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Abstract. We propose a novel image registration framework which uses
classifiers trained from examples of aligned images to achieve registra-
tion. Our approach is designed to register images of medical data where
the physical condition of the patient has changed significantly and im-
age intensities are drastically different. We use two boosted classifiers
for each degree of freedom of image transformation. These two classifiers
can both identify when two images are correctly aligned and provide
an efficient means of moving towards correct registration for misaligned
images. The classifiers capture local alignment information using multi-
pixel comparisons and can therefore achieve correct alignments where
approaches like correlation and mutual-information which rely on only
pixel-to-pixel comparisons fail. We test our approach using images from
CT scans acquired in a study of acute respiratory distress syndrome. We
show significant increase in registration accuracy in comparison to an
approach using mutual information.

1 Introduction

Registration problems can be viewed as optimization problems in which an ob-
jective function is minimized when images are correctly aligned. Solving an op-
timization problem requires knowing how to search for the optimal solution as
well as when to terminate the optimization procedure. Typical solutions to these
problems use the gradient of the objective function to search for the optimal so-
lution which is identified by a local minimum of that function. We propose a
semi-automatic solution to this problem which uses classifiers trained from ex-
amples of aligned images to both direct the search for the solution as well as
identify when to terminate the optimization procedure.

Semi-automatic registration algorithms use information from images aligned
by trained experts to align images which the experts have not seen. Typically,
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these approaches learn a measure of image similarity between pairs of example
images and use this learned similarity measure to align new image pairs. There
is a growing body of work [1–6], in which the similarity measure used to reg-
ister images is dependent upon examples of correctly aligned images. Several
approaches use a measure of joint intensity distribution [1–3]. Two new images
can be aligned by warping one of the images so that their joint intensity dis-
tribution as closely as possible resembles the joint intensity distribution of the
example images.

As in the method proposed by Babenko et al. [6] our method uses a boosting
approach for local region matching that uses a boosting approach to build clas-
sifiers from rectangular image features. Unlike our approach, Babenko, et al.’s
approach uses classifiers to identify invariant feature points in two images and
the exhaustive comparison of all feature points in a source image to the target
image.

The work most closely related to our proposed method is Zhou et al.’s ap-
proach [5] for estimating the movement of a contour between two images based
on a boosted, discriminative similarity function. They showed results for track-
ing a contour in echocardiographic sequences and used a similarity function that
was based on a boosted classifier trained with a set of weak classifiers on pairs of
image patches. Positive examples were correctly aligned image patches and neg-
ative examples were incorrectly aligned image patches. The weak classifiers were
piecewise constant functions that approximated the response of the comparison
of local rectangular regions in the image. The motion vector of a point on the
contour was determined by exhaustively comparing points in a source image to
all points within a window in the target image and selecting the point which was
most confidently classified as an aligned point.

Unlike Zhou et al.’s method [5], which was designed to non-rigidly align a
contour in a pair of images, our approach aligns all points in the images for global
transformations. For each degree of freedom in the transformation, we train two
classifiers: one classifier to recognize when that parameter has reached correct
alignment as well as another classifier to indicate the direction the parameter
needs to move in order to become closer to correct alignment. Classifiers are
trained on small image patch pairs to capture information about local joint
image appearance. We use these classifiers in a voting scheme to correctly register
images. For each transformation parameter, we use the alignment classifier to
vote on whether or not the image is aligned. The direction classifier for that
transformation parameter is used to take a vote on which direction the parameter
should change. The transformation parameter is changed in correspondence with
the majority vote. This process iteratively checks for alignment and updates the
transformation parameter. The iteration terminates when a local maximum is
attained in the number of locations that are reported “aligned” or the maximum
number of iterations has been reached. Our algorithm decouples the registration
of each degree of freedom of the transformation and allows for rapid on-line
image registration.
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2 Method

We will first describe our on-line registration algorithm which uses a collection of
classifiers to align images. We will then describe how we create these classifiers.
An overview of our algorithm is shown in Figure 1.
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Fig. 1. An overview of our example-based approach to image registration. A collection
of images and range of transformations is used to create set of labeled patch pairs.
Alignment and Direction classifiers are trained on these patch pairs for each degree of
freedom of the transformation parameters. The classifiers are then used to find correct
registration of images. The training and registration portions of the algorithm can be
run separately.

2.1 Image Registration

Let T be a function from ℜ2 to ℜ2 with N degrees of freedom parametrized by
Θ = θ1 . . . θN . Given two images I1 and I2, a registration between them is given
by T (x1,Θ) = x2, where x1 is a point in I1 and x2 is a point in I2. Furthermore,
let pΘ,x be a pair of image patches i1,x and i2,T (Θ,x) from locations x in image I1

and T (Θ,x) in I2. The goal is to find the parameter values of Θ that correctly
align the two images.

Our method has an off-line component for training and an on-line component
for registration as shown in Figure 1. In the off-line component of our frame-
work, our algorithm creates a set of N binary classifiers, CAlign operating on p,
to identify when correct alignment has been found. CAlign,n indicates if param-
eter θn is aligned. In addition, the algorithm creates and uses another set of N

binary classifiers, CDir operating on p, to provide an efficient means of searching
the parameter space for a correct solution. The value of CDir,n indicates if in-
creasing or decreasing parameter θn will move images closer to a correct solution
of the registration problem. The ideal responses of CAlign and CDir are a hat
and a step function respectively. The on-line algorithm (detailed below) itera-
tively checks if a parameter value of Θ has produced a successful registration
and updates those parameters that did not yield a correct registration. As Θ

represents global transformation parameters, the majority vote of the classifiers
over all corresponding points in the image is used to find updates for the image
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as a whole. This voting procedure allows our algorithm to tolerate up to 50%
error in the classification of individual points at any iteration of the algorithm.

On-line Registration Algorithm

Input: I1, I2, Θinitial

1 for n = 0 to N ,
2 while( 1

|IΘn
|

P

x
CAlign(pΘ,x) > ǫ)

3 dir =
P

x∈IΘ
CDir,n(pΘ,x)

4 θn = θn + sn
dir
|dir|

Output: Θfinal

where ǫ is a lower bound on the error, sn is a step size set for each degree of freedom of T

and Iθn
is the portion of I2 whose appearance can be changed by a change in θn.

2.2 Classifiers

We now describe the process of creating the classifiers CAlign and CDir . Given
M image pairs Im,1 and Im,2, let correct alignment between each image pair
be denoted by T (Θ(m)). Furthermore, given R transformations T (Θ(r)) which
sample the transformation space in intervals equal to registration step size sn

for each degree of freedom θn, let pm,Θ(r),x be a pair of image patches im,1,x

and im,2,T (x,Θ(m)+Θ(r)) from locations x in images Im,1 and T (x,Θ(m) + Θ(r))
in Im,2.

We denote set D = {pm,Θ(r),x} as the set of all such paired image patches
used to train the classifiers. For each classifier, we divide the set D into two
classes. The division of the data arises from the measured offset Θ(r) of each
patch pair from correct alignment. We use the labels class−1 and class1. Patch
pairs are assigned to classes using the following functions:

lAlign,n(p
m,θ

(r)
n ,x

) =

{

class1 if θ
(r)
n = 0,

class−1 otherwise,
(1)

lDir,n(p
m,θ

(r)
n ,x

) =

{

class1 if θ
(r)
n ≥ 0,

class−1 otherwise.
(2)

The function lAlign,n is used for training CAlign,n, and lDir,n is used for training
CDir,n. It is important that the example set D varies over all transformation
parameters and all examples are used to train each classifier. The differences in
the examples used to train each classifier are represented by the class labels of
the examples.

We create classifiers using Adaboost [7] on a collection of weak binary classi-
fier based on Haar-like local rectangle features [8] which decide between class−1

and class1. The weak classifier compares rectangular regions belonging to two
image patches. For each classifier, we define rectangular regions parametrized
by (x, y, dx, dy, ρ) where (x, y) is the starting point of the box, (dx, dy) is the
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height and width of the box, and ρ is a weight. Let µa be the average intensity
value and ρa be the weight of a box a belonging to the set of boxes A defined
for image patch 1. Let µb be the average intensity value and ρb be the weight of
a box b belonging to a set of boxes B defined for image patch 2. The classifier is
created using the weighted sum of boxes A in comparison to the weighted sum
of boxes B. We define the classifier as:

C(p) =

{

class1 if
∑

a∈A ρaµa >
∑

b∈B ρbµb,

class−1 otherwise.
(3)

We have observed that we can achieve better accuracy if, instead of using
a single boosted classifier, we partition the data and create a family of boosted
classifiers from these partitions. We measure the average and standard deviation
of intensity values from both source and target patches and partition the data
in this four dimensional space. For any patch pair, let µ1 and µ2 be the average
intensity for image patch i1 and i2 respectively, with standard deviations σ1 and
σ2. The classification of this patch is then determined by the boosted classifier,
C(p) = C(µ1, µ2, σ1, σ2, p), trained on the partitioned data. We note that some
partitions can be trained with examples from only one class. In these cases, the
classifier will return that class label without computing a full chain of boosted
classifiers.

3 Experiments and Results

We used 2D images from 5 volumetric CT scans of sheep before and after the
infliction of acute respiratory distress syndrome (ARDS) [9]. This syndrome is
characterized by the severe flooding and collapse of airways within the lung. This
results in a dramatic, heterogeneous change in image appearance within regions
of the lung (see sample images in Fig. 2). These changes are dramatic enough to
introduce registration errors if standard similarity measures like correlation or
mutual information are used. We used images sized 65 by 65 pixels and patches
sized 5 by 5 pixels. We trained our classifiers from a set of 2,000 weak classifiers.
Initial weights on training samples for boosting were proportionate to the total
number of samples from each class.

We partitioned the training data along four dimensions using the average and
standard deviation of intensity from both source and target patches. We created
partitions of size 400 intensity units in µ1 and µ2 and 200 intensity units in σ1

and σ2. Classifiers are only created for partitions that have representatives in the
training set, which in our experiments resulted in approximately 50 partitions.

As CT scans incorporate large areas of air surrounding a subject, we masked
out areas of the images with intensity values lower than -900 HU. Training
samples were only created when either the source patch, the target patch, or
both contained some pixels that were not masked out. Masked regions were not
included in the registration process.

We trained classifiers on the range of -3 to +3 pixels from correct alignment
for translation in 1-pixel increments and -9o to +9o from correct alignment for
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Fig. 2. Sample training and testing images from CT scans of two sheep. All train-
ing images included the carina. Images used in single scan experiments were offset in
increments of 10 mm in the cranio-caudal direction from the training images.

rotation in 3o increments (step size sn). To test the accuracy of the registration,
for each test pair we ran a registration with starting displacements in the range
of -5 to +5 pixels from correct alignment for translation in 1-pixel increments
and -15o to +15o from correct alignment for rotation in 3o increments. From the
possible 113 configurations of starting locations, we tested 11×11+10=131 con-
figurations: all pairs of horizontal and vertical displacements with 0o of rotational
displacement and all rotation displacements with no translational displacement.

We tested our registration approach in two different ways. First, we trained
classifiers on a single pair of images from one CT scan and used it to register
5 pairs of images of nearby slices from the same CT scan. Slices used were in
10 mm increments from the slice used to train the classifiers. We performed these
single scan experiments on each of the 5 CT scans and report an average error of
0.23o in rotation and 0.14 pixels in translation (Table 1). In comparison, using
mutual information to achieve registration results in a much higher average error
of 4.42o in rotation and 5.73 pixels in translation.

We also performed a registration in which we trained classifiers using pairs
of images from each of 4 different CT scans and tested registration on the fifth
scan which was not part of the training. All image pairs were taken with the
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best view of the carina. We performed a round-robin experiment in which we
tested all combinations of four training image pairs and one testing image pair.
For these experiments, we report an average error of 4.29o in rotation and 1.06
pixels in translation (Table 1). Using mutual information, the average error was
of a similar level for rotations, 3.98o, but higher for translation, 5.57 pixels.

Table 1. Results. The last column refers to the number of experiments that resulted
in an improved registration.

Average Std. Dev. Number of %
Error Error Experiments Improved

Rotation Initial 8.18o 5.04o 5 × 5 × 11=
Single Mutual Inform. 4.42o 6.20o 275 63%
Scan Our Approach 0.23o 0.67o 90%

Rotation Initial 8.18o 5.04o 5 × 11=
Round Mutual Inform. 3.98o 6.58o 55 62%
Robin Our Approach 4.25o 5.88o 65%

Translation Initial 4.19 pixels 1.56 pixels 52 × 112=
Single Mutual Inform. 5.73 pixels 2.10 pixels 3,025 9%
Scan Our Approach 0.14 pixels 0.26 pixels 99%

Translation Initial 4.19 pixels 1.56 pixels 5 × 112=
Round Mutual Inform. 5.57 pixels 2.02 pixels 605 9%
Robin Our Approach 1.06 pixels 1.02 pixels 95%

4 Discussion

For registering images from the same CT volume as the training images, our
approach yields far lower error than a similar approach based on mutual infor-
mation. In the round-robin experiment, our approach improves upon the initial
misalignment of images. For rotation, it performs slightly less well than mutual
information, while for translation it outperforms mutual information. In the
round-robin experiment, the majority of large errors for our approach occurred
in one test case. Without this test case, average error for our approaches shrinks
to 2.18o in rotation and 0.73 pixels in translation. Average errors for mutual
information remain the same without this case.

As long as our approach can achieve classification rates lower than 50%, our
solution is sufficient to find accurate registration of global registration parame-
ters. Our training process can guarantee classification rates better than 50% on
the training data. However, it does not guarantee that errors are not clustered. It
is possible, for example, for CAlign to have an error rate of 1% on samples which
are not correctly aligned but to have an error rate of 100% on samples which
are correctly aligned. In such a case, the registration algorithm would never per-
fectly align images. In our experiments this has not occurred. Figures 3 shows
how misclassifications tend to cluster regionally using our approach. It is part
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of our ongoing work to train classifiers in which errors do not cluster with re-
spect to image locations and transformation parameters by using different error
functions to train classifiers.

-5 pixels misalignment +5 pixels misalignment

Fig. 3. Classification of each pixel using a CDir,y. Locations where the classifier indi-
cates alignment can be found by decreasing the y translation parameter are shown in
white. Locations where the classifier indicates alignment can be found by increasing
the y translation parameter are shown in gray. Regions in black are not part of the
registration due to low attenuation values. Misclassifications are not evenly distributed
in the image but are instead spatially clustered.

Our approach can be computationally expensive to train, but has faster on-
line performance than that of the most similar approach [5]. Given the number
of training images M , the size of the images I, the number of transformation
parameters N , and the size of the set of transformations which sample the trans-
formation space R, our algorithm has off-line complexity O(MINR). Let θ̂n be

the number of discrete samples of transformation parameter θn and max(θ̂n)
be the maximal number of samples of any of the parameters, then our on-line
algorithm has complexity O(IN max(θ̂n)). In comparison, Zhou et al.’s boost-
motion algorithm [5] has off-line complexity O(MIR) and on-line complexity
O(IR). While our approach is computationally more expensive off-line, it is sig-

nificantly faster on-line than Zhou et al.’s algorithm. This is because R =
∏

N θ̂n

so typically N max(θ̂n) ≪ R.

5 Conclusion

We have presented a novel framework for image registration based upon binary
classifiers which estimate local alignment. Semi-automatic image registration can
significantly reduce the amount of time medical practitioners need to analyze the
imaging data they acquire. Our approach can be effectively used to register im-
ages in a volumetric CT scan given the alignment of a single slice in that scan.
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In our experiments, our approach also successfully aligns images for one subject
given examples of aligned scans from other subjects. Furthermore, at the expense
of some additional off-line computation, we have shown a significant speed up in
on-line performance in comparison to a similar approach. Our registration ex-
periments suggest that boosted classifiers can be useful tools for aligning images
in which disease and injury have dramatically changed image appearance.
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