical description of the variance of
the kernel project and prove that the optimal (minimum
variance) tracking kernels are ones that produce linear
dependency in the training data. This is in contrast
to the usage of kernels in classification theory which
traditionally aims to make training data linearly sepa-
rable.

• Our experiments show that Active Hidden Models
are efficient and practical for tracking rigid and de-
formable objects.

2. Methods
Our approach involves an offline training phase and an

online test phase, i.e., the tracking phase. In the training
phase, we record the object to be tracked while it is mov-
ing through space or deforming in some typical manner.
From this video, we choose representative sub-images that
show the object in different positions, orientations, defor-
mations, or other conditions. The subimages serve as tem-
plates Q = {qi}i=1,...,n in the observation space Z, which
are transformed into the hidden state space by a mapping φ
via the use of a kernel (Fig. 1). The span of the states
{φ(qi)}i=1,...,n defines the Active Hidden Model of the ob-
ject.

In the tracking phase, the object sub-image z is first
mapped to a point φ(z) in the hidden state space, and from
there projected onto the subspace that is spanned by the Ac-
tive Hidden Model to yield a hidden state x. The appear-
ance of this hidden state φ−1(x) can be approximated by â.
The reconstructed image â can be used for positional track-
ing in the original video.

In Sec. 2.4, we describe how to use Active Hidden Mod-
els for tracking. Our algorithm goes from computing the ob-
servation z to its mapping φ(z), to its hidden state x, and fi-
nally to the approximate appearance â of the hidden state x.
To explain this algorithm, we first give a background on ker-
nel projections from machine learning [12] (Sec. 2.1). We
then describe our own contribution of the subset projection
(Sec. 2.2) and show how to construct an approximate ap-
pearance â of the hidden state x (Sec. 2.3).

2.1. Background on Kernel Projections

Given is a set of observations Q = {qi}i=1,...,n from ob-
servation space Z. There is a mapping φ from observation
space Z to state space F = Rl, where l could potentially be
infinite. The kernel function k : Z × Z → R is the inner
product of this mapping:

k(q, q′) = φ(q)T φ(q′).

â
*q

Real−time
Observation

φ()z

Observation
Space

Hidden
State
Space

φ−1φ

z

Mapping
Kernel

φ

Hidden State x

φ()q

φ−1

Active
Hidden
Model

Training
Templates

qi

i

Figure 1. Overview of Approach. We map template images of
the object (black points) from the observation to the hidden state
space to create the Active Hidden Model (AHM) of the training
set (blue line). During tracking, the hidden state x (red) of the
current object observation z is computed by projecting φ(z) onto
the AHM. An approximation of the appearance of the hidden state,
â ≈ φ−1(x), can be created using kernel-dependent methods and
the training set. The hidden state (green) closest to x is that of the
best-matching template image q∗.

The kernel trick allows φ to be implicitly defined by ker-
nel k, so that the mapping φ is “hidden.” The Gram matrix
K is an n × n matrix, whose (i, j)th element is k(qi, qj).
The design matrix Φ is an l × n matrix whose ith column
is φ(qi). It follows that ΦT Φ = K. The empirical map is
defined by k : Z → Rn, where the ith value of vector k(z)
is k(qi, z).

Given an observation z ∈ Z, the kernel projection maps
φ(z) to its hidden state x of observation z. This hidden
state x is the closest point in the linear span of Q in F to
φ(z). Although x is not explicitly defined, it can be repre-
sented as the linear combination of the elements of Q:

x =
n∑

i=1

α(i)φ(qi) = Φ α,

where α(i) is the ith element of the vector α that represents
the coordinates of x using Q as a basis. The kernel projec-
tion is of the form [12]

α = Φ+φ(z) =
(
ΦT Φ

)−1
ΦT φ(z) = K−1k(z), (1)

where the term Φ+ represents the pseudoinverse of the de-
sign matrix. The Gram matrix K might be singular, but the
limit limδ→0(K + δI)−1k(z) is guaranteed to exist by the
definition of pseudoinverses.

The coordinates α can be used to compute the squared
distances d2

i from the hidden state x to each training object
qi ∈ Q in F :

d2
i = ‖φ(qi)− x‖2 = ‖φ(qi)− Φα‖2 (2)

= k(qi, qi)− 2αT Ki + αT Kα. (3)

The term Ki represents the ith element of K. We define the
weights wi of each training set with respect to observation
z and kernel k to be the inverse of the squared distance of z
to qi:

wi = d−2
i (4)

The weights are important because they represent the level
of similarity between the hidden state x and each training
object qi. This similarity will be leveraged in Sec. 2.3 to
recreate the approximate appearance of x.

2.2. Subset Projection

The computation complexity of the kernel projection is
on the order of |Q|, which may be prohibitively expensive if
the training set size is large. We introduce the subset projec-
tion, which approximates the kernel projection using only a
subset R ⊆ Q, where R = {ri}i=1,...,m and m ¿ n. The
first step is to project φ(z) onto the linear span of R to yield

β = K−1
R kR(z), (5)

which represents a vector of size m, the projection coordi-
nates of z with respect to R. The terms KR and kR are the
Gram matrix and empirical map with respect to R and k.
We then solve the reduced subset problem [12]:

min
β

∥∥∥
n∑

i=1

αiφ(qi)−
m∑

i=1

βiφ(ri)
∥∥∥

2

by taking the derivative with respect to β and setting it to 0.
This yields

KRQα = KRβ,

where KRQ is the m × n matrix whose (i, j)th element
is k(ri, qj). Instead of taking the (pseudo)inverse of KR,
which solves the reduced subset problem, we substitute β
with Eq. 5 and solve for α:

KRQα = KRK−1
R kR(z) (6)

α̂ = K+
RQkR(z). (7)

We will show experimentally the subset projection α̂ of
Eq. 7 gives an accurate approximation of the kernel pro-
jection α for small subsets R with |R| ≈ |Q|/10.

2.3. Active Hidden Models

The Active Hidden Model is the linear span of the train-
ing set Q in the state space implicitly defined using a ker-
nel k. Real-time observations z can be projected onto
AHMs using the kernel or subset projections as described
in Eqs. 1 and 7:

α̂ = K+
RQkR(z) ≈ K−1k(z).

The next step is to determine the appearance of x. One
might argue that if x is the hidden state of observation z,
then naturally z is the appearance of x. However we wish
to reconstruct a fundamental appearance, a, which maps
directly to this state, defined by

φ(a) = x.

Since x is hidden, the appearance is not readily deter-
mined. The challenge of determining such an approxima-
tion is known as the pre-image problem in the kernel litera-
ture [13].

Using Eq. 2, the distance di of the hidden state x to each
training image qi can be computed from the projection co-
ordinates α̂. One solution to the pre-image problem is to se-
lect the training image q∗ closest to x as α̂. Another option
is to approximate the pre-image of x using the weights w
of the training set, computed by Eq. 4. This reconstruction
depends on the choice of the kernel used. An example of a
kernel that we used in our experiments, the threshold kernel,
is given in Fig. 2 The kernel first performs thresholding of
a pair of greyscale images according to threshold τ to pro-
duce two processed binary observations. The final output
is the size of the intersection of the “1” pixels of these two
processed observations. Thus, the thresholding kernel is an
intersection kernel.

760k(q,q’) =

Figure 2. The application of the threshold kernel with examples
of greyscale observations q and q′, their thresholded versions and
intermediate intersection image.

Given the weights w produced using a threshold kernel
with threshold τ , the APPEARANCEAPPROXIMATION al-
gorithm (see pseudocode below) computes the approximate
appearance â of the hidden state x:

φ(â) ≈ x.

The binary image output â is created by iterating through
every pixel position of the training images and setting a
temporary value δ to 0. If the grayscale value of training
image qi is greater than threshold τ at the current position
index (xpos, ypos), then it will “vote” for a 1 pixel by adding
weight wi to δ. Similarly wi will be subtracted from δ if
its intensity is below threshold τ . The contribution of each
training sample qi to the construction of â is proportional
to wi. After all training images have voted, the output â at
position (xpos, ypos) will have intensity 1 if δ ≥ 0, other-
wise 0.

1: function APPEARANCEAPPROXIMATION(Q, τ, w)
2: for xpos = 1 to width of training images do
3: for ypos = 1 to height of training images do
4: δ = 0
5: for i = 1 to n do
6: if qi(xpos, ypos) ≥ τ then
7: δ = δ + wi

8: else
9: δ = δ − wi

10: if δ ≥ 0 then â(xpos, ypos) = 1 else 0
11: return â

2.4. Tracking with AHMs

We use the kernel projection and appearance recovery
method described above to track a deformable object in
real-time video. In this section we provide pseudo code of
our tracking algorithm, called AHM-TRACKER.

The input to the AHM-TRACKER is the training set Q, a
kernel function k, the corresponding Gram matrix K, and
its (pseudo)inverse. The training set consists of a group
of representative images of the deformable object of inter-
est. The GetInitPos and GetInitWeights functions lever-
age apriori knowledge of the application to produce the
starting configuration of the tracker. This approach is sim-
ilar to that of parameterized models (AAMs etc.), whose
starting states are usually outside the model formulation.
For our implementation of the AHM-TRACKER, the initial
position and weights are decided using an exhaustive search
over the whole training set to find the training image that
best correlates with the start frame.

The GetVideoFrame function returns the complete im-
age frame at the current time t. The GetRealTimeObs
function crops a subimage located at the current position p
from the current video frame v. This subimage is observa-
tion z.

1: function AHM-TRACKER(Q,K, k)
2: AHM-HELPER(0,GetInitPos(),GetInitWeights())
3:
4: function AHM-HELPER(t,p,w)
5: v = GetVideoFrame(t)
6: z = GetRealTimeObs(v, p)
7: R = RandomSubset(Q)(w)
8: α̂ = SubsetProject(Q,k)(z,R)
9: for i = 1 to n do

10: d2
i = SquaredDistanceQ,k(z, α̂)

11: w′(i) = d−2
i

12: â = APPEARANCEAPPROXIMATION(Q,τ)(w′)
13: p′ = PositionalSearch(v, p, â)
14: Output(t, p′, w′, â)
15: AHM-HELPER(t + 1, p′, w′)

The RandomSubset method produces a small subset
R ⊂ Q of size m ¿ n. Each member of R is drawn ran-
domly from Q according to the current weights w. Thus
training images that were close to the hidden state of the
object in the previous frame have a larger chance of being
selected for the current subset R. There are no duplicate
elements in R. Once R has been determined, the method
SubsetProject produces the subset projection of z using R
and Q. To compute K+

RQ of Eq. 7, rows of K correspond-
ing to the elements of R are copied into a new matrix and
its pseudoinverse is computed.

When the coordinates α̂ have been created, they are
used to compute the distances in the state space and then
a set of weights w′ using Eq. 3. The approximate funda-
mental appearance â of the hidden state is computed by
APPEARANCEAPPROXIMATION, which takes as inputs the
weights w′ and the training set Q.

The AHM-TRACKER uses the APPEARANCEAPPROXI-
MATION algorithm (Sec. 2.3), which outputs binary image â
if the threshold kernel is used. The PositionSearch com-
putes the optimal local alignment p′ of â, given the current
video frame v and the previous position p.

The Output of the AHM-TRACKER for each frame is
the 2D position of the deformable object, the weights w of
the training images and the approximate appearance â of
the hidden state. The AHM-TRACKER can be extended to
output other information, such as a decision about the state
of the deformable object. This requires additional informa-
tion about the training set. For example, to accurately de-
tect facial expressions, each training image can be annotated
with a label “smiling,” “frowning,” “neutral,” etc. To output
such additional information, the AHM-TRACKER can use
the weights w′ and these labels to recognize (classify) the
current object transformation, for example, facial expres-
sion.

3. Experiments and Results
We implemented the AHM-TRACKER in C++ on an In-

tel Dual 2.10 GHz CPU. The AHM-TRACKER runs in real
time. Both training and testing videos were recorded using
a Dell XPS M1330 Webcam.

The AHM tracker was tested on three datasets which
we call (1) Head Pose (2) Facial Expressions and (3) De-
formable Candy. We established the ground truth labels of
the training data manually. These labels classify the specific
facial expressions, head orientations or deformation states
of the candy wrapper. Our training data did not need any
explicit manual feature marking. The datasets 1 and 2 are
representative of input data to human-computer interfaces,
for example, a camera-based mouse-replacement system for
people with disabilities [2]. Dataset 3 has been included to
demonstrate the breadth of applications of this system.

The AHM-TRACKER uses the threshold kernel with

grayscale threshold τ . The AHM-TRACKER uses the AP-
PEARANCE APPROXIMATION algorithm and a local posi-
tional search with a binary alignment operator (Hamming
distance). Each video sequence is tracked using a training
set with pre-computed Gram matrices.

To compensate for fast motion of the object of interest,
we applied the AHM-TRACKER on each video frame four
times, each time incrementally updating the position esti-
mate p and â.

3.1. Head Pose Estimation

Dataset 1 involved four subjects – two men, two women.
We collected 41–48 training images of size 80 by 100 pix-
els, consisting the lower head region at different viewing
directions (Fig. 3). From each training set, we surprisingly
only needed a dynamic subset size of 5 for all head pose
experiments.

Figure 3. Sample Training Images of Subject B in Head Pose Ex-
periment.

Figure 4. Tracked movements of faces of subjects A, B, and D.
Top: Original frames with detected objects (blue bounding boxes)
and best matching training images q∗ (inset). Bottom: Binary
images computed from threshold kernel k and weights w with
detected objects z (blue bounding box) at location p and recon-
structed template â (inset) with similar appearance of z. Correc-
tion detections are shown for subjects B and D, and a misalignment
for subject A.

We instructed the subjects to turn their heads 180-
degrees and move rapidly. The videos we recorded of these
movements contained 382 frames on average. Frame-by-
frame inspection of the video verified that a full spectrum
of different face poses was recorded for each subject. These
motions are more general than the motions captured by stan-
dard ASM and AAM formulations, due to the 2D nature of
their models (points/polygons). AAM-based methods re-

Table 1. Results of head pose experiment: The detection rates for
the four accuracy measures show that the various head poses of
subjects B–D were recognized accurately (see “Correct” detec-
tions in (1)). The mis-detections for subject A were due to the
distance of the subject to the camera and the low contrast record-
ing of her face.

Video Accuracy Measures (%)
Subj. # Frames Param. (1) (2) (3) (4)
A-1 294 τ1–τ4 39 31 29 1
A-2 275 τ1–τ4 42 0 45 13
B-1 427 τ2–τ4 100 0 0 0
B-2 472 τ2–τ4 96 4 0 0
B-3 344 τ2–τ4 98 1 1 0
B-4 344 τ2–τ4 100 0 0 0
C-1 772 τ2–τ3 87 8 5 0
C-2 351 τ2–τ3 76 16 8 0
C-3 344 τ2–τ3 96 4 0 0
C-4 169 τ2–τ3 100 0 0 0
D-1 494 τ1–τ4 100 0 0 0
D-2 294 τ1–τ4 89 9 2 0

quire non-trivial formulations [7] to recover from the kind
of self-occlusions of the face that we included in our exper-
iments.

Since it was not immediately apparent which threshold
to use for the binary kernel, we tested four different thresh-
olds τ1–τ4 (grey-levels 30, 50, 70, and 90). We found that
the extreme thresholds τ1 or τ4 could not be used for some
subjects due to their skin color (column 3 in Table 1).

The accuracy of the position and orientation estimates
was determined by using manual marking over all frames.
To measure accuracy of the orientation estimate of the
AHM-TRACKER, the current frame was compared to the
training image with the highest weight, a very conserva-
tive measure of the orientation output. The measures of
accuracy are: (1) Correct - the AHM-TRACKER exactly
estimates position and orientation, (2) Unknown Orienta-
tion - the AHM-TRACKER is correctly aligned, but the
max-weighted training image does not provide the correct
alignment, (3) Misaligned - the AHM-Tracker is tracking
the object, but there is a misalignment of features (e.g., the
left nostril is matched with the right nostril), (4) Lost - the
AHM-TRACKER is not tracking the object of interest.

The detection rates for the four accuracy measures show
that the estimates of the various head orientations and posi-
tions of subjects B–D were extremely accurate, with correct
performance close to 100 % (Table 1). Subject A was the
most difficult target to track, due to her distance from the
camera, and the low contrast recording of her face.

3.2. Facial Expression

We tested the AHM-TRACKER on video of extreme
changes in facial expressions. The training set consists of 19
training images of dimension 183×107 of a mouth smiling,

neutral, and frowning (Fig. 5). The purpose of this experi-
ment is to show the completeness of the AHM-Tracker and
also the effects of the subset size on accuracy. The AHM-
Tracker was run on the same test video using dynamic sub-
set sizes of 1 through 4. This video contains 444 frames of
a subject making extreme facial expressions. The accuracy
was determined by a manual comparison of the video to the
highest weighted training image. Our results show that the
three expressions can be detected accurately (Fig. 5).

The recognition rates using subset sizes of 3 and 4 were
high, with success rates of 95% and 96%, respectively (Ta-
ble 2). Remarkably, the recognition accuracy rate was still
reasonably high using a subset size of 2, with a success rate
of 82%. The trivial case of a subset size of 1 yields a success
rate of 66%.

Figure 5. Tracked deformations of facial expressions (explanation
in Fig. 4). The expressions of the best-matching template (insets)
accurately represent the detected object of interest, here the mouth.

Table 2. Results of facial expression experiments as a function of
the dynamic subset size. The three measures were computed by
averaging the detection performance over the 444 frames of the
facial-motion test video.

Subset Size Correct (%) Marginal (%) Incorrect (%)
1 66 14 20
2 82 7 11
3 95 1 4
4 96 2 2

3.3. Candy Deformation

The AHM-TRACKER was tested on four videos of
a candy wrapper being squeezed and moved (228–401
frames). The training set consists of 38 training images of
dimension 186 × 65. We used a dynamic subset size of 8.
Our experiment showed that our method tracked the posi-
tion and deformation of the wrapper correctly (see sample
results in Fig. 6).

3.4. Competing Method

The first application of AHM-TRACKER will be to re-
place a very popular, worldwide-used, template-based HCI

Figure 6. Tracked deformations of a candy wrapper (explanation
in Fig. 4). The tracker correctly detects the increasing level of
folding.

system [2]. This system was tested on subject B in 50 se-
quences performing the same extreme motions as the head
pose and facial expression experiments, with an unaccept-
able rate of 9 lost features out of 50 trials. In comparison,
our approach did not result in tracking failure in almost all
cases and successfully recovered from misalignments.

4. Prediction Theory of Active Hidden Models
The parameter τ of the threshold kernel was determined

experimentally. This introduces an open problem regarding
Active Hidden Models:

Given a representative training set, how does the choice of
a kernel effect the accuracy of the AHM-TRACKER?

In this section we delve into some of the theoretic aspects
of Active Hidden Models and give a partial answer to this
question. To address the notion of “accuracy,” we first as-
sume that the real-time observation z is the realization of a
random variable Z over observation space Z. This implies
that its corresponding hidden state x is also the realization
of a hidden random variable.

The random variable Z represents a measure of the ob-
servations (and hidden states) of the AHM-TRACKER. We
prove there exists an unbiased estimate of the covariance of
the kernel projection for a special set of kernels where the
training set Q is centered. A set Q is centered with respect
to a kernel k if

n∑

i=1

φ(qi) = 0. (8)

From this definition, we can now use the structure of the
Gram matrix of centered kernels to predict the accuracy of
their kernel projections.

Theorem 1. Given is the realization z ∈ Z of random
variable Z . If the set Q is centered with respect to k and
consists of independent samples of Z , then an unbiased

estimate Ĉ of the covariance of the kernel projection of z
(Eq. 1) is of the form:

Ĉ =
1
n

K+K

The proof can be found in the appendix.

Corollary 1. The trace of the projection covariance esti-
mate Ĉ is equal to the rank of K:

trace(Ĉ) = rank(K).

This corollary follows directly from the definition of K+K
and says that the covariance of the kernel projection is di-
rectly proportional the level of linear independence of the
mapping of training set Q in the state space. These results
have not been confirmed experimentally, since the scope of
this paper is limited to threshold kernels, whose parameter τ
only effected the rank of the Gram matrices in the extreme
ends of its range. Another open issue is the extension of
Theorem 1 to uncentered kernels.

Our theoretical results give a general intuition about a
symmetry between classification and tracking. In classifi-
cation, kernels are used to make training data linearly sep-
arable. We show the optimal (minimum variance) tracking
kernels are those that make the training observations lin-
early dependent.

5. Discussion and Conclusions
We tested our AHM-TRACKER to determine head pose,

facial expressions, and the deformations of nonrigid ob-
jects. The head pose experiments showed that our AHM-
TRACKER was very successful in determining extreme head
orientations. The facial expression experiments showed that
the AHM-TRACKER can accurately predict states of the de-
formable object with dynamic subsets of size as small as 2.
The inclusion of the candy wrapper experiment showed that
the AHM-TRACKER has a broad range of applications.

The AHM-TRACKER requires user-specific training sets
for the head pose experiments due to the properties of the
threshold kernel. This is not a serious restriction for human-
computer interface settings that require head position and
facial expression recovery because user-specific training
sets can be saved across sessions. The AHM-TRACKER can
be immediately applied to improve camera-based mouse-
replacement systems for people with disabilities. In future
work, we will explore kernels that allow a single Active
Hidden Model to track multiple users.

A key benefit of the AHM-Tracker is that it runs in real
time with frequencies up to four times per frame. The
tracker is easy to set up because AHMs are completely de-
fined by a set of unmarked training images and a kernel.
The only pre-computing necessary is the Gram matrix and
its (pseudo)inverse.

The limitations of the AHM-TRACKER are closely tied
to the choice of kernel used. The AHMs we tested are based
on the threshold kernel, which forces the training images to
have an illumination that is similar to the real-time object.
In future work, we will address this issue by experiment-
ing with lighting invariant kernels and incremental learn-
ing [11].

We showed that the optimal tracking kernels are those
that make the training observations linearly dependent
(Sec. 4). Linear dependence of the training set generally
implies greater difficulty in inferring information (deciding)
about the current object of interest, as discussed at the end
of Sec. 2.4). This result indicates a trade-off in the choice
of kernels. A higher rank of the Gram matrix of a kernel
results in greater expressiveness of decision boundaries but
more variance in the kernel projections. Future work will
aim to confirm the results of theorem 1 experimentally.

Appendix: Kernel Projection Covariance
Theorem 1. Given is the realization z ∈ Z of random
variable Z . If the set Q is centered with respect to k and
consists of independent samples of Z , then an unbiased
estimate Ĉ of the covariance of the kernel projection of z
(Eq. 1) is of the form:

Ĉ =
1
n

K+K

Proof. Using standard covariance properties and the limit
definition of pseudoinverses, the covariance of the kernel
projection is of the form:

C = lim
δ→0

(K + δI)−1
Ck (K + δI)−1

The n × n matrix Ck represents the covariance of the em-
pirical map k(z). Since Q is a representative sample of Z ,
an unbiased estimate of Ck is the sample covariance matrix

Ĉk =
1
n

n∑

i=1

(k(qi)− k(Q)) (k(qi)− k(Q))T
.

The mean k(Q) = 1
n

∑n
i=1 k(qi) is equal to 0, given the

centering assumption (Eq. 8). The covariance of the empir-
ical map Ck can therefore be simplified to

Ĉk =
1
n

n∑

i=1

k(qi)k(qi)T =
1
n

KT K.

A more general definition of the Moore Penrose pseu-
doinverse is needed to find the covariance estimate Ĉ.
Using Tikhonov regularization, it can be shown that the
Moore-Penrose pseudoinverse is of the form:

A+ = lim
δ→0

(
AT A + δ ΓT Γ

)−1
AT , (9)

where the term Γ represents an n × n matrix. Using this
definition, we can derive the final form of Ĉ. Relative posi-
tions of K can be exchanged since K = KT is symmetric.

Ĉ = lim
δ→0

(K + δI)−1
Ĉk (K + δI)−1

=
1
n

lim
δ→0

(
KT K + δ(2K + δI

)
)−1KT K

Since K is symmetric and positive semidefinite, the term
(2K + δI) is symmetric and positive definite, and therefore
admits a Cholesky decomposition into ΓT Γ. Thus, by Eq. 9:

Ĉ =
1
n

K+K.

This estimate is unbiased since it is the linear transformation
of Ĉk, which is itself an unbiased estimator.

References
[1] S. Avidan. Support vector tracking. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 26(8):1064–
1072, 2004.

[2] M. Betke, J. Gips, and P. Fleming. The camera mouse: Vi-
sual tracking of body features to provide computer access for
people with severe disabilities. IEEE Transactions on Neural
Systems and Rehabilitation Engineering, 10:1–10, 2002.

[3] M. J. Black and A. D. Jepson. Eigentracking: Robust match-
ing and tracking of articulated objects using a view-based
representation. International Journal of Computer Vision,
26(1):63–84, 2004.

[4] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based ob-
ject tracking. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 25:564–575, 2003.

[5] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appear-
ance models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 23(6):681–685, 2001.

[6] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Ac-
tive shape models – their training and application. Computer
Vision and Image Understanding, 61(1):38–59, 1995.

[7] R. Gross, I. Matthews, and S. Baker. Constructing and fit-
ting active appearance models with occlusion. IEEE Confer-
ence on Computer Vision and Pattern Recognition Workshop,
pages 72–72, June 2004.

[8] B. Han, Y. Zhu, D. Comaniciu, and L. Davis. Kernel-based
Bayesian filtering for object tracking. IEEE Conference on
Computer Vision and Pattern Recognition, pages 227–234,
2005.

[9] F. D. la Torre Frade and M. H. Nguyen. Parameterized ker-
nel principal component analysis: Theory and applications
to supervised and unsupervised image alignment. IEEE Con-
ference on Computer Vision and Pattern Recognition, 2008.

[10] M. Dewan and G. D. Hager. Toward optimal kernel-based
tracking. IEEE Conference on Computer Vision and Pattern
Recognition, pages 618–625, 2006.

[11] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental
learning for robust visual tracking. International Journal of
Computer Vision, 77(1–3):125–141, 2008.

[12] B. Schölkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R.
Müller, G. Rätsch, and A. J. Smola. Input space versus fea-
ture space in kernel-based methods. IEEE Transactions on
Neural Networks, 10(5):1000–1017, 1999.

[13] B. Schölkopf and A. Smola. Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond.
The MIT Press, 2001.

[14] S. Sclaroff and J. Isidoro. Active blobs. IEEE International
Conference on Computer Vision, page 1146, 1998.

[15] C. J. Twining and C. J. Taylor. Kernel principal component
analysis and the construction of non-linear active shape mod-
els. British Machine Vision Conference, 2001.

[16] P. Viola, M. J. Jones, and D. Snow. Detecting pedestrians us-
ing patterns of motion and appearance. International Journal
of Computer Vision, 63(2):153–161, 2005.

[17] Y. Zhong, A. K. Jain, and M.-P. Dubuisson-Jolly. Object
tracking using deformable templates. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(5):544–549,
2000.

