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Abstract 
A fast simulated annealing algorithm is developed 

for automatic object recognition. The object recogni- 
tion problem is addressed as the problem of best de- 
scribing a match between a hypothesized object and 
an image. The normalized correlation coeficient is 
used as a measure of the match. Templates are gener- 
ated on-line during the search b y  transforming model 
images. Simulated annealing reduces the search time 
by orders of magnitude with respect to an exhaustive 
search. The algorithm is applied to the problem of how 
landmarks, e.g., trafic signs, can be recognized b y  a 
navigating robot. We illustrate the performance of our 
algorithm with real-world images of complicated scenes 
with traffic signs. False positive matches occur only 
for templates with very small information content. To 
avoid false positive matches, we propose a method to 
select model images f o r  robust object recognition b y  
measuring the information content of the model im- 
ages. The algorithm works well in noisy images for 
model images with high information content. 

1 Introduction 
The field of object recognition is one of the most 

complex areas in computer vision and image under- 
standing. Object recognition based on matched filter- 
ing has been a very active research area in computer 
vision for many years. Matched filtering has been used 
much earlier in the areas of radar, sonar, and signal 
processing [16]. Valuable information for visual object 
recognition can be obtained from that literature. 

Although template matching has been widely used 
in computer vision, a crucial problem with the method 
is the size of the search space [14, 121. There are sev- 
eral approaches published in the literature that either 
reduce the size of the search space or that direct the 
search towards areas in the search space for which a 
match is more likely [8, 15, 141. In this paper a new 
approach is proposed that uses both such techniques. 
We discuss the problem of how certain landmarks, 
for example traffic signs, can be recognized by an au- 
tonomous vehicle or robot. For this particular appli- 
cation, a five-dimensional search-space is sufficiently 
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large for robust object recognition and small enough 
for efficient object recognition. 

The method presented constructs templates on-line 
during the search. The algorithm uses an efficient 10- 
cal definition of the correlation coefficient to evaluate 
the match. The algorithm presented correctly finds 
the location, shape, size, and orientation of objects. 
If enough independent information is contained in a 
template image, it can be matched with an object in 
an image uniquely. False positive matches occur only 
for objects that have very small information content. 
To avoid false matches, templates with insufficient in- 
formation content should not be used for recognition 
tasks. We describe how to compute the information 
content of template images. 

Although the main objective of this paper is to de- 
scribe a new approach to the general problem of visual 
object recognition, the solution to the special problem 
of recognizing traffic signs is significant by itself. Au- 
tomatically recognizing traffic signs in images is very 
valuable for mobile robot or autonomous vehicle nav- 
igation. A robot that can recognize a traffic sign as a 
familiar landmark in its map of the environment can 
then use this information to localize itself in its envi- 
ronment [2]. Our method stands apart from previous 
approaches to traffic sign recognition because first, it 
is efficiently applied to real-world landscape images (as 
opposed to Ettinger’s isolated signs [SI), and second, 
it does not rely on color perception which is very sen- 
sitive to lightin changes (as opposed to the approach 
of Zheng et al. f191). 

The optimization technique fast simulated anneal- 
ing is applied to avoid the cost of brute-force search by 
directing the search successfully. It reduces the search 
time by orders of magnitude. Recent publications in 
the sonar literature [5, 111 show that fast simulated 
annealing has been very successful in coherent signal 
extraction and localization in noisy environments. We 
use it in a similar way for incoherent image processing. 
Kirkpatrick et al. [lo] show how to simulate anneal- 
ing of combinatorial optimization problems. Szu and 
Hartley 171 propose an inverse linear cooling schedule 

simulated annealing.” The original slower version of 
simulated annealing has been applied to segmentation 
and noise reduction of degraded images [7]. However, 
for visual object recognition, fast simulated annealing 
has yet not been exploited. 

for simu I ated annealing. This version is called “fast 
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This paper is organized in the following way: The 
object recognition problem is defined as a parameter 
search problem in Section 2. Section 3 shows how tem- 
plates are generated from model images. Section 4 
examines the search space of the recognition prob- 
lem and introduces “ambiguity surfaces.’’ Section 5 
describes our simulated annealing algorithm and Sec- 
tion 6 reports our experimental results. Section 7 an- 
alyzes the error in the correlation and proposes how 
to avoid false matches. Section 8 describes our results 
on noisy images. We conclude with a summary of this 
work and suggestions how to apply these results to 
other problems. 

2 The Recognition Problem 
An object in an image I is defined to  be recog- 

nized if it correlates highly with a template image T 
of the hypothesized object. This template image T 
is a transformed version of the model of the hypoth- 
esized object. Model images of objects are stored 
in a library. Section 3 shows how to compute the 
template from the model. A template T z,y), for 
0 5 z < nT, 0 5 y < m ~ ,  is generally muc 6 smaller 
than the image I(z ,y) .  The template is compared 
with the part I T ( z , ~ )  of image I ( z , y )  that contains 
the hypothesized object. Assuming pixel (20, yo) is at 
the lower-left corner of the hypothesized object in I ,  
subimage IT is defined to be 

I T ( z , Y )  = I(zO+z,~O++y) for 05 x < n T , O < y < m T .  

We use the normalized correlation coefficient as a mea- 
sure of how well images IT and T correlate or match. 
For images IT and T ,  the normalized correlation coeffi- 
cient p is the covariance of IT and T normalized by the 
standard deviation of IT and T .  The correlation coef- 
ficient is dimensionless, and lpl 5 1. The correlation 
coefficient measures how accurate image IT can be ap- 
proximated by template T .  Image IT and template T 
are perfectly correlated if p = 1. We approximate p 
using the sampled coefficient of correlation 

UT = / p T ~ ~ , y T ( ~ , y ) ~ -  ( C ~ , y T ( z , y ) ) ~  and?-’T is 
the number of pixels in the template image T with 
nonzero brightness values and p~ 5 nT . m ~ .  Note this 
last condition means that not all the pixels in images T 
and IT are actually compared but only the nonzero 
pixels in T with the corresponding pixels in IT .  This 
is important, for example, if the template contains a 
circular object. Here pixels in T bordering the circle 
(or the background) will be zero (black). The compu- 
tation time of r is proportional to the number of pix- 
els in the hypothesized object, which is usually much 
smaller than the number of pixels in I .  Using the 

correlation as a measure of successful recognition is 
also advantageous because it is a very robust measure. 
That is, it  is relatively insensitive to fluctuations in the 
environment compared to  higher resolution methods, 
as is well documented in spectral, bearing, and range 
estimation problems [9, 11. 

3 Generating Templates from Model 
Images 

A template T ( x ,  y) is generated from a model im- 
age M(z,y) by choosing three parameters that de- 
scribe a transformation from M into T .  The parame- 
ters determine how the model is sampled, and if nec- 
essary, how it is interpolated to  generate the template. 
The parameters used are a rotation parameter T and 
two sampling parameters s, and sy . 

For notational convenience, we define the origin of 
a coordinate system for model image M(z,y) to be 
in the middle of the image, i.e., M ( x , y )  is defined 
for - ( n M  - 1)/2 5 z 5 ( n M  - 1)/2 and - ( m ~  - 
1)/2 5 y 5 ( m ~  - 1)/2 for n M ,  mM odd. Then the 
rotation parameter r determines how the x and y axes 
of M(z,y) are rotated to define the x and y axes of 
T ( z ,  y). More precisely, given vectors 

n M  - 1 m M  - 1 
,0)  and my = (0,- 1, m, = (2 2 

which lie on the coordinate axes of M ,  and radius 

RM = d(w)2 + we compute vectors 

t ,  = RM (cos r, sin T )  and t, = RM (-sin r, cos T )  

which define the coordinate axes of the template im- 
age T in continuous space. The axes of T always span 
the model object as show in Figure 1.  

The sampling parameters s, and sy determine how 
many samples along vectors t, and t, are used for the 
template image, respectively. The spacing between 
the samples along t, is ( ( n M  - 1)/2)/s,. If there is 
a pixel in M(z,y) after every ( n M  - 1)/(2s,) step 
along t,, its brightness is used to define T along its 2- 
axis. For example this scenario may occur if r = 45 
degrees, and s, = ( n M  - 1)/2. As shown in Figure 1,  
if s, = ( n ~  - 1)/4 the model is down-sampled and 
transformed into a template that is about one-quarter 
the size of the model. Pixels of zero brightness are 
added where necessary as shown in Figure 1. 

In general, there may not be a pixel in M a t  the 
sampling point on vector t,. If this is the case, we use 
a four-point interpolation to define the brightness for 
the template at that point. Similarly, M is sampled 
(and if necessary interpolated) along vectors t,, -tx, 
and -t, to obtain the brightness of the template pix- 
els along the template coordinate axes. The rest of 
the template is now determined from M along the 
grid that is defined by the samples on the template 
coordinate axes. 

Since the sampling rates s, and sy in the template 
coordinate system are different in general, the tem- 
plate is a rotated, scaled, and uniformly deformed ver- 
sion of the model. More parameters would be needed 
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Figure 1: A 5 x 5 template image is obtained from a 
9 x 9 model image using parameters s, = sy = 2 and 
T = 45 degrees. 

to describe more general non-uniform and non-linear 
deformations of the model. A straightforward exten- 
sion would be to add a fourth parameter to obtain a 
non-uniform linear deformation of the model. How- 
ever, for our purposes, the transformation described 
is sufficient because the objects to be recognized are 
usually flat, normal to the viewing direction and far 
away from the camera compared to the object size. 
Our method computes the template very quickly by 
sweeping over the model image only once. The time 
for creating a n~ x m~ template image is 0 ( n ~ m ~ ) .  

Examples of a model and corresponding trans- 
formed templates are shown in Figure 2. The first two 
templates are scaled by s ,  = sy and are not rotated. 
The remaining templates in Figure 2 are defined by 
more general transformations with s, # sy.  

4 The Parameter Search Space 
The space of possible solutions of the recognition 

problem is extremely large, even if a particular object 
is known to be in the image a priori. The dimen- 
sion of the search space is determined by the number 
of possibilities for position, size, shape, and orienta- 
tion of the object. The number of possibilities for the 
position of the centroid of the object in the image is 
O(n2)  €or a n x n image. Assuming that the size and 
shape of the object can be approximated by sampling 
the model along two perpendicular axes as described 
in the previous section, the number of possibilities to 
approximate the size and shape of the object is also 
O(n2) .  Even with this assumption, the number of pos- 
sible angles is still very large; since the image is dis- 
crete, we assume that the number of possible angles is 
O(n) .  Thus, the size of the search space is O(n5)  for 
an n, x n image. For a typical image of size 256 x 256, 
the search space has a size of order 1014. An exhaus- 
tive search of this space would take too long to find a 
good match between templates and images. 

Figure 2: Model of the slow sign with 101 x 111 pixels, 
and six templates of the slow sign. Templates are ob- 
tained by sampling the model sign a t  various sampling 
rates and degrees of rotation. 

We use terminology from the radar and sonar liter- 
ature to describe the search space. We call the space 
an ambiguity surface. A peak in the ambiguity surface 
means that the correlation coefficient is high for a par- 
ticular set of parameters. Figure 3 shows an example 
of a twc-dimensional ambiguity surface with a peak 
shown in black. There may be several peaks in an am- 
biguity surface. If the template and the object in the 
image match perfectly, the cross-correlation between 
template and image results in a peak in the ambiguity 
surface which is the global optimum. Due to noise and 
reduction of the search space by our template transfor- 
mation, we do not expect a perfect match. However, 
in most cases the global optimum corresponds to a 
correct match or recognition. 

As we can also see in Figure 3, an iterative search 
for a peak in the ambiguity surface such as steepest 
descent would fail because it would get “stuck” in lo- 
cal minima. Simulated annealing, however, is able to 
“jump” out of local minima and find the globally best 
correlation value. 

5 The Simulated Annealing Algorithm 
In this section we describe our algorithm €or finding 

an optimal match between images and templates. Our 
algorithm is based on a fast version of simulated an- 
nealing. Simulated annealing has become a popular 
search technique for solving optimization problems. 
Its name originates from the process of slowly cool- 
ing molecules to form a perfect crystal. The cooling 
process and its analogous search algorithm is an iter- 
ative process, controlled by a decreasing temperature 
parameter. At each iteration, our algorithm gener- 
ates templates on-line as described in Section 3. New 
test values for the location, sampling, and rotation 
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parameters of the template are randomly perturbed 
from current values. If the correlation coefficient rj 
increases over the previous coefficient rj - 1, the new 
parameter values are accepted in the j-th iteration (as 
in the gradient method). Otherwise, they are accepted 
if 

e - (EJ-EJ- l ) /TJ  > < 
where < is randomly chosen to be in [0 ,1] ,  T j  is the 
temperature parameter, and E .  - 1 - rj is the cost 
function in the j-th iteration. $ora sufficient temper- 
ature this allows “jumps” out of local minima. We 
choose 

as the cooling schedule for the j-th update of the tem- 
perature parameter where To is the initial temperature 
and L is the number of iterations during the search. 
Note that the rate at which the temperature decreases 
is inverse linear [l l ,  171 and converges faster than an 
often used logarithmically inverse cooling schedule [7]. 
As a criteria for stopping the annealing process, we 
simply put a limit on the search length L. Although 
this does not ensure convergence to the optimal cor- 
relation coefficient, the solutions we obtain for the pa- 
rameters are generally sufficient and solve the recog- 
nition task. 

Figure 3: On the top, image slow3. On the bottom, 
the ambiguity surface of image slow3 computed for 
all possible translations given fixed angle and scaling 
parameters. Simulated annealing is used to find the 
best correlation value (here the darkest pixel value). 

If the search problem involves different kinds of pa- 
rameters the annealing algorithm is analogous to the 
cooling of a mixture of liquids, each of which have 

Figure 4: Examples of model images: Footpath, E-no- 
entry, Stop, and Yield. 

different freezing points [ll]. An algorithm that ran- 
domly perturbs all parameters at the same time has 
poor convergence properties. Therefore, at  a specific 
temperature we do not combine the test for the choice 
of the location, sampling, and rotation angle. We also 
obtain good results using simulated annealing only for 
the location parameters, and a gradient descent with 
large enough random perturbations [5] for the remain- 
ing parameters. 

To properly deal with boundaries of an image 
I (z ,y)  for which 0 < z < n I  and 0 5 y < mr, we 
use the following formula to perturb the z-coordinate 
c,  of the centroid position of a template with radius 
RT in image I(., y) 

CX if ex - RT 2 0 and c,  + RT 5 n1 
-ex if e, + RT < 0 and c, - RT 2 - n I  
2n1- c, if e, - RT > nI and e, + RT 5 2n1 
12112 otherwise (unlikely perturb at ion). 

cx = 

The y-coordinate cy of the centroid of the template 
is perturbed similarly. This formula avoids attract- 
ing the centroid position to the rim or corners of the 
image. 

6 Experimental Results 
The algorithm described above was implemented 

on a workstation. We used the model images shown 
in Figure 4 to find templates that correlate optimally 
with the scene images some of which are shown in Fig- 
ure 5 .  The images are quantized using 256 grey levels. 
The size of the model images is 122 x 117 pixels (ex- 
cept for the one-way sign, which has 178 x 60 pixels.) 
The size of the scene images varies between 100 x 70 
and 516 x 365 pixels. 

For all scene images, the shape, size, orientation, 
and location of any traffic sign is found if it is known 
a priori what kind of sign to look for. For example, 
using the stop sign model shown in Figure 4 the algo- 
rithm finds the stop sign in a complicated scene image 
like image Stop2. (This is the second image in the 
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Images/Models 
Footpath 
E- no-ent ry 
No-entry1 
No-entry2 
One-way 
Priority1 
Priority2 
Priority3 
Slow 1 
Slow2 
slow3 
Stop1 
s top2 
Yield1 
Yield2 
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Footpath E-no-entry No-entry One-way Priority Slow s t o p  Yield 
0.77 0.59 0.38 0.37 0.46 0.29 0.35 0.62 
0.49 0.73 0.39 0.43 0.46 0.26 0.38 0.62 
0.22 0.21 0.67 0.31 0.24 0.18 0.17 0.40 
0.29 0.18 0.84 0.37 0.14 0.26 0.23 0.35 
0.37 0.55 0.24 0.70 0.40 0.38 0.31 0.58 
0.36 0.49 0.34 0.35 0.58 0.32 0.30 0.44 
0.46 0.54 0.40 0.45 0.66 0.29 0.32 0.31 
0.37 0.57 0.40 0.39 0.62 0.34 0.37 0.56 
0.25 0.29 0.25 0.25 0.45 0.74 0.15 0.38 
0.38 0.48 0.39 0.39 0.32 0.56 2nd 0.21 0.58 
0.39 0.58 0.41 0.38 0.40 0.62 0.30 0.59 
0.41 0.47 0.42 0.30 0.22 0.25 0.69 0.58 
0.43 0.73 0.44 0.48 0.29 0.31 0.51 3rd 0.65 
0.45 0.75 0.39 0.50 0.53 0.32 0.37 0.78 
0.42 0.73 0.39 0.50 0.43 0.32 0.36 0.82 
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last row of images in Figure 5; see also Figure 6). The 
stop sign in scene image Stop2 is recognized although 
the stop sign model was constructed from a picture of 
a completely different stop sign. Note that the stop 
sign in image Stop2 has graffiti, while the model sign 
does not. For the more general problem of recogniz- 

Figure 6: On the top: recognized stop sign. On the 
bottom: European no-entry sign matches car roof. 

ing which object is in a scene image (i.e., not knowing 
the kind of traffic sign a priori), we ran 144 experi- 
ments with 18 scene images and 8 model images [3]. 
Table 1 contains some of the correlation values ob- 
tained in the experiments. For each scene image, our 
algorithm computes the highest correlation coefficient 
among the set of values obtained for each model (bold- 
face values in Table 1). The model corresponding to 
the maximum correlation value is selected as the sign 
recognized in the scene image. For most scene images, 
the correlation coefficient is highest if a match between 
a sign in the image and its corresponding template oc- 
curs. Only for two images, Slow2 and Stop2, a false 
positive match occurs because the best correlation co- 
efficient is not the one for the corresponding model. 

There are two facts that contribute to the false pos- 
itive matches. First, some models do not have enough 
structure by themselves and match easily with arbi- 
trary parts of the images. For example, the European 
no-entry sign’s white middle bar matches with the roof 
of a car in image Stop2, as shown in Figure 6. In Sec- 
tion 7 we analyze this problem quantitatively. Second, 
some models look quite different from the actual land- 
mark in the scene image. For example, as mentioned 

before, the stop sign model does not have any graf- 
fiti while the sign in Stop2 does. The templates con- 
structed from the model stop sign do not match the 
stop sign in image Stop2 well enough to result in a cor- 
relation coefficient lar er than the one obtained with 
the model E-no-entry ?see Figure 6). One could try to 
solve this problem by making a model of each traffic 
sign (including its graffiti) in the environment. How- 
ever, this would result in a huge library of signs which 
would increase the search time substantially. More- 
over, the environment may change and outdate the li- 
brary quickly. Therefore, we instead propose to select 
a small number of model images with high information 
content (see Section 7 )  so that false positive matches 
are avoided. 

6.1 Illumination Changes 
The correlation coefficient  IT, T )  measures not 

only how accurate image IT can be approximated by 
template T ,  but also how accurate image IT can be ap- 
proximated by a linear function of T ,  since p (  IT , T )  = 
p ( l ~ ,  aT + 6 )  for some constants a,  b.  Therefore, the 
correlation coefficient is invariant to constant scale fac- 
tors in brightness. Thus recognition is not affected 
by new lighting conditions that mainly result in such 
brightness changes. 

6.2 Simulated Annealing vs. Exhaustive 

We also implemented an exhaustive search of the 
entire parameter space to compare its running time 
to our fast simulated annealing algorithm. The com- 
parison of our simulated annealing algorithm and ex- 
haustive search drastically demonstrates the advan- 
tage of simulated annealing. We used image Noentry2 
which has 112 x 77 pixels. The search space had about 
6.8 x lo7 sets of parameters. It took 15 seconds to 
recognize the sign using our simulated annealing algo- 
rithm. In contrast, exhaustive search found the sign 
after more than 10 hours of computation time. 

Figure 7 illustrates how fast our simulated anneal- 
ing algorithm recognizes a sign in a scene image. 

Search 

7 Avoiding False Matches 
The error due to digitization increases if the number 

of pixels p~ in the image window considered decreases. 
For large samples of p~ pixels the error between the 
sampled correlation coefficient T and its continuous 
version p can be expressed as the mean squared error 

(see Weatherburn [IS]). Therefore, false matches can 
be avoided if the template images do not get too small. 

The normalized auto-correlation of model image 
M ( X , Y )  is 
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Figure 7: A typical run of our simulated annealing 
algorithm. The sign is found after about 300 iterations 
(ca. 15 s). 

The faster the auto-correlation falls off, the higher 
the resolution of the model image. Examples of auto- 
correlation images are shown in Figure 8. The resolu- 
tion of a given model image can be measured with a 
single number, the coherence area 

where S ( W ~ , W ~ )  is the Fourier transform of R(s,y). 
Given the coherence area A and number of pixels R of 
M ( z ,  y), the number of coherence cells is 

c = n/A. 
The number of coherence cells is equivalent to the 
number of degrees of freedom of the model image. It 
can be used as a measure of the information content 
of the model image. (The relationship between reso- 
lution bounds, information content and object recog- 
nition for the physically realistic case of images with 
signal dependent noise is given in Ref. [13]). 

We examine the information content of each model 
image to evaluate how useful the model image is for 
the recognition task. All our model images M(z,y) 
have the same number of pixels R. Model images with 
low resolution (little structure) such as the European 
No-entry and Yield signs, do not have enough informa- 
tion content for robust object recognition. This, and 
the mean squared error in T for small p~ , are responsi- 
ble for the false positive matches reported in Table 1. 
In order to avoid false matches, we need to avoid using 
such model images with low information content. 

The models that contribute to the false positive 
matches, E-no-entry and Yield, have a coherence area 
of 313 and 197, respectively. This is much higher 
than the coherence area for models with more reli- 
able matching results. For example, the Footpath and 
Stop signs’ auto-correlation falls off much faster; their 
coherence areas are 148 and 56, respectively. The 
number of coherence cells in E-no-entry is 297 and 
in Yield 473, but in Footpath it is 628 and in Stop, 
even 1641. 

Thus, the number of coherence cells is a quantita- 
tive measure for determining if a model has enough 
information content to be useful as a template. Most 
of the models we use have a large enough number of 
coherence cells for robust detection, but subsequent 
downsampling in generation of templates may corrupt 
this. 

Figure 8: Auto-correlation of model images Footpath, 
E-no-entry, Stop, and Yield. To illustrate how fast 
the auto-correlation falls off, the e-folding lengths, i.e., 
pixels (zly) with R(z,y) x 1/e, are shown on a dark 
contour. 
8 Results on Noisy Images 

Gaussian noise is added to the brightness values of 
some of the scene images to examine the robustness 
of our algorithm. The algorithm is able to find the 
sign even in strongly degraded pictures. The signal-to- 
noise ratio (SNR of a noisy image is defined as 10 log 
of the variance o d the noiseless image over the variance 
of the noise. Several noisy images are obtained by 
corrupting image slow3 by zero-mean Gaussian noise 
with various signal-to-noise ratios. Our results for im- 
age slow3 are summarized in Figure 9. The correlation 
increases as the signal-to-noise ratio increases. Fig- 
ure 9 also shows image slow3 corrupted by Gaussian 
noise with zero mean and SNR 0 dB. Matches for pic- 
tures with much lower SNR are possible for templates 
with greater information content than those presented. 
(In radar and sonar, signals with negative SNR are 
commonly extracted given sufficient information con- 
tent.) 

9 Conclusions 
Our method has been shown to efficiently recognize 

objects in complicated landscapes in the presence of 
noise. To our knowledge, our work is the first to apply 
fast simulated annealing to object recognition. Our 
results show that it makes the parameter search of 
object recognition feasible. 
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Figure 9: On the left, image slow3 degraded by Gaus- 
sian noise with zero mean and SNR 0 dB. On the right, 
the sign is recognized in the image. On the bottom, 
the correlation coefficient for correct sign recognition 
in noisy versions of image slow3 is shown. 

We strongly advocate the use of template matching 
in recognition tasks and provided quantitative tech- 
niques to analyze its limits. We showed how to mea- 
sure the information content of templates as a way to 
make the recognition algorithm robust. 

For the application of traffic signs, we have shown 
that the search space can be successfully reduced by 
using a three parameter transformation from model 
image to template. This method is well suited for 
recognition tasks that involve objects with scale and 
shape variations. The method is so efficient that tem- 
plates can be constructed on-line during the search. 

For future work, severe illumination variations 
within the object and occlusion problems can be ad- 
dressed. Other applications of our method, for ex- 
ample in medical computer vision and in face recog- 
nition, are being investigated. We believe that with 
our method we can generalize common approaches to 
recognize faces [4] by using images that are not nor- 
malized but contain more general scenes with varied 
backgrounds. 
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