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Abstract 

We describe an efficient algorithm for localizing a mobile 
robot in an environment with landmarks. We assume that 
the robot has a camera and maybe other sensors that en- 
able it to both identify landmarks and measure the angles 
subtended by these landmarks. We show how to estimate 
the robot’s position using a new technique that involves 
a complex number representation of the landmarks. Our 
algorithm runs in time linear in the number of landmarks. 
We present results of our simulations and propose how to 
use our method for robot navigation. 

1 Introduction 

Consider an autonomous agent, which could be a 
mobile robot or a human traveler, who uses a map to 
navigate through an environment that contains land- 
marks. The landmarks are marked on the agent’s 
map. The autonomous agent also has a tool which 
can measure angles; this tool might be a compass. 
The agent may use the following algorithm to iden- 
tify its location in the environment: 

1. Identify surrounding landmarks in the environment. 

2. Find the corresponding landmarks on the map. 
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3. Measure the angles subtended at your position by 

4 .  Compute your position efficiently. 
the landmarks. 

If the first three steps can be executed without 
errors three landmarks are sufficient to compute the 
position of the agent, unless the agent’s position and 
these three landmarks either form a circle, or lie on 
one line. Then the localization problem does not 
have a unique solution. 

However, in real life an agent makes two kinds of 
mistakes: (1) some angles are measured with small 
errors and (2) some landmarks are misidentified. 
Another source of mistakes could be errors in the 
map itself. Suppose that the majority of mistakes 
are of the first type. In this situation we address the 
following problems: 

0 Estimating the position of the agent efficiently. 
0 Finding misidentified landmarks and large angle 

measurement errors. 

In this paper we present an algorithm that es- 
timates the agent’s position in O ( n )  operations 
where n is the number of landmarks on the 2-D 
map. Our simulations show that large errors due 
to misidentified landmarks and erroneous angle mea- 
surements can be found, discarded and the algorithm 
can be repeated without them with improved results. 

Our work is motivated by a mobile robot called 
Ratbot that wa.s built at the Learning Systems De- 
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partment at Siemens Corporate Research. Ratbot 
is used as a test bed for various machine learning 
approaches to robot navigation. Ratbot navigates 
through the corridors of the building at Siemens Cor- 
porate Research. It is equipped with a camera that 
points upwards onto a reflective ball which acts like 
a mirror of the surroundings. The straight lines of 
objects like pictures, doors, and walls look like arcs 
in the images taken by Ratbot’s camera. Only a cir- 
cular, one-dimensional strip of the brightness of the 
image is analyzed. Landmarks like doors,. pictures, 
and fire extinguishers appear as dark bands on a 
strip. The strips provide information on the angles 
subtended at the robot’s position by two landmarks, 
but not on the distance of the landmarks to  the cam- 
era (i.e., depth information).‘ 

To find the corresponding features of an image 
that is taken during navigation and an image that 
is taken in advance and stored in a database, only 
the one-dimensional strips of the two images need to 
be compared. The correspondence problem is solved 
by an algorithm due to Hancock and Judd [5]. Once 
corresponding landmarks are identified, a descrip- 
tion of the matching landmarks within the global 
map of the robot’s environment is given. The map 
of the environment is a two-dimensional description 
of the office building through which the robot navi- 
gates. We call the coordinate system that describes 
the global map of the environment an ezternul co- 
ordinate system. We distinguish it from the cum- 
era coordinate system whose origin is at the mobile 
robot’s location in the environment. The position 
of the robot with respect to the external coordi- 
nate system is unknown and needs to  be determined. 
This problem is similar to  exterior orientation prob- 
lems in machine vision or hand-eye calibration in 
robotics [6]. 

The problem of relating angle information pro- 
vided by landmarks to the position of a navigat- 
ing robot has been addressed previously [13, 9, 101. 
Many authors have studied landmark navigation and 
position estimation [l,  2, 7, 8, 12, 141; Mataric [ll] 
gives a survey of related work. 

Our position estimation algorithm has been used 
by Greiner and Isukapalli [3] to determine which of 
the landmarks that are visible to  Ratbot are useful 

for its position estimate. However, our algorithm is 
not restricted to robots that have the same geometry 
as Ratbot’s camera system. Our techniques are gen- 
eral and can be used for other navigation or exterior 
orientation problems. 

Section 2 gives a formal description of our prob- 
lem. Section 3 describes our position estimation al- 
gorithm which uses a new linear approach that rep- 
resents landmarks with complex numbers. Our al- 
gorithm runs in time linear in the number of land- 
marks. Section 4 proposes how to incorporate our 
algorithm in an on-line navigation algorithm that es- 
timates the robot’s position while the robot is mov- 
ing. 

2 The robot position problem 

In this section we define the problem of estimating 
a robot’s position in its environment given a global 
map of the environment and the angles subtended 
by landmarks that it measures at  its position. 

G 
external coordinate system 

Figure 1: Environment with external coordinate system 
(de)), y‘“)) and robot coordinate system ( ~ ( ~ 1 ,  ~ ( ~ 1 ) .  

The position of a landmark z ( ~ )  is given by two 
coordinates ( ~ ( ~ 1 ,  ~ ( ‘ 1 ) .  The superscript e denotes 
that landmark z(.) is given in the external coordinate 
system. A landmark which is described by a vector 
in the robot-centered camera coordinate system is 
denoted by ~(‘1. We illustrate the environment with 
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its coordinate systems in Figure 1. 
The positions z t ) ,  . . . z p )  of the landmarks in the 

external coordinate system are given on the map. 
The angles subtended by the landmarks from the 
robot's position are measured by the robot's sensors. 
The angle subtended at the robot's position by the 
perpendicular from the z-axis of the robot-centered 
coordinate system to  landmark 2:') is denoted by ri. 
Note that the measurements are noisy in practice. 

Now we can formulate our problem: Given the 
external positions z t ) ,  . . . , z p )  of n landmarks and 
corresponding (noisy) angle measurements ro , . . . r, , 
estimate the position p of the robot in the environ- 
ment. 

3 Linear position estimation 

In order to solve the robot position problem we can 
apply the law of cosine to  all possible sets of two 
landmarks and get a system of nonlinear equations. 
This system is overdetermined and can be solved us- 
ing a least squares approach. Standard algorithms 
that solve large numbers of nonlinear equations take 
too long for real-time robot navigation. Therefore, 
in this section we introduce a new, linear approach 
to  the problem. We describe an efficient algorithm 
that runs in time linear in the number of landmarks. 
Instead of applying the law of cosine, we use a com- 
plex number representation of the landmarks and 
get a set of linear equations. To solve this particu- 
lar system of m equations, we do not need an O(m3)  
matrix inversion algorithm. Instead we introduce an 
O ( m )  algorithm which takes advantage of the spe- 
cial structure of the matrix and the right side of the 
equation. 

The (d') ,  y")) coordinates of a landmark z(') can 
be written as a complex number z(') = z(') +jy(') = 
1 ejT in the robot-centered coordinate system. Then 
the ith landmark is 

The robot measures the angles subtended by a 
reference landmark z r )  and the other landmarks 
zip), . . . , z r )  at its position. (Landmark z r )  may be 
chosen to be the most reliable landmark.) Dividing 

the complex number z:" by z r )  for i = 1, . . . , n gives 
us a set of equations that includes the measured an- 
gles vi subtended by landmark zi and landmark zo: 

The difference between two vectors in the robot- 
centered coordinate system is the same as the dif- 
ference between the corresponding vectors in the ex- 
ternal coordinate system. Thus, the vectors between 
the landmarks in the robot-centered coordinate sys- 
tem are known. The vector vi between landmark zo 
and zi can be written as 

Given that z:') = 2:) + vi, equation (1) becomes 

After some algebra we obtain a set of equations 
whose only unknowns are z r )  and vi for i = 1,. . . , n: 

To remove the dependence on z$) ,  we substitute the 
left-hand side of Equation (2) with the expression on 
the right-hand side for a different index k: 

for i , k  = 1,. . . ,n, and k # i. The set of equa- 
tions (3) can be transformed into a matrix equation 
A T = c where r,c,  and A can be defined as fol- 
lows: Vector r = ( l l / l o , . .  ., ln/lo) is the vector of 
the unknown ratios of the length of vectors 2:) and 
z!"), . . . , 2:). Vector c is a n(n - 1) dimensional vec- 
tor of differences of complex numbers ci = l / v i  such 
that 
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C =  

and matrix A is a n(n - 1) x n matrix consisting of 
complex numbers bi = ci eiqz:  

bi -bz 0 . .  . 0 0 ’  
b i  0 -b3 . . .  0 0 

61 0 0 . . .  0 -bn 
-h b2 0 ... 0 0 

0 bz -bS . .  . 0 0 

A =  0 bz 0 . . .  0 -b, 

-bl 0 0 . . .  0 b ,  
O -b2 0 . . .  0 bn 
0 0 -b2 . . .  0 bn  

0 0 0 . . .  -bn-i bn 

Note that the system of linear equations A T  = c 
is overdetermined. We have n unknowns T ~ ,  . . . , rn 
and n(n - 1) equations. These equations ma.y 
be inconsistent, since we have measurement errors. 
Therefore, we need to find a solution for which the 
“average error” in the equations is minimized. Such 
a solution is obtained by the “least squares method.” 
We define the average error by the sum of squares 
E’ = 1IA T - ~ 1 1 ~ .  If there is an exact solution to 
A r = c ,  the error is E = 0. In practice it is unlikely 
that there is no error, therefore, we find the ratio 
vector r for which E’ is minimized. The solution to 

min{r : E’} = min{r : JIA T - cl[’} 

is I‘ in terms of the pseudo inverse A t  = (ATA)-lAT 
of matrix .4 

I’ = ( A ~ A ) - ~ A ~ c  

providing matrix ATA is nonsingular. In Section 3.2 
we give the necessary and sufficient conditions for 

ATA being nonsingular and argue that they will 
almost always be fulfilled in practice. In the fol- 
lowing section we describe an algorithm called PO- 
SITION ESTIMATOR which efficiently calculates vec- 
tor r = A+c = (ATA)-lATc such that the squared 
error E 2  in the equations is minimized. 

3.1 The position estimation algorithm 

In this section we describe procedure POSITION ES- 

TIMATOR that estimates the position of the robot. 
Procedure POSITION ESTIMATOR takes as an input 
the positions of the landmarks z t ) ,  . . . ,221 (as given 
in the external coordinate system) and the measured 
angles pl, . . . y n .  After the initialization of vectors 
w, e ,  b and ci in lines 1-5, the algorithm first 
calculates vector s = %ATc in lines 6 and 7, and 
then determines T = 2(ATA)-’s by calling proce- 
dure RATIOS-CALCULATOR in line 8. It next calcu- 
lates n position estimates p l ,  . . . , pn given by vector I‘ 
(lines 9-11) and uses them to  estimate the position 
of the robot p in line 12. 

P O S I T I O N - E s T I M A T O R ( z ~ ~ j ,  . . . , zP j l  ( P I , .  . . cpn) 
1 f o r i =  1 t o n  (initialization) 
2 vi = - *;e) 

3 c; = l / v ;  
4 
5 bi = ciejpc 
6 for i  = 1 t o n  (calculates $AT c )  
7 

sum-of-ci = sum-of-ci + ci 

Note 
s ’  z -  - nbTci - bT sum-of-ci 

8 RATIOS-CALCULATOR(b1,. . . , b,, s i , .  . . sn) 
(returns r )  

9 f o r i =  1 t o n  

that in the following detailed description of the 
algorithm we use two kinds of multiplications of 
complex numbers a = (Re(a) , Inz(a) )  and b = 
( R e ( b ) ,  Im(b)):  the standard complex multiplication 
ab and the dot product a.b = aTb = ( R e ( u ) R e ( b )  t 
Im(a ) lm(b ) ) .  For each component of s = i A T c  we 
have 

s, = ( n  - l )bTcz  - bTc3 
3 J f Z  
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n Matrix bybT can be written analogously. Then T = 
( A T A ) - l A T c  = ( A T A ) - 1 2 s  = l / 2  ( n D  - b,br - 

b Y b T ) - l 2  s = ( n o  - bxbz - b,bT)-'s. In this form r 
can be calculated (without inverting - 

lemma: 

(4) 

In line 8 procedure RATIOS-CALCULATOR returns 

cedure POSITION ESTIMATOR a set of n solutions 

si = nbTci - b T c c j  
j = 1  

the vector = (ATA)- lATC* In line lo Of pro- bxbT - bybT)  directly) using the following well-known 

zo,l  ( r )  . . . , zi'2, for the position of landmark zo in the 
robot-centered coordinate system is calculated using 
equation ( 2 ) :  Lemma 1 If matria: K is nonsingular and 

( K - l / ~ ) ~ h  # 1, then 
1 

LLeivt  - I I{ - 1 hhT K - 1 

1 - (K- 'h)Th 

- f o r i  = l , . . . , n  
1 

ribi - ci 
$j = ~ - 

10 U ,  U ,  (li - hhT)-l = l i - l  + 0 

In line 11 of procedure POSITION ESTIMATOR a set 
of estimates p l ,  . . . , pn for the robot position is calcu- 
lated using the solutions for the position of landmark 
zo.  If there is no noise in the measurements, the vec- 
tors zi:? are the same for all indices i. In practice 
there will be noise, so we take the centroid 

1 "  

i=l 

We apply the formula given in Lemma 1 twice to 
invert matrix ATA (We argue in Section 3.2 that 
the conditions of Lemma 1 are fulfilled.) 

Since r = 2 ( A T A ) - ' s  = ( ( n D  - b x b z )  - b,bT)-'s, 
we can apply Lemma 1 to I< = (no - b&') and 
h = y and get P =  - C P z  

of the position estimates p l , .  . . ,pn as an average to 
obtain an estimate of the posit,ion p of the robot 

that taking the centroid may not be the best way to  

r, = ( ( n D  - b x b z )  - bybF)- 's  
IC-1 by bT I< - 

1 - ( I i - l b y ) T b y  
(line 12 of procedure POSITION ESTIMATOR). Note = l r l s +  

average the n estimates. We are currently working = 1i-'s+ (5) 
( l i - l b y ) (  (K-lb,)Ts) 

on determining the best averaging coefficients. They 1 - ( I i - l b y ) T b y  
may not be the same for the a: and y coordinates 
of Pi [41. 

Procedure RATIOS-CALCULATOR takes as an in- 
put the vectors b and s and returns the vector 
r = 2 ( A T A ) - l s .  It exploits the special form of ma- 

Applying Lemma 1 again, the first term I<-'s = 
- bxbT)- l s  Can be expressed as 

( 6 )  
(nD) - lb , (  ( n D ) - l b x ) T s  = ( n ~ ) - ~ s  + 

trix ATA = 1 - ( ( n D ) - l b x ) T b x  

Vector K - l b Y  = (no - b,bT)-ly in Equation (5) is 
calculated by applying the formula given in Lemma 1 

(n-1)  bgbl -bzbz . . .  - bT b, 
-b2bl ( n - l ) b 2 b 2  . . .  - b i b ,  2 

\ -bTbi -bTb2 . . .  

. (7) 
which can be written as: A T A  = 2 ( n D  - bxb: - 
byb:) where b, is the vector of the real coordinates 
and by is the vector of the imaginary coordinates of 

( n D ) - ' b x ( ( n D ) - l b x ) T b y  
1 - (( nD)-lb,)Tbx 

Ic-'by = ( n D ) - l b y  -l 

( b l ,  . * 7 bn) ,  is a 
is bTbi = bpi + ' i i ,  and b ~ b Z  is defined as follOws 

matrix whose ith entry The inverse of a diagonal matrix is a matrix whose 
entries on the diagonal are inverted. Thus, the ith 
diagonal entry of ( n D ) - l  is l / ( n b T b i ) .  We can now 
obtain the full expression for T = ( n D  - bxbr - 
b,bT)-'s by substituting I i - l s ,  l i - l b , ,  and (no)-' 
into Equation (5). 

bp1 bxlbx2 e * .  bxlbxn 
bx2bxl b32 . . .  bxabxn 

bxnbxl bxnbxz bpn 

bxbz = 
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RATIOS-CALCULATOR(~~, . . . , b,, sl, . . . , s,) 
1 for i  = 1 t o n  
2 
3 

b,i = real part of bi 
byi = imaginary part of bi 

4 diag; = l /(n(b& + b $ ) )  ( ( 7 4  - ' 1 
calculate vector s: 

5 f o r i =  1 to TI 

6 diagb,i = diagi * Z; ( (nD)-lb,)  
7 diagsi  = diagi * si ( ( ~ D ) - ' s )  
8 

9 calculate vector (diagb,.s) diagb, 

calculate dot products diagb, .b,  
and d i a g b , . ~  

10 use results of lines 8 and 9 to calculate 
A'-'s with formula (6) 

calculate vector Ii- 'by : 
11 f o r i =  1 t o n  

13 calculate vector (diagb,.b,) diagb, 
14 

12 diagbyi = diagi * byi ( (nD)- 'by)  

use vectors d i a g y  and (diagb,.b,) diagb, 
to calculate h'- 'by with formula (7) 

calculate vector T :  

15 calculate vector (K- 'bY) ( (K- 'by ) . s )  and 

16 use results of lines 10, and 15 to 

17 

scalar ( I<-' by ).by 

calculate T with formula (5) 
return r = (TI,. . . , rn) 

3.2 Correctness and analysis of the posi- 
tion estimation algorithm 

In order to establish the correctness of procedure 
POSITION ESTIMATOR we ca.n first prove that ma- 
trix A T A  = 2 ( n B  - 6,bT - b y b T )  is singular iff the 
landmarks and the robot's position are arranged in 
a perfect circle or on a line. This singularity condi- 
tion is easily tested through some preprocessing that 
makes sure that the landmarks are not all arranged 
in a circle or on a line when procedure POSITION Es- 
TIMATOR is called. In practice it is highly unlikely 
that the landmarks all lie on a perfect circle or line 
including the robot's position. 

We can also show that if the landmarks are cor- 
rectly identified and there is no noise in the angle 
measurements procedure POSITION ESTIMATOR re- 
turns the actual position of the robot. 

T h e o r e m  1 Given a set of noisy measurements of 

landmarks which are not all arranged in a circle 
or line algorithm POSITION ESTIMATOR determines 
the position of the robot such that the squared error 

0 (IAr - cl(' is minimized. 

T h e o r e m  2 The algorithm POSITION ESTIMATOR 
runs in tame linear in the number of landmarks. 0 

3.3 Quality of POSITION ESTIMATOR 

Consider the position estimates pi that are calcu- 
lated in line 11 of POSITION ESTIMATOR. The cen- 
troid p equals each estimate pi only in a situation 
in which there is no noise in the measurements. Er- 
rors in the angle measurements result in errors in the 
position estimates pi. Averaging these estimates pi 
properly will give us an unbiased estimate p as long 
as the linearization is valid. We are currently work- 
ing on the problem of finding optimal averaging co- 
efficients [4]. In the implementation of our algorithm 
we use 1/n for the coefficients. We argue that the 
centroid obtained by uniform averaging produces an 
error that is small according to our simulation re- 
sults. Our simulations also show that it is possible 
to  find outlier estimates pi which can be removed to 
improve the estimate for the centroid p. 

In our experiments we calculated the length of the 
error vector in a scenario in which the robot is at  the 
origin of our map and the landmarks are randomly 
distributed in a 10 meters by 10 meters area. The 
robot is at  the corner of this area. The distance 
of the landmarks to the robot is at  most 14.1 m and 
the angles are at  most 45". Note that this scenario is 
quite restricted, it uses only a quarter of the robot's 
surrounding area. We expect better results for sce- 
narios in which the robot can take advantage of in- 
formation provided by all of its surrounding. 

Figure 2 shows the results of experiments in which 
we added an amount of noise to  the angles which 
was a certain fraction of the true angle. The length 
llpaclual - pI[ of the error vector between pactUal and 
the computed position p is 9.3cm for 1% angle noise, 
37cm for 5% angle noise, and l m  for 10% angle noise 
in every landmark. 
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error in angle measurements 

Figure 2: Simulation results using algorithm POSITION 
ESTIMATOR on an input of noisy angle measurements. 
The squared error in the position estimate p (in meters) 
is shown as a function of measurement errors (in percent 
of actual angle). 

There may be some outliers that are not as close 
to  the actual position. However, note that there 
is a one-to-one correspondence between each land- 
mark zi and estimate p i .  Each outlier pi corresponds 
to  either a misidentified landmark .ti or a noisy angle 
measurement for landmark zi . 

In the simulation shown in Figure 3 we used our 
algorithm to  calculate position estimates pl, . . . , p19 

given 20 landmarks .to, . . . , z19. The errors intro- 
duced can either result from a noisy measurement 
of an angle or from misidentified landmarks. We 
assumed that the angle measurement error is 10% 
of the actual angle for landmarks z5 and z18 and 
1% for the other landmarks. Our experiments show 
that landmarks z5 and 218 produce position esti- 
mates p5 and p18 that are far from the actual position 
of the robot compared to  the other estimates. So in- 
stead of taking the centroid of all position estimates 
p l , .  . . ,p19, we can obtain better results by modifying 
the algorithm such that the outliers p5 and p18 are 
discarded and the centroid of the remaining points 
is calculated. Instead, we call algorithm POSITION 
ESTIMATOR on an input of 18 landmarks (without 
2 5  and 218). Then the centroid is at  (6.5 cm, 6.5 cm). 
This is a considerable improvement over the original 
centroid which was at  (17 cm, 24 cm). 

80 I I I I I I I I I 

50 
40 

0 

0 '  I I I 
I I I I I 

0 10 20  30 40 50 60 70 80 

Figure 3: Two outliers landmarks result in bad posi- 
tion estimates at (79 cm, 72 cm) and (32 cm, 69 cm). The 
centroid calculated without the outliers is illustrated by 
a filled diamond. The position estimate after POSITION 
ESTIMATOR is called again after outlier landmarks are re- 
moved is at (6.5 cm, 6.5 cm) (shown circled). 

4 Robot navigation 

The key advantages of our POSITION ESTIMATOR 
over the standard nonlinear approach described in 
the beginning of Section 3 is that (1) we linearized 
the problem of determining the robot position in a 
noisy environment, (2) the algorithm runs in time 
Zinearin the number of landmarks, (3) the algorithm 
provides a position estimate which is very close to 
the actual robot position, and (4) large errors in 
some measurements (i.e., outliers) can be found. 

Our algorithm does not use information about the 
motion of the mobile robot: the history of position 
estimates, the commands that make the robot move, 
and the uncertainties in these commands. We are 
currently working on two methods to incorporate 
our POSITION ESTIMATOR into a navigation algo- 
rithm that keeps track of this information. One ap- 
proach is Kalman filtering, the other is a regulariza- 
tion method. We are also working on the following 
questions : 

Is it possible to  obtain a similar algorithm for 3- 
dimensional representations of landmarks? For the 
3-D case we propose to use quaternions (see for ex- 
ample [6]) instead of complex numbers. 

Given a probability distribution on the measure- 
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ment errors, what are the probabilistic bounds for 
the quality of our solution? 
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