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Abstract A method called ‘‘SymbolDesign’’ is proposed
that can be used to design user-centered interfaces for
pen-based input devices. It can also extend the func-
tionality of pointer input devices, such as the traditional
computer mouse or the Camera Mouse, a camera-based
computer interface. Users can create their own interfaces
by choosing single-stroke movement patterns that are
convenient to draw with the selected input device, and
by mapping them to a desired set of commands. A
pattern could be the trace of a moving finger detected
with the Camera Mouse or a symbol drawn with an
optical pen. The core of the SymbolDesign system is a
dynamically created classifier, in the current implemen-
tation an artificial neural network. The architecture of
the neural network automatically adjusts according to
the complexity of the classification task. In experiments,
subjects used the SymbolDesign method to design and
test the interfaces they created, for example, to browse
the web. The experiments demonstrated good recogni-
tion accuracy and responsiveness of the user interfaces.
The method provided an easily-designed and easily-used
computer input mechanism for people without physical
limitations, and, with some modifications, has the po-
tential to become a computer access tool for people with
severe paralysis.

Keywords Universal access Æ Assistive technology Æ
Universal interfaces Æ User interfaces Æ Camera
interfaces Æ Pen-based interfaces Æ Video-based
human-computer interfaces Æ Dynamic neural networks

1 Introduction

Portable miniature computers with pen- or pointer-
based interfaces, such as personal digital assistants
(PDAs), tablet computers, and wearable computers,
have become popular in recent years. Research com-
munities, such as the European Research Consortium
for Informatics and Mathematics ‘‘User Interfaces for
All’’ (ERCIM UI4All) [17], are working on paradigms
for universal access to these devices. A paradigm that
provides a theoretical framework for the principles,
assumptions, and practices of accessible and universal
design of pen- or pointer-based interfaces is proposed
here. It focuses on the needs of both people whose
physical conditions affect their computer use and limit
their performance, as well as people without these
characteristics. Adopting universal design principles
for all users is beneficial because it can reduce fatigue,
increase the rate of communication, decrease errors,
and decrease learning time [10]. Accessible pen- or
pointer-based interfaces require a user-centered design
that

– is simple and intuitive,
– minimizes user input errors,
– minimizes recognition errors of the system,
– allows for flexibility and includes redundancy. This

means it provides choices in features and modalities
and enables the user to customize settings whenever
possible to accommodate different user preferences or
abilities [10].

This paper presents ‘‘SymbolDesign,’’ a method to
create user-centered pen- or pointer-based interfaces
that adhere to the above paradigm. Using this method,
users can create their own interface, based on sets of
commands that correspond to symbols or gestures that
they designed themselves. The interfaces are simple and
intuitive, minimize errors, and allow for flexibility. In-
stead of requiring the user to memorize and practice
predefined symbols, SymbolDesign creates an interface

M. Betke (&) Æ O. Gusyatin Æ M. Urinson
Department of Computer Science, Boston University,
Boston, MA 02215, USA
E-mail: betke@cs.bu.edu
URL: www.cs.bu.edu/faculty/betke

Univ Access Inf Soc (2006) 4: 223–236
DOI 10.1007/s10209-005-0013-9



that ‘‘understands’’ the user-designed spatio-temporal
patterns and ‘‘learns’’ how the user typically draws
them.

The SymbolDesign method can be used with various
pointer- or pen-based input devices. Since it does not
need information about the type of device used to con-
trol the computer, it provides a general extension to the
capabilities of the device. An overview of the technology
of pen input devices, including interface products
available in 1995, was provided by Meyer [40]. Currently
available products are, for example, Microsoft’s Tablet
PC [45] and ZyonSystems’ i-Pen [63], which both include
handwriting recognition software, and the Camera
Mouse [4], an interface used by adults and children with
severe motion impairments.

People who are severely paralyzed and nonverbal
from cerebral palsy, stroke, multiple sclerosis, amyo-
trophic lateral sclerosis, or brain injury often depend on
the computer to facilitate or enrich their communication
with friends, family, and care givers. Alternative point-
ing devices allow quadriplegic users, who have a limited
range of voluntary motions, to control the computer
with, for example, head or tongue movements [3, 11, 24].

The Camera Mouse tracks the computer user’s move-
ments with a video camera and translates them into the
movements of the mouse pointer on the screen [3]. Body
features such as the tip of the user’s nose or finger can be
tracked. Another mouse-substitution system for people
with severe disabilities is Eagle Eyes [11], a gaze estimator
based on measuring the electro-oculographic potential
[60]. Five electrodes are placed on the face and used to
estimate gaze direction. The gaze direction is then
converted into mouse pointer coordinates. Other systems
providemouth-actuated joysticks, infrared head-pointing
devices, and head-mounted gaze estimators as alternative
mouse-input devices (e.g., [1, 12, 24, 27, 30, 31, 33, 38, 39,
41, 54]). There are some users, whose physical conditions
are even more limiting, and may only be able to use eye
blinks for communication [2, 21].

People with or without physical conditions that affect
their computer use may benefit from a system, such as
SymbolDesign, that allows them to design a small set of
symbols representing commands, for example, to select
customizable ‘‘shortcut-like’’ functions, use an internet
browser, or play a computer game. These symbols may
be gestures painted with the user’s finger or hand and
detected with a camera-based computer interface, such
as the Camera Mouse [3], the Finger Counter [7], an
augmented desk interface [43], or a ‘‘gesture spotting’’
system [59]. The symbols may also be entered into the
computer with a traditional mouse, a wireless gyroscopic
mouse, an optical pen, or a stylus. With the
SymbolDesign method, the computer user can choose
single-stroke movement patterns that are convenient to
create with the selected input device and map them to
the desired set of commands. For example, the user may
decide to choose the symbol O, drawn by a circling
movement, to represent the selection command or a
zigzag pattern to indicate deletion of a word.

It is noteworthy that interfaces created by the Sym-
bolDesign method work with a small amount of pro-
cessing resources, do not require additional hardware,
and do not need to use screen space, which is so valuable
for miniature computers (an inconvenient use of screen
space, for example, would be a virtual keyboard).
Drawing the spatio-temporal patterns created with the
interfaces does not demand a high precision in pointer or
pen control.

The SymbolDesign method creates interfaces with a
relatively small number of commands (1–20). Fast and
reliable access to even a small number of commands can
be useful–they can replace the functionality of the tra-
ditional computer mouse and provide some of the
functionality of the traditional keyboard, e.g., input of
letters, digits, and keyboard shortcuts. PDAs can pro-
vide computer access with a few customizable buttons.
Camera-based interfaces for quadriplegic users provide
computer access by recognizing a small number of patio-
temporal patterns, for example, the three gaze directions
(left, right, and center) of the EyeKeys system [39] or the
eye blinks or winks of the BlinkLink [21].

Pen-based handwriting systems [44, 53, 56, 62] also
provide solutions for recognition of spatio-temporal
patterns. They generally work with much larger alpha-
bets than the interfaces created with the SymbolDesign
method, but they do not have the same flexibility as the
SymbolDesign method in allowing the users to specify
their own symbols. This user-centered design principle is
particularly important if the intent is to provide an
interface for people with motion impairments who
choose the symbols according to their gesturing abilities.

Existing symbol or shorthand recognition methods
[20, 25, 32, 37, 61] are restrictive in the sense that the
user has to use predefined symbols, whose meaning often
is not intuitive and that take time to learn. Several
studies have been reported where users were asked to
learn and test a specific set of characters: Goldberg and
Richardson [20], for example, invented and evaluated
the Unistroke alphabet. In this alphabet, many common
letters, such as E, A, T, I, and R, are assigned to simple
straight-line strokes. Goldberg and Richardson’s
experiments showed that pauses between single stroke
patterns were significant, a property that was also ob-
served in the context of the work presented in this paper,
and that the interfaces created by SymbolDesign use for
distinguishing consecutive input symbols.

MacKenzie and Zhang [37] evaluated the usability of
the ‘‘Graffiti’’ alphabet, which contains single-stroke
characters that only slightly resemble real letters and
digits. Sears and Arora [47] compared the relative
effectiveness of the Graffiti alphabet and the Jot alpha-
bet, which also contains only single-stroke characters.
Isokoski and Raisamo [25] developed and evaluated an
alphabet with single-stroke characters based on se-
quences of two to four horizontal and vertical lines. Zhai
and Kristensson invented and tested a shorthand writing
system for pen-based computers, called SHARK
(shorthand aided rapid keyboarding) [61], and extended
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it with the SHARK2 system [32, 62]. In these languages,
words are represented by the spatiotemporal patterns
that a pen would make if the user selected the letters of
the words with an on-screen keyboard.

Forsberg et al. [18] invented and evaluated an
alphabet of single-stroke gestures to enter music nota-
tion into a computer. Long et al. [36] reported several
user studies in which a number of gesture alphabets,
each containing up to 13 single-stroke gestures, were
presented to subjects. The goal was to aid interface
developers in finding gestures that are likely to be per-
ceived as similar by users, or that may be difficult for
users to learn and remember. Frankish et al. [19] con-
ducted user studies with pen-based interfaces that were
based on handwriting recognition. There are similarities
between the problem discussed in this paper and the
problem of online handwriting recognition, which has
been summarized in surveys by Tappert et al. [53],
Wakahara et al. [56], and Plamondon and Srihari [44].
For large-alphabet languages like Chinese, Korean, or
Japanese, pen and tablet-based interfaces have been
developed that recognize each character as it is being
written. Both spatial and temporal data are analyzed,
including the positions of the pen, the number of
strokes, and the direction and speed of the writing. The
recognition algorithms can be categorized into three
groups: (1) preprocessing methods that segment the
writing into units, such as characters or words, (2) noise
reduction techniques that smooth the writing, de-skew
slanted characters, and normalize stroke size or length,
and (3) feature analysis algorithms that recognize char-
acters or words through matching techniques [53, 56]
that compare the input pattern with stored reference
patterns or evaluate it with a classifier, such as a neural

net [35], a hidden Markov model [48, 49], or a stochastic
network [5, 29].

The core of the SymbolDesign system, first introduced
in [22], is a trainable classifier. In the current implemen-
tation, the classifier is a feed-forward artificial neural
network, which is used to recognize user-defined spatio-
temporal patterns produced by the pointer or pen. The
classifier has an adaptive architecture that enables it to
automatically and efficiently adjust itself in order to
accommodate the necessary number of pattern classes. A
static classifier, for example, similar to the one-hidden-
layer neural network proposed by Leung and Cheng [35]
to recognize nine basic strokes of Chinese characters, was
not anoption for three reasons. First, the potential of such
a classifier, i.e., the number of classes it can distinguish
reliably, has a fixed upper bound that limits the size of the
alphabet. Second, among classifierswith enoughpotential
to distinguish between members of the user-defined
alphabet, the smallest classifier should be chosen for
performance reasons. Third, since the user is allowed to
change the alphabet, i.e., add and remove symbols, at any
time, the choice of classifier was limited tomodels that can
dynamically adjust their architectures without loosing the
data that were already computed. Inspired by Sjogaard’s
modified Cascade-Correlation algorithm [50], a new
method was developed in the context of the work pre-
sented in this paper that creates one-hidden-layer neural
networks dynamically and efficiently, i.e., the network
accommodates the three requirements listed above.

The paper is organized as follows. Section 2 provides
an overview of the SymbolDesign method. Sections 3
and 4 describe pre- and postprocessing of the classifier
input and output, respectively. The method to create a
dynamic network as a classifier is described in Sect. 5.
The experiments and results are presented in Sect. 6. The
paper concludes with an in-depth discussion in Sect. 7.

2 System overview

An interface designed using the SymbolDesign method
consists of three major components: a preprocessor, a
classifier, and an interpreter (Fig. 1). The interface
processes sequences of gestures or symbols online. It
takes as input spatio-temporal patterns obtained from
the pointer or pen device, preprocesses them, passes
them to the classifier, and then produces as output
commands that can be interpreted by the computer’s
operating system or application program.

The spatio-temporal pattern is defined by the path
that the user produces when moving the pointer or pen
or gesturing in the air. Both the spatial and the temporal
components of this ‘‘digital ink’’ are important for rec-
ognizing the meaning of the pattern. The temporal
information, analyzed as a sequence of event inter-arri-
val times, plays a role in the pre- and postprocessing of
the classifier data. The spatial information, consisting of
path points, is analyzed by the classifier.

temporal segment
Normalized spatio 

Potential mapping
to commands

pointer or pen
pattern drawn with 

Spatiotemporal input

Preprocessor

Classifier

Interpreter

Command

Fig. 1 Overview of the three system components, and their inputs
and outputs, of an interface created by the SymbolDesign method
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3 Preprocessing of spatio-temporal patterns

This section describes how input data are preprocessed
before they are passed into the classifier. This procedure
requires both intensive processing and close interaction
with the input hardware. An effective scheme is employed
to ensure efficient use of computational resources, as well
as responsiveness of the system (Fig. 2).

3.1 Input acquisition and buffering

The system employs two buffers, a preliminary storage
buffer and a main buffer. The main buffer stores the
current input segment processed by the interface system.
The preliminary buffer is necessary to store pointer
positions that do not introduce significant changes to the
pointer path that is currently in the main buffer. Once
the preliminary buffer has accumulated enough data, its
contents are appended to the main buffer and recogni-
tion is restarted. The purpose of this preliminary storage
buffer is to prevent interruption of the recognition pro-
cess due to minor (perhaps involuntary) pointer motion.
After the main buffer is updated with the new path
segment, some of the old pointer positions are removed
from it to ensure that it does not exceed a length limit.
Moreover, positions older than a certain age limit (e.g.,
1 s) are also removed. The length limit of the main
buffer and the maximum age of the pointer position are
determined based on the complexity of the trained spa-
tio-temporal pattern and the speed of the pointer. Their
main purpose is to aid the classifier’s operation under
the real-time constraints.

3.2 Cursor path segmentation and processing

Because recognition is performed continuously and any
single-stroke spatio-temporal pattern can be used, the

interface system expects that a pattern may start with
any path position among those stored in the main buffer,
and must end with the most recent position in the buffer.
If exhaustive processing of the accumulated input were
performed after each buffer update (which includes path
segmentation, multiple scaling operations and multiple
classifier evaluations), a heavy load on the computa-
tional resources would result. Resulting delays would be
unacceptable for a user interface. To save on computa-
tion time, the recognition process is therefore suspended
until the pointing motion reduces, which results in a
smaller rate of buffer reads. Consequently, the time-
consuming recognition process usually runs after all
input, which may contain a valid spatio-temporal pat-
tern, has been acquired, while the buffer is kept up to
date at all times. Furthermore, this allows controlling an
acceptable processor load by adjusting the preliminary
buffer length and the main buffer update-rate threshold.

When the system decides that the current buffer up-
date rate gives it enough time to process the accumulated
input, recognition is initiated. First, the interface system
finds all pointer path segments that can potentially be
recognized as valid spatio-temporal patterns. Each seg-
ment starts with the most recent position in the buffer.
The bounding box of the minimal segment has to have
an area that is at least as large as the classifier input size.
Each following segment contains the previous one plus
enough pointer positions to allow resizing of the
bounding box (see Fig. 2). This resizing process is a
normalization step that is necessary to equate the area of
the segment’s bounding box to the classifier’s input size.
The fact that the original segments are usually much
larger than their resized versions allows the system to
grow each segment by several pointer positions at a time.
The classifier evaluates each resized segment, and its
output is stored for further analysis. Once the classifier’s
output is produced, a single processing cycle (segment
extraction, resizing, and evaluation) of the system ends.
At this point, the recognition process might be forced to

Fig. 2 Preprocessing of spatio-
temporal patterns: The input
pattern (top), which was drawn
from left to right, is processed
in segments (bottom row). Each
segment includes the previous
segment plus additional
positions on the input path. The
bounding boxes of the segments
are resized to fit a fixed size
rectangle. The pixels of this
rectangle constitute the
classifier input. Here, six resized
images were passed into the
classifier. None of the patterns
produced a high-classifier score,
except the last (right-most)
pattern. This pattern was
recognized as a mirrored S
symbol after the classification
and postprocessing steps were
performed
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halt until the interpretation of a command is completed.
In this case, the system either interprets information
collected so far or discards it. Otherwise, a new segment
is extracted and processed. The next section describes
how the processing results are analyzed and interpreted
in these cases.

4 Classifier output analysis and interpretation

This section describes how the classifier’s output is
analyzed to facilitate recognition of the drawn symbol
and how this symbol is then interpreted as a command.

Input path segments are extracted, resized, and then
processed by the classifier in order of arrival. Both the

classifier score, which is an interpretation of the spatial
information, and the temporal information stored with
the segments are used to determine whether the segment
corresponds to a spatio-temporal pattern in the user’s
alphabet. As temporal information, the inter-arrival
time of input events is used to evaluate candidate seg-
ments. The system operates under the assumption that
the speed of the movement is approximately stable when
a valid pattern is being drawn, but slows down when one
pattern is finished and a new one is started. If the end-
point of an input path segment with a high classifier
score corresponds to a peak in the inter-arrival time of
input events (Fig. 3), the system can be confident that it
did, in fact, recognize a valid spatio-temporal pattern. If
two or more overlapping input path segments are rec-
ognized by the classifier (Fig. 3, top), the one that best
correlates with the peak in input event inter-arrival time
is interpreted to be the spatio-temporal pattern that the
user intended. If no good segment candidate was found
by the time recognition is interrupted, the collected data
are discarded.

With the proposed method, simple spatio-temporal
patterns, which can represent frequently used com-
mands, such as ‘‘selection’’ or ‘‘go backward,’’ are rec-
ognized almost instantly. However, a user may select an
alphabet that contains simple patterns that are also
found within more complex symbols. A circle, for
example, is an intuitive pattern to use, but it is a part of
some digits and letters that the user may also include in
his or her symbol alphabet. For this reason, it is neces-
sary to complete the processing of the spatial and tem-
poral information of all segments even if the classifier
produced a high-classifier score for some path segment.

The SymbolDesign system uses the delay time be-
tween consecutive patterns as a parameter that can be
set when an interface is created. A parameter value can

Fig. 3 Using the rate of input
events to choose a spatio-
temporal pattern (STP). Top:
Artificial neural network
(ANN) output over a period of
100 time units. Bottom: Inter-
arrival time of input events over
a period of 100 time units. At
time t = 12, a significant pause
in pointer movement was
registered, but no candidate
STP was recognized by the
ANN at that time. At time
t = 60, the ANN recognized a
candidate STP, but no pointer
pause was registered. At time
t = 88, the ANN recognized a
candidate STP and a pointer
pause was registered. Only in
the last case does the system
output that this candidate STP
is a valid STP

Fig. 4 Minimum, average, and maximum number of hidden nodes
Nz as a function of Ny = 1, ..., 20 classes, 10 examples per class
(Np = 10Ny), and Nx = 256 input nodes
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be chosen that is appropriate for a particular user or
application. Experienced computer users who carefully
trained the classifier to recognize their handwriting or
gesture input usually do not need feedback on one
command before they can start entering the next one.
During text processing, for example, they may want to
enter letters with only very small delays between each.
Inexperienced computer users may want to have more
pronounced delays between entering two consecutive
spatio-temporal patterns. For both user groups, certain
tasks, like web browsing, usually require a delay.
Feedback on one action is given before the next action
can be performed.

The user can associate each recognized spatio-tem-
poral pattern with a command or event. Any event that
the operating system can process can be chosen, for
example keyboard keys, combination of keys pressed,
mouse clicks, special buttons like back, forward, re-
fresh, etc. When the system recognizes a spatio-tem-
poral pattern, it generates the corresponding event. In
case of mouse clicks, the exact monitor location of each
selection event is determined using the position of a
predefined ‘‘hot-spot’’ relative to the pattern’s bound-
ing box. The default location of the hot-spot is the
center of the bounding box, but any point within the
box could also be chosen. Note that it is also possible
to associate series of events, ‘‘macros,’’ with spatio-
temporal patterns, which may be convenient in some
applications.

5 The classifier: a dynamic artificial neural network

In the current implementation, the SymbolDesign sys-
tem creates an artificial feed-forward neural network [13]
as a classifier for spatio-temporal patterns. Other choices
for supervised classifiers are regularization networks or
support vector machines [14, 55]. As described in the
introduction, there were two primary requirements for
the choice of the classifier: real-time performance and an
adaptive architecture. Although, training a network can
take a significant amount of time, the evaluation com-
plexity of even large networks is rather low. In fact,
some real-time applications utilize ensembles of neural
networks and still meet all the deadlines. On the other

hand, fulfilling the requirement of an adaptive archi-
tecture was challenging because most neural networks
are used with static architectures. The SymbolDesign
system provides a solution by creating a dynamic neural
network that can efficiently change the symbols, i.e., the
‘‘classes’’, it can recognize. This section discusses the
network architecture, training set acquisition, and
training methods.

5.1 Adaptive architecture

The neural network receives the resized pointer path
image as input. Its input layer must therefore be equal to
the number of pixels in the resized image, which is a
parameter that the system user can set. We worked with
a size of 16·16. A higher resolution can represent more
complex patterns but takes longer to evaluate. The res-
olution should be chosen according to alphabet size and
input device precision.

The number of nodes in the output layer equals the
number of classes defined by the user, i.e., the network
potential. It changes when the user adds or deletes
symbols to the alphabet. An adaptive network design
has been adopted that ensures that adding or deleting a
node does not result in the loss of weights that were
already computed for other nodes.

We chose a network architecture that contains one
hidden layer. The number of nodes in the hidden layer
is a parameter that can be adjusted and is critical for
the network performance and potential. From the
performance point of view, the number of hidden
nodes should be minimized. A combination of a
method to automatically choose the size of the hidden
layer and a probabilistic technique to assess the likeli-
hood of training convergence has been elaborated. The
mean squared error (MSE) is used as a measure of
performance and a convergence criterion. It is the
average of the squared differences between desired and
measured output values over all output nodes.

The elaborated method was inspired by Sjogaard’s
work [50] that modified the Cascade-Correlation algo-
rithm [16]. The original Cascade-Correlation algorithm
implemented a dynamic network architecture by
sequentially increasing (cascading) the number of hidden

     Determine number of nodes
     Train weights

Basic Training

each symbol
Compute confidence value of

Compute error rate

Update neural net weights

Update confidence values

Extended Training

Create network

Fig. 5 Overview of the two training stages. In the basic training
stage, a few instances of each symbol are used to create and train
the neural network. For each symbol, a value is computed which
represents the system’s confidence that the network can reliably

recognize the symbol. In the extended training stage, additional
symbol instances are passed into the neural network, its weights are
adjusted, and the confidence values updated. This process is
repeated until network performance converges
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layers of the network [16]. The number of training
examples used by this method is unfeasible for the cur-
rent application. The ‘‘modified Cascade-Correlation
architecture’’ [50] has one hidden layer to which nodes
are sequentially added. It performed at least as well as
the original Cascade-Correlation architecture on a set of
benchmark problems [58]. The SymbolDesign method
follows Sjogaard’s approach [50] to add one node at a
time to the hidden layer until the network can solve the
classification task. The principal difference between
Sjogaard’s approach and the SymbolDesign approach is
that the modified Cascade-Correlation architecture does
not take into account a priori information about the
problem at hand, such as input dimensionality. In the
latter, the size of the hidden layer is selected according to
the complexity of the classification task. The Symbol-
Design method thus avoids testing architectures that are
unlikely to deliver the potential required for the given
task. The way in which the SymbolDesign method
determines the size of the hidden layer for the initially
tested network is described below.

Given the dimensionality of a classification task, i.e.,
the number Nx of input nodes, the number Ny of output
nodes and the number Np of training samples, the
number Nz of hidden nodes in a one-hidden-layer fully-
connected feed-forward neural network can be estimated
by bounding the number Nx of weights [57]:

NyNp

1þ log2 Np
6Nx6Ny

Np

Nz
þ 1

� �
Nx þ Ny þ 1
� �

þ Ny ð1Þ

The number Nz of hidden nodes [23] is then given by:

Nz ¼
Nx

Nz þ Ny
ð2Þ

Minimum and maximum values for the number of hid-
den nodes can be computed by applying the respective
bounds in Eq. 1 to Nx in Eq. 2. The minimum value is
needed for ‘‘easy’’ classification tasks, the maximum
value for ‘‘hard’’ tasks. Since apriori information about
the complexity and similarity of the patterns that the
user may choose is not available, it is reasonable to as-
sume that the number of hidden nodes actually needed
lies somewhere in the middle between the minimum and
maximum values. The number of hidden nodes was
therefore initialized to the average of maximum and
minimum values (Fig. 4).

Slightly overestimating the network potential associ-
ated with the size of the hidden layer is not harmful, but
it is detrimental if the potential is not sufficient to
accommodate all classes. This can happen if either the
initial value of number of nodes in the hidden layer is
too small or if the user adds more patterns to be rec-
ognized to the existing network. In such cases, the net-
work cannot be trained to produce the desired
classification, and the system does not know what
compromised the training procedure. Training may have
just reached a local minimum, or there may not exist a

suitable minimum. In the first case, training should be
restarted with random weights. In the second case, the
training process may not converge, and the number of
hidden nodes must therefore be increased. The Sym-
bolDesign method takes a probabilistic approach to
resolve these issues. It estimates the number N of
training attempts that it must make before it establishes
the inability of the training procedure to converge for a
given network state by computing [26]:

N ¼ ln 1� Fw að Þð Þ
ln 1� Fx að Þð Þ ð3Þ

where X is the sum of squared errors on any individual
attempt,W is the lowest value for X,FX (a) is the fraction
of attempts that would result in a value of X less than or
equal to a, a confidence threshold, and FW (a) is the frac-
tion of X values that result in a value of W less than or
equal to a. OnceN attempts to converge have been made,
the number of hidden nodes should be increased.

5.2 Training

Training of the dynamic neural network proceeds in two
stages (Fig. 5). The purpose of dividing training into two
stages is to ensure that the network will produce correct
classifications while trained on as few examples as pos-
sible, hence minimizing training time.

During the first stage, called ‘‘basic training,’’ the
network is presented with only a few examples of each
pattern (e.g., five). In rare cases, these examples are
sufficient to train the network to stably recognize a
pattern. However, most spatio-temporal patterns re-
quire larger training sets to ensure correct classification.
Basic training provides the network with a rough esti-
mate of the classification task, so the error rate might be
high due to partially learned decision boundaries of
certain classes. This means that the neural network was
not presented with enough examples of one or more
classes to be able to distinguish between all of them
accurately. The system identifies problematic classes by
assigning a confidence value to each symbol in the
alphabet. Initially, all classes have the same value.

In the second stage, called ‘‘extended training,’’ the
user can start experimenting with the system. During this
experimentation, the recognition error rate is usually still
high. The user is asked to notify the system about its
mistakes, so that the confidence values can be updated to
reflect the recognition error rates of the symbols. The
confidence values are increased for every correct classifi-
cation and decreased for every incorrect one.

To speed up the training, the user is asked to provide
additional examples for the symbols. The chance of a
specific symbol to be selected is proportional to its
associated confidence value. As a result, symbols that
were recognized poorly after basic training are empha-
sized during extended training. Each new sample symbol
is added to the training set if the current network does
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not recognize it correctly, or is discarded otherwise. In
addition, for each new sample pattern, the system con-
tinues to adjust confidence values. The network is up-
dated after each time an additional pattern is entered by
the user. This procedure, if continued long enough,
typically results in a sufficient number of examples for
each class.

A standard back-propagation algorithm with gradi-
ent descent is employed for training the neural network
[13]. To increase the speed of training and reduce the
likelihood of converging into local minima, a number of
convergence acceleration techniques [9] are used. The
first few examples of a symbol are passed into the net-
work sequentially in batch mode, which is quite robust
for small training sets and computes an average per-
formance gradient. A conjugate gradient descent meth-
od is used to force the search for the best set of weights
into a direction orthogonal to that of the previous step,
instead of the direction of the steepest gradient. The
system also uses a ‘‘momentum variable’’ that controls
the extent to which the previous change in network
weights affects the current change in network weights.

After achieving convergence in batch mode, the
training switches to a stochastic mode, which is more
robust for large training sets. The stochastic approach
updates the network for every randomly chosen exam-
ple, thus producing a ‘‘noisy’’ performance gradient
which often leads to better solutions than solutions
computed by the standard gradient descent method. In
the stochastic training mode, it is simple to track the
correspondence between the inputs and changes in the
network.

Both training modes employ a variable learning rate
[9] that is recomputed according to the observed changes
in the network’s mean squared error. That is, the
learning rate is increased if there is no improvement in
performance and is decreased if the error drops.

6 Experiments and results

This section describes the methodology and quantitative
results of experiments with twenty human subjects who
did not have physical conditions that limited their
computer use. It also describes initial experiences ac-
quired working with two subjects with severe disabilities
and provides some qualitative results.

6.1 Testing methodology of quantitative experiments

The 20 human subjects who participated in the quanti-
tative experiments belonged to two groups. The 10
subjects in group A were sophomore college students
with strong computer skills. The 10 subjects in group B
were individuals with some computer literacy. None of
the subjects was previously exposed to the system.

Two experiments were performed with Pentium IV
1.4 GHz machines running the Windows XP operating

system. In the first experiment, subjects were asked to
use the SymbolDesign method with a traditional com-
puter mouse to perform:

Task 1:

1. Design an alphabet of five commands.
2. Train the interface to recognize these commands.
3. Test the interface by using the commands with a web

browser.

During the first step, the users were instructed to use
the symbol O as a selection (‘‘click’’) command. They
were then asked to invent four symbols to correspond to
the browser functions ‘‘back,’’ ‘‘forward,’’ ‘‘stop,’’ and
‘‘favorites.’’

Upon completion of the first step, subjects were
asked to perform the basic training of the classifier.
They provided the system with five samples of each of
the five symbols, drawn with the mouse. Given these
training inputs, the system assigned a confidence value
to each symbol. Subjects were then asked to conduct
extended training of the classifier. During this phase,
the subjects were asked to open an internet browser
and, using only the five newly created symbols, browse
the internet in a natural way with the mouse as the
input device. The time it took each subject to configure
the system, i.e., the ‘‘average adjustment time’’, was
recorded. The final phase of the experiment was the test
phase, designed to evaluate the ‘‘recognition accuracy’’
of the interface. The user was asked to input 50 com-
mands while browsing the internet. In this test phase,
the number of correctly performed actions out of the 50
attempted actions was recorded. The average process-
ing time to recognize each symbol, i.e., the ‘‘response
time’’, was also measured.

In the second experiment, the subjects were asked to
expand their existing alphabets to include 10 new sym-
bols—the digits 0 through 9. The mapping of these
symbols to commands was straightforward—the sym-
bols were mapped to the text input of the digits them-
selves. The training procedure was the same as in the
first task. For basic training of the classifier, each digit
was drawn five times with the computer mouse. During
the extended training phase, the users entered the digits
into a word processor. The time it took each subject to
configure the system, i.e., the average adjustment time,
was recorded. For the test phase, the subjects were asked
to launch the word processor and produce all 10 digits in
consecutive order, using the mouse as a pointing device.
In this phase, the recognition accuracy of the interface,
i.e., the number of correctly performed actions out of the
10 attempted actions, and the response time, i.e., the
average time it took the interface to recognize a digit,
were also recorded. In summary, the subjects used the
SymbolDesign method to create an interface to perform:

Task 2:

1. Add the 10 digit symbols to the previously designed
alphabet.
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2. Train the interface to recognize these symbols.
3. Test the interface by inputting the digits into a text

processing program.

Note that user access to the keyboard and full mouse
functionality was allowed only during the configuration
and training stages in both tasks, but not during the
testing phase.

6.2 Results of quantitative experiments

The subjects in both groups were able to successfully
complete both tasks assigned. Subjects with strong
computer skills (Group A) needed 3 minutes of adjust-
ment time to decrease the error rate of the classifier to a
point where the system could be used reliably with a web
browser. For Task 1, the average recognition rate was
95%. Other recognition and timing results are listed in
Table 1. Individuals with less computer experience
(Group B) took longer to adjust to the interface than
users with strong computer experience (Group A).
Subjects in Group A created interfaces that exhibited
smaller error rates for both tasks than users in Group B.
Samples of symbols created by users are shown in Fig. 6.
In the extended training phase, typically 20–30 instances
of each symbol were needed. The average response time
of the interfaces in recognizing a symbol was under
600 milliseconds, which resulted in an average recogni-
tion rate of 1.7 symbols per second.

The subjects enjoyed using the interfaces they had
created and some of them continued playing with them
after both tasks were finished. These users were able to
use the interface, for example, to work with a calculator
application.

6.3 Initial experience with users with quadriplegia

The SymbolDesign system was tested with two subjects
with severe disabilities (see Fig. 7). Subject 1, a 28-year-
old man, and subject 2, a 40-year-old woman, were both
born with severe cerebral palsy that resulted in quadri-
plegia. The subjects were nonverbal, but could commu-
nicate with their caregivers using small head movements.
Their controlled head movements were often disturbed
by significant involuntary movements. The involuntary
movements were tremor, i.e., unwanted oscillatory
movements [46], and reflexive movements, which were

very fast and difficult to predict. Subject 1 had difficulty
holding his head straight up and had better control of
horizontal than vertical movements. Subject 2 had better
control of vertical than horizontal movements.

The primary method of communication used by the
subjects’ small head nods to select letters spelled out by
an assistant or to directly answer the assistant’s ques-
tions. Both subjects had experience using assistive
technologies to access the computer, such as manual
switches, Eagle Eyes [11], and the Camera Mouse [3].
They had used these interface technologies to access text
entry software based on on-screen keyboards and to
play reaction games with graphical displays [3, 6, 15].

The Camera Mouse was the interface preferred by
both subjects and was therefore used in the experiments
with the symbol recognition system. The subjects were
asked to help with the design of symbols that they could
draw comfortably. The starting point was the symbol O,
which is used in the other experiments described in this
paper as a selection command. The quadriplegic subjects
were not able to draw the symbol O successfully–the
drawn symbols were significantly distorted because the
users were not able to move their faces in circular pat-
terns. Sometimes involuntary reflexive movements dis-
torted the patterns. Tremor [46] was not a significant
factor in the pattern distortion, because the Camera
Mouse was used in a tremor-suppression mode that fil-
tered oscillatory movements.

Simpler patterns were then tried, containing straight-
lines, such as triangles. Finally the subjects were asked to
draw symbols that just contained one line–either a
horizontal, vertical, or diagonal line. The lines that the
subjects were able to draw with the Camera Mouse were
not straight, as can be seen in Fig. 7, which shows
subject 2’s attempt to draw a horizontal line. It was a
considerable effort for the subjects to draw these lines.
For example, in nine attempts, it took on average
19.0 seconds for subject 2 to draw a line, with a standard
deviation of 15.6 seconds. The subjects were generally
able to move the mouse pointer towards the intended
direction, but then did not have enough control to
maintain the direction of movement. They were asked to
start from some region on the screen and try to reach a
goal region. The subjects typically were able to reach or
come close to the goal region by using some indirect
route. This route was different in each drawing attempt.
Since the subjects could not reproduce a spatio-temporal
pattern, they were not able to work with the symbol
recognition system.

Table 1 Average recognition
accuracy of the interface and
average adjustment time for
two groups of 10 subjects, each
subject performing Task 1 fifty
times and Task 2 ten times

Subject Av. recognition accuracy Av. adjustment time

Group Task 1 Task 2 Task 1 Task 2

A (strong computer skills) 95 % 87 % 3 min 12 min
B (some computer skills) 85 % 75 % 6 min 18 min
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7 Discussion

Themain contribution of the work presented in this paper
is the SymbolDesign method for creating user-centered,
pen- or pointer-based interfaces. The method combines
two original techniques: (1) a newmethod to dynamically
create classifiers that evaluate the spatial information of
input patterns, and (2) a new method to exploit temporal
information by pre- and post-processing candidate

segments of the input patterns. Since these spatio-tem-
poral patterns are completely determined by the user, the
SymbolDesign method is general and can be conveniently
applied to create user interfaces for various tasks. The fact
that the system does not have a priori information about
the alphabet that a person will create makes the symbol
classification problem challenging. The proposed solu-
tion, the SymbolDesign method, dynamically creates
classifiers that are able to efficiently distinguish between
the a-priori-unknown number of symbols of unknown
appearance and structure.

Users without physical limitations quickly became
comfortable with designing interfaces and using them.
The interfaces performed well during testing–symbols
were recognized reliably and efficiently. Interfaces with
alphabets of up to 15 symbols (10 digits and 5 browser
commands) were tested. The number of symbols was
appropriate for the purpose of replacing the function-
ality of the mouse and some functionality of the key-
board. Given that the average response time of the
interfaces in recognizing a symbol was under 600 milli-
seconds in the conducted experiments, it can be con-
cluded that somewhat larger alphabets could be used
without raising the response time per symbol signifi-
cantly.

The SymbolDesign system may also be able to handle
a much larger number of commands, for example, to
fully replace the functionality of the keyboard. Such
expansion, however, might raise the computational de-
mands of the created interface to a level where symbol
recognition becomes so slow that people would not want
to use the interface. This would then require a redesign
of the system’s major components to achieve the nec-
essary speed-up. Such a redesign would be simplified by
the modular approach adopted in developing the Sym-
bolDesign method in the first place: each of the main
components–input processor, classifier, and interpreter–
could be changed or completely altered.

Little prior work has been done to enable users to
create their own interfaces, i.e., design symbols or ges-
tures and map them to commands [52]. To the best of
the authors’ knowledge, there are no prior user studies
where subjects were asked to invent symbols for com-
puter input. The user studies conducted with the Sym-
bolDesign method were aimed at evaluating whether it
indeed followed the paradigm of user-centered, accessi-
ble design. The analysis focused on evaluating the errors
of the interfaces in recognizing symbols, the amount of
training time needed, and the average recognition time
during use. The subjects without physical limitations
used the input device that they were most experienced
with—the traditional computer mouse—to design, train,
and use the interfaces. This avoided the problem that
measured recognition errors could be due to the user’s
inexperience with the input device or, for the example of
the Camera Mouse, due to inaccuracies of the image
analysis method. For these tests, the reported errors
are therefore probably mostly due to failures of
the interface. Error rates were larger for less experienced

Fig. 6 Top: Instances of five symbols as produced by a user in
Group B who was asked to perform Task 1. The user was asked to
assign the symbol O to the ‘‘select’’ command (‘‘left mouse click’’
command). The remaining four symbols were chosen by the user.
Symbol fi was chosen for the ‘‘forward’’ command, symbol ‹
for the ‘‘backward’’ command, symbol S for the ‘‘stop’’ command,
and symbol * for selecting ‘‘favorites.’’ Bottom: Instances of five
out of eleven symbols as produced by a user in Group B who was
asked to perform Task 2. The subject’s pattern instances were used
to train the system to recognize the ten digits and the selection
symbol O
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computer users than for experienced computer users,
likely because they may have been hesitant and may
have paused while they were drawing a symbol, or they
may have drawn samples of symbols that varied too
much in shape.

An important concept of accessible design is enabling
users to customize their settings to accommodate their
preferences or abilities. In this work, the customization
is inherent, since users choose the symbols and com-
mands of the interface themselves. Users are likely to
select patterns they can remember and easily reproduce,
thus producing interfaces that are simple and intuitive to
control, which is another important component of the
user-centered paradigm. Furthermore, users are allowed
to create redundant symbols, that is, in the interface they
design, two or more symbols could map to the same
command. The SymbolDesign method also includes
redundancy and is flexible in the sense that it allows
users to work with both the symbol interface and the
traditional input tool. For example, a caregiver may use
the computer mouse to help a user with severe disabili-
ties launch a web browser, and the user then would work
with the Camera Mouse and an interface he or she
created with the SymbolDesign method to surf the web.

Unfortunately, it was impossible for the two subjects
with severe cerebral palsy who participated in the
experiments to train an interface and use it to surf the
web. Nonetheless, the authors believe that developing
interfaces that learn to recognize gestures that the users
choose themselves is particularly important for people
with severe disabilities. Flexible interface design may
enable users with less severe motion impairments to se-
lect gestures that they have the abilities to perform.

The initial experiments showed that physical limita-
tions precluded the subjects from gesturing spatio-tem-
poral patterns such as lines or circles, but not from
moving the pointer to certain regions on the screen and
keeping it in these regions for a while. Therefore, a po-
tential solution could be to further discretize the input
patterns in order to extract ‘‘pivot points,’’ i.e., screen
regions that the pointer travels to and dwells in. The

neural network would then have to classify patterns
constituted by pivot points. Another idea is to use
‘‘gesture spotting methods’’ [28, 34] to locate the start
and endpoints of a gesture. If at least one motion pattern
can be reliably recognized, the interface can serve as a
‘‘binary switch’’ and control scan-based applications, for
example, software created by so-called ‘‘wifsids,’’ wid-
gets for single-switch input devices, developed by Steri-
adis and Costantinou [51], or the applications described
by Grauman et al. [21].

Future work will be divided into two areas of inves-
tigation: (1) further improvement the SymbolDesign
technology, and (2) additional user studies to evaluate
the interfaces created by the SymbolDesign technology.
To improve the SymbolDesign technology, work will be
conducted on reducing the errors in classification rates.
This may be possible by taking advantage of additional
input characteristics of the ‘‘digital ink,’’ for example,
the direction and speed of the drawing movement. An-
other idea is to change the preprocessing phase to ex-
tract symbol features that are then passed into the
classifier, instead of passing in a full image of the sym-
bol. This would likely reduce the input dimensionality,
and thus, the size of the neural network. Feature
extraction would be beneficial if input characteristics
that emphasize differences between classes can be iden-
tified and the computational costs associated with their
extraction are not significant. It will also be tested
whether a different type of classifier should be used to
create interfaces that are more reliable and efficient than
the neural-network-based interfaces.

A design feature that will be added to the system is an
optional window that will provide users with visual
feedback. It will show the spatio-temporal pattern on the
screen, while it is being drawn. Initially, this use of
screen space had been excluded, since screen space is so
valuable for miniature computers. In future work, this
idea will be revisited to see whether recognition results
could be improved when users see the patterns they are
drawing. This might be particularly useful for people
with little computer experience.

Fig. 7 Subject 1 (left image) and subject 2 (middle image) are using
the Camera Mouse as a mouse-pointer substitution interface.
Subject 2s attempt to draw a vertical line is shown in blue on the
left monitor in the right image. The subject was instructed to draw a
straight line between the two red regions. She failed to reach both

regions. During the drawing, the subject’s face and the tracking
results of the Camera Mouse were observed on the monitor to the
right. It was verified that the Camera Mouse was functioning
correctly and that the drawn pattern corresponded to the user’s
head motion.
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The idea to use a ‘‘mask’’ during the training process
will also be investigated. This mask would show the
‘‘average pattern’’ that the user draws for a particular
symbol. Such a mask might teach the user to follow this
particular pattern, instead of drawing different instances
of the same symbol with too much variability. Using the
mask in the training phase may help the user to minimize
input errors during regular use, which is an important
consideration in the context of the design paradigm
proposed in this paper. The use of a mask has been
shown to be helpful for other gesture recognition sys-
tems, for example, for the Finger Counter interface [7],
where the mask was a fixed hand gesture for the user to
imitate. Note that in the SymbolDesign application, the
masks must be dynamically determined by an averaging
procedure during training, since the symbols are created
by the users and thus are not known in advance.

Some commercial online handwriting systems require
the user to enter each character separately into a fixed-
size block [8, 40]. This requirement simplifies handwrit-
ing recognition because it yields character segmentation.
Handwriting interface systems without this requirement
have to address the problem of ‘‘run-on writing,’’ where
neighboring characters touch or overlap one another.
Solutions perform character segmentation and recogni-
tion simultaneously, for example, by segmenting and
matching all spatiotemporal patterns that can be char-
acters, and then ranking the patterns by their recogni-
tion scores [42]. This ‘‘candidate lattice’’ approach is
valuable if multi-stroke patterns can consist of sub-
patterns that can be individual characters by themselves,
as it occurs in Japanese. In the SymbolDesign applica-
tion, a similar issue with sub-patterns can arise. A single-
stroke pattern may contain a prefix that by itself could
be a pattern. If the user enters such a pattern and hap-
pens to slightly pause directly after entering the prefix,
the size invariant, pause-dependent recognition method
would identify the prefix instead of the full pattern and
issue an unwanted command. In the conducted experi-
ments, the users only chose prefix-free single-stroke
patterns. To allow the user to work with patterns that
contain prefix subpatterns, the system could be extended
with the candidate lattice approach [42].

The original goal was to minimize the restrictions on
alphabet elements and to let the users decide which
patterns they can remember and easily reproduce.
However, it is not a serious restriction to require the user
to design only prefix-free single-stroke patterns, as there
exists an enormously rich set of such patterns. The
alphabet invented by Isokoski and Raisamo [25], for
example, contains 73 prefix-free single-stroke patterns.

It is planned to conduct a user study that will further
investigate the choices that subjects make in selecting
symbols. For example, the symbols designed by the
twenty users without disabilities were often iconic, i.e.,
the symbols suited or suggested their meanings, as can
be seen for the symbols fi and ‹ mapped to the
‘‘forward’’ and ‘‘backward’’ commands in Fig. 6.

The users involved in the experiments liked the op-
tion that they could design their own patterns. The users
in the experiments conducted by Long et al. [36] also
wanted the ability to define their own gestures. User
acceptance of pen- or pointer-based interfaces will be
further investigated in order to establish whether it in-
deed increases when users are allowed to choose their
own symbols. It will also be studied whether some users
might be overwhelmed by the task of having to design
their own distinct symbols and would prefer to work
with a predefined alphabet. The issue of gesture simi-
larity arises for anybody who designs a gesture alphabet
[36]. An advantage of the SymbolDesign method is that
the users find out during the extended training phase if
they inadvertently proposed symbols that are too similar
for the classifier to distinguish.

Frankish et al. [19] analyzed the relationship between
recognition accuracy and user acceptance of pen-based
interfaces that used online handwriting recognition.
They reported that the impact of recognition perfor-
mance on user satisfaction depends on the nature of the
task being performed. Users seemed to perform a cost/
benefit analysis. For example, for the task of entering a
name and phone number into a virtual fax form, users
accepted the costs associated with recognition errors,
but for the task of entering a text into a virtual
appointment book, they did not. It will be investigated
whether users of interfaces created with our Symbol-
Design system also perform a cost/benefit analysis. They
may be most inclined to work with these interfaces when
traditional input devices cannot be used, for example,
when they need to control a miniature or remote com-
puter. A cost/benefit analysis may also be very impor-
tant for people with severe disabilities. For quadriplegic,
nonverbal users, whose physical conditions prevent
them from using traditional input devices, interfaces that
they can design to match their physical abilities, would
be extremely beneficial. The most urgent task for future
work will therefore be to develop the pivot-point or
gesture spotting methods outlined above.
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