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Abstract

We developed two methods for tracking multiple ob-
jects using several camera views. The methods use
the Multiple Hypothesis Tracking (MHT) framework to
solve both the across-view data association problem
(i.e., finding object correspondences across several
views) and the across-time data association problem
(i.e., the assignment of current object measurements to
previously established object tracks). The “tracking-
reconstruction method” establishes two-dimensional
(2D) objects tracks for each view and then recon-
structs their three-dimensional (3D) motion trajecto-
ries. The “reconstruction-tracking method” assem-
bles 2D object measurements from all views, recon-
structs 3D object positions, and then matches these
3D positions to previously established 3D object tracks
to compute 3D motion trajectories. For both meth-
ods, we propose techniques for pruning the number of
association hypotheses and for gathering track frag-
ments. We tested and compared the performance of
our methods on thermal infrared video of bats using
several performance measures. Our analysis of video
sequences with different levels of densities of flying
bats reveals that the reconstruction-tracking method
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produces fewer track fragments than the tracking-
reconstruction method but creates more false positive
3D tracks.

1. Introduction

Multi-object tracking remains a difficult problem
in computer vision because occlusion is prevalent in
typical multi-object imaging scenarios. Ambiguity in
data association (i.e., the process of matching cur-
rently measured objects with established object tracks)
must be resolved. Disambiguating measurement-to-
track associations for all objects in a scene may not
be possible within one time step, especially if the ob-
jects have similar appearance. However, popular “se-
quential tracking methods” (e.g., the Joint Probabilis-
tic Data Association (JPDA) method [1]) must, in one
time step, process the set of candidate assignments
and decide on the most likely measurement-to-track
associations. If the requirement for such sequential,
time-step-by-time-step decisions can be relaxed, the
likelihood of candidate associations typically can be
estimated more accurately. Uncertainties in the cur-
rent time step may be resolved when evidence for or
against a hypothesized association has been collected
in subsequent frames. This approach is called “look-
ahead” or “deferred-logic tracking,” and the classic
method is Multiple Hypothesis Tracking (MHT) [16].

The MHT method builds a tree of possi-
ble measurement-to-track associations, evaluates the



probability of each candidate association, and solves
the NP-hard problem of finding the association with
the highest probability by explicit enumeration or
combinatorial optimization. The MHT method be-
comes impractical when the number of objects in the
scene is large. Thus, techniques for pruning the num-
ber of association hypotheses have been used [16, 4].
An important technique for pruning the hypotheses
tree to a fixed depthT is to use a sliding time-window
of duration T during which hypotheses can be re-
solved. In this paper, we propose two approaches for
tracking multiple objects from several camera views
that use the MHT framework with the sliding-window
pruning technique.

Tracking multiple objects in several camera views
is challenging because data association must be per-
formed not only across time, as in single-view track-
ing, but also across views. Two strategies can be used
to solve the multi-view multi-object tracking task that
differ in the order of the association processes: (1)
The “tracking-reconstruction method” processes the
across-time associations first and establishes 2D ob-
jects tracks for each view. It then reconstructs 3D
motion trajectories. (2) The “reconstruction-tracking
method” processes the across-view associations first
by reconstructing the 3D positions of candidate mea-
surements. It then matches the 3D positions to previ-
ously established 3D object tracks.

The tracking-reconstruction method can be inter-
preted as a track-to-track fusion process that bene-
fits from deferring assignment decisions, as in Mul-
tiple Hypothesis Tracking. When, over time, informa-
tion about the 2D track is accumulated, the ambigu-
ity in matching tracks across views becomes smaller.
The method is suitable when a distributed system ar-
chitecture is required to prevent “one-point-failures”
(which may occur in a centralized system used by the
reconstruction-tracking method). The reconstruction-
tracking method can be seen as a feature-to-feature fu-
sion process, where the features are 3D object posi-
tions processed from 2D image measurements. The
reconstruction-tracking method is often implemented
without a deferred-logic tracking approach, so that de-
cisions are made sequentially. This is advantageous
because sequential approaches are conceptually eas-
ier and computationally less expensive. Existing work
on human tracking from multiple camera views have

compared the two schemes [18, 10] and have generally
favored the reconstruction-tracking scheme [11, 7, 18].
To the best of our knowledge, the computer vision lit-
erature on multi-view tracking does not include analy-
ses that compare the two schemes for imaging scenar-
ios with dense groups of objects.

In this paper, we propose two tracking meth-
ods that use the reconstruction-tracking and tracking-
reconstruction approaches, respectively. We show that
each method has its advantages and disadvantages, es-
pecially in imaging scenarios where objects look sim-
ilar and are thus difficult to distinguish. We focus on
thermal infrared video recordings and address scenar-
ios where dozens of objects appear simultaneously in
the field of view of three cameras and are imaged at
low spatial resolution. In particular, we tested and
compared the performance of our two tracking meth-
ods on a thermal infrared video of a large group of
bats flying out of a cave. Our data set is challenging
because bats appear similar, move extremely fast, and
do not fly in straight lines, but may choose any heading
direction within 3D space. Because the 3D movement
directions of bats are more general than those of peo-
ple, we cannot take advantage of the constraint, which
is often used in computer vision research and works
well for tracking people’s heads [7] or feet [9], that the
image of the ground plane of the scene in each camera
view is related by a homography.

For this paper, we build upon our previous work
on multi-view tracking [19], which is based on a se-
quential approach. Here instead we apply deferred-
logic tracking to both the reconstruction-tracking
and tracking-reconstruction approaches. We use the
MHT Multidimensional Assignment Formulation by
Poore [15] to process track initiation, maintenance,
and termination. For our tracking-reconstruction
method, we propose a greedy matching procedure with
a spatial-temporal constraint for track-to-track fusion.
We relax the constraint of one-to-one correspondence
across views because of potential long-term occlu-
sion in a single view. For our reconstruction-tracking
method we propose a heuristic approach to reduce
“phantom” effects caused by false positive 3D trajec-
tories.

Existing work that aims at improving tracking
performance for single-view scenarios [14, 12] is
helpful for both reconstruction-tracking and tracking-
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reconstruction approaches. However, a comparison of
multi-view and single-view tracking approaches is be-
yond the scope of this paper.

2. Related Work

Research on multi-object tracking has a long history
in computer vision. The first systems analyzed video
data collected using a single camera. In recent years,
imaging systems that use several cameras have become
attractive because they can provide an analysis of 3D
object trajectories and stereoscopic reasoning for as-
sessing occlusion. Because the 3D positions of the
objects cannot be measured directly but need to be in-
ferred from 2D measurements, tracking-reconstruction
and reconstruction-tracking approaches have been de-
veloped, which track the objects in 2D or 3D.

Existing systems [6, 7, 10, 11, 13, 18] use the se-
quential reconstruction-tracking scheme. Tracking is
performed in 3D [7, 11, 13, 18], using reconstructed
3D object features, or in 2D [6, 10], using the 2D
projections of reconstructed 3D points into the image
plane of each camera. The former approach, tracking
in 3D, is a reasonable choice if the 3D positions of
objects or object features can be predicted accurately.
If the information about an object gathered from sev-
eral rather than only two camera views is fused and
the cameras are spatially calibrated, the 3D position
estimates can typically be made quite accurately. Ob-
tainingaccurateposition estimates, however, is not the
main challenge of multi-object video analysis; instead,
the main challenge is the correct interpretation ofam-
biguousposition estimates, which are caused by oc-
clusion. Experiments reported for existing systems in-
volved tracking a single object [18] or a few objects
(less than 5) [6, 10], and it is not clear how across-
time ambiguity in 2D or across-view ambiguity in 3D
would affect the tracking performance of these meth-
ods in dense object scenarios.

The differences between previously published work
on 3D tracking from several camera views and our two
tracking approaches are:

• Our methods are explicitly designed to track
dense groups of objects.

• We use a deferred-logic (not a sequential) track-
ing framework. Our MHT approach allows us
to evaluate the information obtained from several

cameras during a window in time.

• Our approach does not assume that object motion
is restricted to occur on a ground plane.

• Our approach fuses information about object po-
sition only and does not attempt to fuse additional
information about object appearance.

• Our test data include imaging scenarios where
many objects appear in the scene with low res-
olution at the same time (groups of 10 to 30 indi-
viduals).

Because deferred-logic approaches, by definition,
have access to more information than sequential ap-
proaches, a comparison of the performance between
our method and any sequential approach described in
the literature would not be meaningful. Thus, the per-
formance analysis in our paper focuses on the compar-
ison between the two methods we propose and further
discusses their advantages and disadvantages.

3. Two 3D Multiple Hypothesis Tracking
Methods

We use the Multiple-Hypothesis-Tracking (MHT)
method as the tracking framework for both tracking-
reconstruction (TR) and reconstruction-tracking (RT)
approaches. The difference is TR uses 2D mea-
surements as input for MHT to generate 2D trajec-
tory, while RT uses 3D reconstructed points as in-
put for MHT to generate 3D trajectory. We first re-
visit the MHT method in its multidimensional as-
signment formulation [15] with a fixed-duration, slid-
ing time-window (Sec. 3.1). We then describe our
reconstruction-tracking method (Sec. 3.2) and our
tracking-reconstruction method (Sec. 3.3).

3.1. Revisit of Multiple Hypothesis Tracking

The Multiple-Hypothesis-Tracking method is gen-
erally posed as the problem of maximizing the aposte-
riori probability of measurement-to-track associations,
where the current time step isT , the set of measure-
ments at time stepk is Z(k), for k = 1, ..., T , and
the number of measurements at time stepk is Mk =
|Z(k)|. The data association problem can then be for-
mulated as the problem of finding a partition of the
measurement setZ = (Z(1), ..., Z(T )) into a track set
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T that maximizes the aposteriori probabilityp(T |Z)
of measurement-to-track associations:

T ∗ = arg max
T

p(T |Z) (1)

= arg max
{Tn}

∏

n

P (ZTn |Tn)p(Tn), (2)

whereZTn is the sequence of measurements assigned
to trackTn and the variableT0 represents the false pos-
itive tracks. The explicit assumption of this partition-
ing formulation is that the tracks do not overlap, i.e.,
measurements are assigned to one and only one track.
In the case of multi-camera 3D tracking, the assump-
tion holds because the measurements are reconstructed
3D object positions which must be disjoint. In the case
of 2D tracking, 3D object trajectories projected onto
the image plane typically have overlapping 2D mea-
surements due to occlusions. For a trajectory of an
object that is occluded at some point in time, the parti-
tioning formulation would yield a pair of 2D tracks: a
track that ends when the object is occluded and a new
track that starts when the object is in view again. The
challenge is then to automatically interpret that the two
tracks successively describe the movement trajectory
of the same object.

The MHT formulation requires a model for the prior
probabilities of false positive and missed detections.
For the imaging scenarios we address, we can assume
a perfect detection rate and that the false positive de-
tections are uniformly distributed in the field of view.
We also assume a uniform distribution of the prior
probabilityp(Tn). The likelihood of thenth track can
then be written as

P (ZTn |Tn) =

T∏

k=1

p(zk
ik
| x̂k

n)p(x̂k
n | x̂k−1

n ), (3)

where measurementzk
ik

∈ Z(k) for k = 1, ..., T ;
x̂k

n is object state and can be estimated using Kalman
smoothing, i.e, estimatêxk

n given(z1
i1

, z2
i2

, ...zT
iT

) with
a series of forward and backward recursions [3].

We use binary variablebi1i2...iT to indicate whether
measurement sequence(z1

i1
, z2

i2
, ...zT

iT
) forms a poten-

tial track or not. It can be shown that the MHT problem
formulation in Eq. 1, estimating the probability of a set
of measurement-to-track assignments, can be stated as

the following multidimensional assignment problem:

c = min

M1∑

i1=1

M2∑

i2=1

...

MT∑

iT =1

ci1i2...iT bi1i2...iT (4)

s. t.
M2∑

i2=1

M3∑

i3=1

...

MT∑

iT =1

bi1i2...iT = 1; i1 = 1, 2, ...,M1

M1∑

i1=1

M3∑

i3=1

...

MT∑

iT =1

bi1i2...iT = 1; i2 = 1, 2, ...,M2

...
M1∑

i1=1

M2∑

i2=1

...

MT−1∑

iT−1=1

bi1i2...iT = 1; iT = 1, 2, ...,MT .

We compute the cost of an assignment by estimat-
ing the negative log likelihood of a measurement se-
quence:ci1i2...iT = − log P (ZTn |Tn).

The multidimensional assignment problem in Eq. 4
is NP-hard forT > 2. We use the Greedy Randomized
Adaptive Local Search Procedure (GRASP) [17] to ef-
ficiently obtain a suboptimal solution. Before applying
GRASP, we use the following pruning techniques:

• Gating: Each established track maintains its own
validation region or gate so that only measure-
ments that fall within this gate need to be con-
sidered.

• Clustering: Tracks that do not compete for mea-
surements form a cluster (i.e., a measurement in
one cluster is not located in any validation region
of a track in another cluster). Combinatorial op-
timization is applied within each cluster indepen-
dently.

In the pseudocode below, we describe our proposed
variant of the original MHT method, which automat-
ically considers track initiation, maintenance and ter-
mination.

3.2. Reconstruction-Tracking Method

Our RECONSTRUCTION-TRACKING METHOD

first reconstructs the 3D positions of objects in the
current scene and then applies 3D tracking to predict
the next 3D object positions. Two approaches are
used to perform the reconstruction step and find the
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MULTIPLE HYPOTHESIS TRACKING WITH WIDTH-T
SLIDING TIME WINDOW:
Input: SetZ of measurements from timet0 to t0 + T and
setT of tracks maintained up to timet0 + T − 1

1. Remove from setZ the measurements that have been
assigned to the tracks in setT .

2. Build the multiple hypotheses tree with gating; as-
sign measurements recorded at timeT to tracks inT ;
form additional candidate tracks with the measure-
ments that remained inZ.

3. Cluster the hypotheses into disjoint trees and formu-
late a multidimensional assignment problem for each
cluster.

4. Solve each problem using GRASP and return a setT ∗

of tracks.

5. Classify the tracks in setsT ∗ andT :

• If a trackTn in T ∗ is an extension of some track
in T , then it is interpreted as acontinuing track.

• If a trackTn in T ∗ has no overlap with any track
in T , then it is interpreted as anew trackiniti-
ated at timet0.

• The remaining tracks inT are consideredtermi-
nated tracksthat end at timet0 + T − 1;

Output: New, continuing, and terminated tracks up to time
t0 + T

across-view associations (i.e., the measurements from
different views that describe the same object). The
first approach [5] minimizes a linear combination of
costs for all possible associations with the one-to-one
match constraint that a measurement in one view
can only be matched with exactly one measurement
in another view. The optimization problem can be
formulated as in Eq. 4 and yields solutions that do
not correctly interpret occlusions and clutter when
the one-to-one match constraint is violated as in the
imaging scenario shown in Fig. 1. The alternative
method is to perform triangulation1 for every possible
match without considering the one-to-one constraint.
In our method, we apply gating and only consider
matches whose“reconstruction residual” is below

1We selected the Direct Linear Transformation (DLT) algo-
rithm [8] to perform the triangulation because of its efficiency and
sufficient accuracy. Other methods may replace DLT in our frame-
work.

a given threshold. We compute the reconstruction
residual as the root mean squared distance between
the 2D measurements and the 2D projections in
all camera views of the reconstructed 3D point.
The pseudo code for the reconstruction step of our
RECONSTRUCTION-TRACKING METHOD is given
below.

RECONSTRUCTION-TRACKING METHOD

Reconstruction Step at Time t
Input: Set T of currently maintained 3D tracks and set
{zs,is

}s∈S, is = 1, .., ns, of 2D point measurements from
S views, wherens is the number of measurements in
view s.

1. For each trackTi ∈ T , compute its validation re-
gionVs,i in each view.

2. For each 2D pointzs,is
, compute its epipolar lines in

the other views.

3. Create candidate tuple (z1,i1 , z2,i2 , ..., zS,iS
), where

i1 ∈ {1, .., n1}, .., iS ∈ {1, .., nS}, by selecting one
2D point measurementzs,is

from each view such that:

• Eachzs,is
is located within its respective gate.

• Eachzs,is
is located near its epipolar line.

• The reconstruction residual is below thresh-
old ρ.

4. For the remaining unassigned 2D points, create a can-
didate tuple if they are located near their respective
epipolar lines and if their reconstruction residual is be-
low thresholdρ.

Output: SetZ of 3D points, reconstructed from candidate
tuples, that will be interpreted as the set of input measure-
ments for the tracking step of the reconstruction-tracking
method.

Our RECONSTRUCTION-TRACKING METHOD

generally computes 3D points that correctly corre-
spond to 3D object positions. Due to false across-view
associations during the reconstruction step, this
method may also generate “phantom” points that do
not correspond to any real objects in the scene. As we
will demonstrate in Sec. 4, many of these phantom
points can be eliminated during the 3D tracking step.
Phantoms reported in the multi-object tracking liter-
ature (e.g. [7]) are typically considered an accidental
occurrence. In the analysis of our infrared video data,
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Figure 1. Across-view association without one-to-one matches. The single 2D measurementz1,1 in the left view represents
the overlapping projections of three objectso1, o2, ando3 in the scene. Linel is the epipolar line in the right view that
corresponds to the projection of all possible 3D objects that could be imaged asz1,1 in the left view. Validation regionV is
the projected gate of the 3D track of objecto1 in the right view. In the across-view assignment process,z1,1 may only be
matched to measurements in the right view that are near linel and inside regionV . These arez2,1 andz2,2, but notz2,3 and
z2,4.

in which a very large number of similar objects are
imaged at low spatial resolution, false across-view
associations, however, are inevitable, especially if data
obtained at only a single time step are analyzed [19].

To reduce the number of candidate across-view as-
sociations that are evaluated at each time step, we
make use of the traditional gating technique, which
here utilizes the epipolar geometry as follows. Given
a set of calibrated camera views, the projected images
of objects lie on corresponding epipolar lines (or near
these lines if there are inaccuracies in the calibration)
and they should fall in the validation regions of the
respective views, which are determined by the estab-
lished 3D tracks (see Fig. 1). The validation region or
gate is defined as

V t
i (γ) = {z : [z − Hiẑt]

′S−1
t [z − Hiẑt] < γ},(5)

whereẑt is the predicted 3D position,St is the covari-
ance matrix at timet (both of which can be evaluated
using a standard Kalman filter),Hi is the projection
matrix in theith view, andγ an error threshold.

3.3. Tracking-Reconstruction Method

Our TRACKING-RECONSTRUCTIONMETHOD ap-
plies 2D tracking in each view independently and re-
constructs 3D trajectories through track-to-track as-
sociations. It avoids creating redundant 3D phan-
tom points, a drawback of the RECONSTRUCTION-
TRACKING METHOD, but it has the disadvantage
that occlusion negatively affects its 2D tracking per-
formance (i.e., occlusion cannot impact the track-
ing performance of RECONSTRUCTION-TRACKING

METHOD to the same extent, since it tracks in
3D). When an object is occluded in one view, the
TRACKING-RECONSTRUCTION METHOD may not
correctly connect the 2D track of the object before and
after the occlusion, which then, in the reconstruction
step of the method, may lead to an undesirable frag-
mentation of the 3D trajectory.

To reduce the occurrence of fragmented 3D trajec-
tories, our TRACKING-RECONSTRUCTIONMETHOD

analyzes and fuses the 2D track information from sev-
eral views. Our method may reason that a long 2D
track in one view may correspond to several short
tracks in another view. In the most challenging case,
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an object may be occluded in each camera view at
some point in time, leading to the occurrence of track
fragments or “tracklets” in each view. The timing
of the occlusion is typically not the same in any two
views, which means that the 2D tracklets in different
views that correspond to the same object usually have
different start and end times (Fig. 2). Our TRACKING-
RECONSTRUCTIONMETHOD first breaks long tracks
into short tracklets so that candidate tracklets to be
matched are aligned in time (Fig. 2). Tracklets are
then matched in a greedy way where each tracklet can
be matched multiple times. The resulting matched 2D
tracklets are reconstructed into 3D trajectory pieces
that are then linked into complete 3D trajectories.
The pseudo code and technical details of this recon-
struction and data association step of our TRACKING-
RECONSTRUCTIONMETHOD are given below.

We denoteTi1i2...iS as an association ofS track-
letsT1,i1,T2,i2, ...,TS,iS with the same lengthL from
S views. The cost of the association is defined as:

c(Ti1i2...iS) =
1

L

L∑

l=1

S∑

s=1

||zs,l − Hsxl||, (6)

where zs,l is the lth 2D measurement along the
track Ts,is in view s, Hs is the projection matrix of
view s, andxl is the reconstructed 3D point based on
(z1,l, z2,l, ..., zS,l).

From the 2D trackletsT (t)
s,is

, s = 1, ..., S, from
S views that are aligned in time at time instancet,
our method reconstructs the corresponding 3D tra-
jectory T

(t)
it

if the association costc(T (t)
i1i2...iS

) is be-
low a thresholdτ . We use the same thresholdτ and
triangulation method as in the RECONSTRUCTION-
TRACKING METHOD.

Our method attempts to link the 3D trajectory
piecesT (t)

it
, t = 1, ..., N , into longer 3D trajectories

iteratively. It links two consecutive piecesT (t)
it

and

T
(t+1)
it+1

if (1) the start time ofT (t+1)
it+1

is the next time

step after the end time ofT (t)
it

; (2) the spatial distance

between the end point ofT (t)
it

and the start point of

T
(t+1)
it+1

is sufficiently small; (3) the linked trajectory
is sufficiently smooth (we assume the object does not
make drastic changes in direction).

TRACKING-RECONSTRUCTIONMETHOD

Reconstruction Step
Input: SetsTs, s = 1, ..., S, of 2D tracks fromS views.

• Breaking Phase: Break eachTs,is
∈ Ts, is =

1, ..., Ms, into tracklets{T (t)
s,is

} at times{ti}, where
ti is the start or end time of some trackTr,ir

in view r
(r 6= s).

• Association Phase: For eachT (t)
s,is

∈ Ts,is
, t =

1, ..., N , find its corresponding tracklets in other views
with the same start and end times and compute its as-
sociation costc(T (t)

i1i2...iS
) based on Eq. 6. If the cost is

below thresholdτ , reconstruct the 3D trajectory frag-
mentT (t)

it
.

• Linking Phase: Iteratively link trajectory fragments
T

(t)
it

into long trajectories until no more fragments can
be linked.

Output: 3D trajectories.

4. Experiments and Results

We compared our two methods described in Sec. 3
for infrared video analysis of free-ranging bats. We
processed the video of the emergence of a colony of
Brazilian free-tailed bats from a natural cave in Blanco
County, Texas [19]. The data was collected with three
FLIR SC6000 thermal infrared cameras with a resolu-
tion of 640×512 pixels at a frame rate of 125 Hz. Our
task was to track each bat in the emergence column
of the colony and reconstruct their 3D flight trajecto-
ries (Fig. 3). Brazilian free-tailed bats can fly as fast
as 30 mph, which at our frame rate resulted in sig-
nificant displacements of the position of the same bat
between two frames. In imaging scenarios where ob-
jects are displaced significantly from frame to frame,
kernel-based trackers are not recommended [18]. The
association problem is even more challenging in our
case because we do not have sufficient appearance in-
formation to distinguish between bats, which look very
similar to each other.

To detect the 2D position of each bat in each im-
age frame, we used a method [2] that applies adaptive
background subtraction followed by labeling of con-
nected components. The size of the projection of a bat
ranges from 10 to 40 pixels, depending on its distance
to the camera. The position of a bat is represented
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Track1,2

Track2,2

Track1,1

Track2,1

View 1

View 2

time

Figure 2. Preprocessing of 2D tracks before track-to-trackassociation and reconstruction. The 2D tracks are broken into
fragments based on the start and end points of all tracks. Here the two tracks in each view are respectively broken into 4
and 5 (view 1) and 4 and 3 (view 2) tracklets based on time indicest0, ..., t7. The subsequent association step matches the 9
tracklets in view 1 to the 7 tracklets in view 2. The red arrow shows a candidate match.

by the pixel with the highest intensity value within its
connected component. Missed detections occur due
to inter-object occlusion; false positive detections oc-
cur due to misinterpretation of background clutter. We
used the same set of 2D positions measurements, in-
cluding false positive detections, as input to the two
tracking methods, so that we could conduct a reason-
able comparison of their performance.

To evaluate the performance of our two tracking
methods, we manually established the ground-truth 3D
flight trajectories by visual inspection and compared
them to the corresponding system-generated tracks. To
evaluate the accuracy of a system-generated trackTi,
we measured the Euclidean distance of each object po-
sition xi onTi to the corresponding positionxj on the
ground-truth trajectoryGj . We adopted the track dis-
tance definition by Perera et al. [14],

D(Ti,Gj) =
1

|O(Ti,Gj)|

∑

t∈O(Ti,Gj)

||xi
t − xj

t ||, (7)

which measures the sum of these distances for all time
instances in the time-index setO(Ti,Gj) for which
both tracks include comparable object positions. The
distanceD can be interpreted as an error measure for
the average distance between computed positions and
true object positions.

The full motion trajectory of an object may not have
been detected by our methods with a single track. In
this situation, a set of consecutive tracks may collec-
tively describe the object motion. For a ground-truth

trajectoryGj, we define the setS∗(Gj) of associated
system-generated tracks to include only those tracks
that do not share a time index, i.e. their time-index
setO is empty, and that minimize the sum of the track
distancesD between each system-generated trackTi

and the ground-truth trajectoryGj :

S∗(Gj) = arg min
S(Gj)

∑

Ti∈S(Gj)

D(Ti,Gj) (8)

subject toO(Ta,Tb) = Ø, for all Ta,Tb ∈ S(Gj).
Once we have identified the tracksS∗(Gj) that col-

lectively match the ground-truth trajectoryGj , we can
measure accuracy, completeness, and fragmentation
of our results. Ideally, our results yield|S∗(Gj)| =
|{Ti}| = 1 (i.e., only one trackTi is associated with
the ground-truth trajectoryGj (no fragmentation)) and
|O(Ti,Gj)| = |Gj| (i.e., the number of time-indices
of the object positions ofTi andGj match (complete-
ness)). We also count the number of tracks that are
not matched with any ground-truth trajectory. This
number indicates how many false positive or phantom
tracks our methods produced. Our metrics to evaluate
tracking performance are then defined by:

Track completeness:

TC =

∑
j

∑
Ti∈S∗(Gj)

|O(Ti,Gj)|∑
j |Gj |

, (9)
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Figure 3. Results of tracking bats in flight in videos recorded by three infrared thermal cameras, which were placed near the
entrance of a cave. Left: A false-color visualization of three synchronized frames with the tracked bats marked by distinct
colors (the background-color differences in the thermal images are due to a lack of radiometric calibration of the cameras).
Right: Visualization of the 3D trajectories of the group of bats. We used the same color to represent a specific bat in all three
views and to display its tracked trajectory.

Track accuracy:

TA =

∑
j

∑
Ti∈S∗(Gj)

D(Ti,Gj)∑
j |Gj |

, (10)

Track fragmentation:

TF =

∑
j |S

∗(Gj)|

|{Gj |S∗(Gj) 6= Ø}|
, (11)

Phantom track ratio:

PTR =
|{Ti | ∀Gj : Ti /∈ S∗(Gj)}|

|{Gj | S∗(Gj) 6= Ø}|
. (12)

To test the performance of our two tracking meth-
ods for different levels of object density, we selected
three scenarios of flight activity with approximately
10, 20 and 30 bats per video frame, respectively. For
each of the scenarios, the data set contains three 100-
frame sequences recorded from three synchronized
thermal infrared cameras, respectively. For each track-
ing method, we used the same set of parameters, such
as the widthT of the sliding window, the threshold of
the reconstruction residual, etc.

A summary of the tracking performance of our
two methods is shown in Fig. 4. The track accu-
racy scores (Fig 4 top right) indicate that the average
error in estimating the positions of bats were lower
than 8 cm for both methods and for all three den-
sity levels of bats. We suggest that the magnitude
of the error is small enough for future studies of bat
flight behavior. A bat with fully extended wings has
a width of 28 cm on average, and thus an 8-cm er-
ror may be small enough for reliable analysis of flight

behavior. The difference in track accuracy between
the two methods (the RECONSTRUCTION-TRACKING

METHOD yielded smaller errors) was basically gov-
erned by data association accuracy, because we chose
the same detection and triangulation procedures for
both methods.

The TRACKING-RECONSTRUCTION METHOD

generated a lower track completeness score (Fig 4 top
left) and a higher track fragmentation score (Fig 4
bottom left) than the RECONSTRUCTION-TRACKING

METHOD (in the ideal case both scores are one). The
main reason for the difference is that false across-time
data associations caused by occlusion in its tracking
step affected the across-view 2D track associations in
its subsequent reconstruction step.

While for the RECONSTRUCTION-TRACKING

METHOD, the across-time 3D data associations were
relatively reliable, the ambiguity in across-view data
association created phantoms and thus yielded a
higher phantom track ratio (Fig 4 bottom right).

Most phantom tracks are short. One way to re-
duce the phantom track ratio is to use a longer dura-
tion T for the sliding time window. This provides ad-
ditional opportunities for the method to remove short
track fragments, and thus identify phantoms. We
evaluated the performance of the RECONSTRUCTION-
TRACKING METHOD with different sliding window
sizesT (Fig. 5). Our results show that the phan-
tom track ratio was reduced when we used a longer-
duration sliding window. The other performance mea-
sures, however, also decreased because short true
tracks were removed incorrectly. Because of this
trade-off, the window size that yields desired results
with regard to all four metrics can only be chosen

9



Figure 4. Comparison of our two multi-object multi-view 3D tracking approaches: RECONSTRUCTION-TRACKING (RT)
and TRACKING-RECONSTRUCTION(TR). The three test data sets (data 1, 2, and 3) have different levels of object density:
approximately 10, 20, and 30 bats per frame, respectively. The tracking performance of both methods is evaluated by four
metrics: track completeness, track accuracy, track fragmentation, and phantom track ratio.

Figure 5. Tracking performance of the RECONSTRUCTION-TRACKING METHOD with different sliding window sizesT .
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through experimentation.

5. Conclusion

We proposed and compared two multiple hypothe-
ses tracking methods that use the reconstruction-
tracking and tracking-reconstruction approaches re-
spectively. Our analysis of thermal infrared video data
of flying bats recorded by a three-camera system si-
multaneously revealed that the RECONSTRUCTION-
TRACKING METHOD produced fewer track fragments
than the TRACKING-RECONSTRUCTION METHOD

but created more false positive 3D tracks. We do not
make a general recommendation of one method over
the other, but instead suggest that the TRACKING-
RECONSTRUCTION METHOD may be used to in-
terpret imaging scenarios when linking 2D track
fragments is not difficult (e.g., because of a high
frame rate and infrequent occlusions), while the
RECONSTRUCTION-TRACKING METHOD may be
used when additional information can reduce the num-
ber of false positive 3D tracks.
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