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that is to be estimated given our image data. For our 
object recognition problem, we choose a parameter set 
that enables us to uniquely identify objects in complex 
real world scenes. It is significant that the form of the 
likelihood function in this physical approach is not at 
all arbitrary, but intrinsically depends upon the prob- 
ability distribution of the brightness measurements no 
matter how low the corresponding noise variance is at 
each pixel, so long as it is finite. Moreover, it is the 
form of this likelihood function, not the level of the 
noise, that determines the optimal method for recog- 
nizing an imaged object. 

To emphasize these issues, we show how a scalar 
measure of an object’s complexity, which is invari- 
ant under affine transformation and changes in im- 
age noise level, can be extracted from the object’s 
Fisher information. The volume of Fisher information 
is shown to provide an overall statistical measure of 
the object’s recognizability in a particular image, while 
the complexity provides an intrinsically physical mea- 
sure that characterizes the object in any image. We 
then derive a method for recognizing an object im- 
aged in a complex scene that attains the theoretical 
lower bound on mean-square error for any unbiased 
estimate, and therefore is by definition statistically 
optimal and information-conserving. From the com- 
puter vision perspective, we consider the information- 
conserving property of this estimator to be most sig- 
nificant because it assures that the method uses all 
the measured data pertinent to the object’s recogniz- 
ability regardless of the noise level. Many popular 
edge-based methods, for example, discard a significant 
amount of information pertinent to an object’s recog- 
nizability and are therefore inherently sub-optimal. 

To illustrate our strictly physical approach with 
compelling examples, we focus attention in the present 
paper on the problem of recognizing objects that can 
be uniquely determined by the six parameters of an 
affine transformation as well as a seventh parameter 
that identifies the class of the object. Here, the affine 
transformation describes rigid body motion and lin- 
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ear distortions of a model object, while the class dis- 
tinguishes it from other objects with the same affine 
parameters. For inherently three dimensional objects, 
the class must be supplemented by further parameter- 
izations that account for such effects as variation in 
shading caused by changes in surface orientation with 
respect to a given source distribution and receiver ge- 
ometry. For the recognition of flat objects in real world 
scenes, however, we show that such ancillary parame- 
terizations are unnecessary so long as the object does 
not have a purely specular surface. This is because the 
optimal estimator for the affine parameters takes the 
form of a weighted filter that is invariant to the uni- 
form variations in shading characteristic of such flat 
objects. This weighting is also necessary to discrimi- 
nate against image ambiguities that are not explicitly 
accounted for in classical estimation theory. It is sig- 
nificant that thege image ambiguities make the recog- 
nition problem/’inherently nonlinear. A global opti- 
mization procedure is therefore necessary to compute 
the filter output and obtain the optimal estimate. 

The method’s performance is evaluated experimen- 
tally by applying it to the problem of recognizing traf- 
fic signs in thousands of images of complicated outdoor 
scenes. In both our theoretical and experimental anal- 
ysis, we find that recognizability is strongly dependent 
upon the object’s complexity. We show how this mea- 
sure becomes analogous to the complexity tradition- 
ally referred to in signal processing when the affine 
transformation is reduced to a l-D shift in the posi- 
tion of a l-D object. 

2 The statistics of image brightness 
Charge-coupled device (CCD) cameras do not out- 

put the intensity W of light, but instead a power- 
transformed intensity in &bit grey scales which we 
refer to as image brightness I (z ,y) .  The brightness 
is linearly proportional to W-v(x,y) where a y is a 
“gamma-correction,” e.g., y = 2.2. Experiments with 
the CCD video camera used in our vision system in- 
dicate that the standard deviation ~ ( 2 ,  U) of the out- 
put I ( z ,y )  is not only small compared to the mean 
m(z,y), but does not depend on the mean or on po- 
sition (z,y) [2]. The noise, therefore, is additive and 
signal-independent, such that a(z,y) = U. We spec- 
ulate that the noise is due to small mechanical vibra- 
tions between source and receiver, as well as electronic 
shot noise. Thermally induced fluctuations of natural 
light, however, are not a significant cause of errors in 
our measurements as is shown in Ref. [2]. 

Our measured average skew of -0.02 and kurtosis 
of 2.81 are so near to the corresponding Gaussian val- 
ues of 0 and 3, respectively, that our data can be effec- 

tively modeled as Gaussian at each pixel By compu- 
tation of the sample covariance of brightness between 
image pixels, our experiments also indicate that the 
brightness measurements are statistically independent 
across the pixels. 

Let vector I represent image I ( z ,  y) where the rows 
of the image are appended into one column vector 
in lexicographic order. Each component 1, of vec- 
tor I contains an independent intensity measurement 
I(s, y) for 1 5 k 5 M N .  Then the probability density 
for I is 

3 Recognition as a parameter estima- 
tion problem 

We use the six-dimensional vector 
a = (50, yo, Bo, s,, sy, a)  to describe rigid body motion 
and linear distortions of an object q in an image with 
position xg  = (50, yo), rotation Bo, contractions sz, sy, 
and skew a which vanishes in a rectangular Cartesian 
coordinate system. For example, suppose the general 
Cartesian coordinates x‘ = (z‘,y‘) are related to the 
rectangular Cartesian system x = (z,y) by the 2-D 
affine transformation x‘ = Ax - xg, where 

cos eo sin Bo 
A = (“0“ s:) (- sin(B0 + a )  cos(eo + a)) . (2) 

A model object q ( d ,  y‘) in some ideal reference frame 
(d, y’), therefore, appears as a translated, rotated, 
contracted and skewed object q(z, y; a) in the covari- 
ant reference frame ( 5 , ~ )  of an image. The parame- 
ters a are then measured within the image reference 
frame such that -CQ < ZO,YO < CO, 0 5 80 5 27r, 
-n/2 5 a 5 n/2, and 0 < s,,sy < CO, where dila- 
tions occur for 0 < s,,sy < 1 and contractions for 

To account for the possibility that distinct objects 
may have coincident vectors a we define an additional 
parameter Y that identifies the class of the object. For 
example, in traffic sign recognition, a slow sign is in a 
different class from a yield sign, although the two may 
have the same a. 

From the perspective of statistical estimation the- 
ory, recognizing an object is the same as estimating 
the parameters a and v. 

4 Parameter resolution: Fisher infor- 
mation, recognizability, and the co- 
herence of objects in images 

Let us consider the problem of recognizing an object 
of a given class in some scene. This can equivalently 

1 < sz,sy. 
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Here the image mean m(z, 
parameter vector a for 
that constitute the expected 
neighboring pixels that 
in a. The Fisher information 
be reduced to 

Jij  = - 
U2 
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E[(& - ai)2] 2 

where the object energy E :  
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descriptors of the object 
under rigid body motion. The 

the sensitivity of the ob- 
parameter ai and, therefore, can 

of the object’s autocorre- 
a i .  An object with relatively 
ter ai, for example, will have 

autocorrelation peak. The error in 
therefore, increases with the 

coherence scale ti and additive 
with object energy. 

We define the coherence volume V to be the scalar 
measure characterizing the combined n,-dimensional 
variations of the object, where n, is the length of a, 

where IJI is the determinant of the Fisher information 
matrix. The lower bound can then be written as 

where J a ~  is the adjugate matrix of J [8]. These 
coherence scales have compelling physical meanings. 
We consider the interpretation of J as an informa- 
tion measure to be far more useful than its interpre- 
tation as the inverse of the theoretical lower bound 
on estimation error. For example, in the type of o g  
tical pattern recognition problems encountered with 
low variance CCD camera measurements, the asso- 
ciated bounds on object positional resolution fall in 
the sub-pixel regime, and are somewhat of an overkill. 
On the other hand, because the volume IJJ of Fisher 
information is inversely proportional to the limiting 
mean-square resolutional volume of the parameters 
that uniquely specify the object, we consider it to  be 
a scalar measure of the object’s recognizability in a 
given image. By Eq. (10) it is seen that there is a di- 
rect relationship between this recognizability measure 
and the physical components of the Fisher informa- 
tion, namely, the object’s coherence volume and en- 
ergy. For example, within a given image, where the 
additive noise variance is uniform, the information vol- 
ume IJI only varies with the object’s coherence volume 
and energy. The noise variance, therefore, factors out 
under variations in object recognizability, regardless 
the noise level. This shows that it is the physical struc- 
ture of the likelihood function and not the level of the 
noise that is most important in properly formulating 
the recognition problem. 
4.1 Position resolution 

We first derive the lower bound on the error for any 
unbiased position estimate of an object with known 
rotation, contraction and skew. Given the true posi- 
tion (al ,  az) = (20, yo), the Fisher information matrix, 
with elements Jij = 

(11) 
can be expressed by a spatial “bandwidth matrix” 
B = a2/EJ that characterizes the object. To do so, it 
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is convenient to let the double sum in Eq. (11) be re- 
placed by a continuous double-integral so that q(z, y) 
and Q(u, w) can be defined as Fourier transform pairs 

Q(u,v)  = JJO q( z, y)e--j2?F(xzl+Y")dzdy and 

q(5,  y) = Jr CO J" -a3 & ( U ,  w)ej2.rr(xu+yv)dudw 

where = dxdy is the pixel area. The four el- 
ements of B can then be defined by a mean-square 
bandwidth I32 in x, 

B:= (2.)2 (AX) E Sz CO 1" -CO U ~ ~ Q ( U , U ) ~ ~ ~ U ~ W ,  (12) 

a mean-square bandwidth Bi in y, 

and a cross-term 

B x ~ -  - B2 YX = -9 AX E J" -a J-", uwlQ(u, w)I2dudw,(14) 

with the aid of Parseval's Theorem ( A z ) ~ E  = 

definitions for the object's mean-square spatial band- 
width are similar to those introduced for onedimen- 
sional signal waveforms by Gabor [4]. A distinction 
lies in the positive-semidefinite nature of our object 
brightness data versus the zero-mean nature of mod- 
ulated signal waveform data. As a result, our mean- 
square bandwidths are defined about zero spatial fre- 
quency, as in Ref. [6], while those in the signal pro- 
cessing literature are defined about some average fre- 
quency that approximates the carrier frequency for 
narrowband signals. 

Given these definitions and the derivative rule for 
Fourier transform pairs, the lower bound on position 
recognition can be expressed as 

JJO IQ(z,Y)I2dzdy = J-", 1:- IQ(u,412dudu. These 

where 

is the coherence area of the object, which follows from 
Eq. 9, where V = Axo,Yo for this 2-D scenario. For 
example, the lower bound for estimating 'co is simply 

Axo,yo = IBI-4 (16) 

(17) Cr2 2 E [ ( ~ O  - ~ o ) ~ ]  L JG1 = C,,, 

where coherence length scale !,, equals B;/IBI or 
B$ A~,,,,, and the lower bound for yo is 

(18) 
cT2 2 

W O  - 2 JG1 = -jj- e,,, 

where e,, equals B; This analysis provides a 
2-D extension of the well-known relationship between 
a 1-D signal's mean-square bandwidth and the optimal 
resolution attainable in an estimate of its position [3]. 
While the coherence length scales lxo and lyo could 
have been obtained directly from Eq. 8 without in- 
troducing the mean-square bandwidth concept, this 
would have circumvented both the historical perspec- 
tive and an important physical interpretation. 

The coherence areas and coherence length scales of 
two traffic signs are compared in Fig. 1. The shown 
stop sign has a much smaller coherence area than the 
shown European no-entry sign. Its position, therefore, 
can be resolved much more easily than the European 
no-entry sign's position. 

The bound on position estimation error is not in- 
variant to changes in object rotation, as is shown in 
Ref. [2] by principal component analysis. 
4.2 Angular resolution 

Assume only the rotation 00 of the object about 
some point in the image plane is unknown. By Eq. 8, 
the angular coherence scale for object rotation is 

\ 3  

This leads to the bound 

E[(& - eo)2] 2 JG' = e;, (20) 

on angular resolution of the object, which is invari- 
ant to chacges in object position, since % and & 
vanish, but depends on contraction and shear of the 
object, as shown in Ref. [2]. 
4.3 Contractional resolution 

Finally, assume that only the object's contractional 
distortions s, and sy are unknown. Then, for 2-D 
parameter vector (al, u2) = (sx, s,), where s,, sy > 0, 
J is a 2 x 2 matrix with elements defined in Eq. 6 .  The 
coherence area As, ,8y and coherence length scales e,, , 
lay are then dependent, by Eq. 9, on both diagonal 
and cross terms of the Fisher information matrix, such 
that 

!,= = ([J-']II$)' and lSv = ([J-']22$)'. The 
bounds for contractional resolution are then E[(GX - 
s,)~] 1 $C:=, and E[(.?, - s , ) ~ ]  1 $C&. See Fig. 2. 

5 The complexity of imaged objects 
According to standard usage, an object is consid- 

ered to be complex if it is "composed of elaborately 
interconnected parts." We may gather from this that 
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C, = 1, where the rotational coherence scale 
is defined in Eq. 19 and the contractional coherence 
area in Eq. 21. The rotational and contrac- 
tional complexities of the traffic sign models, charted 
in Fig. 4, are consistent with qualitative appraisals of 
the inherent rotational and contractional symmetries 
of the signs. 
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Figure 1: Two traffic signs and their 2D-autocorrelation 
surfaces. The white centers of the autocorrelation surfaces 
correspond to the coherence areas of the signs. European 
no-entry sign’s coherence area of 2.2 % of the sign’s area 
is much larger than the stop sign’s, which is 0.4 %. This 
indicates that the position of the stop sign can be resolved 
more easily than the position of the European no-entry 
sign. Below are 1D-horizontal slices through the center 
of the signs’ autocorrelation surfaces, where y-positions 
are fixed and 2-positions vary. The stop sign’s horizontal 
position can be resolved better than the European no-entry 
sign’s because of its narrower autocorrelation peak-width 
and shorter coherence length. 

6 Image edges 
There is an important connection between the po- 

sitional Fisher information of an object and “edge- 
based” recognition. Both require computation of the 
spatial gradient (v, w) of the expected ob- 
ject. By Eq. 11, however, the positional Fisher infor- 
mation integrates gradient factors over the entire ob- 
ject. This includes both slowly varying brightness con- 
tributions over the entire area of the object as well as 
rapid variations at the object’s edges. A priori there is 
no way to judge which of these will make the dominant 
contribution to the Fisher information. In spite of this 
basic fact, edge-based recognition methods threshold 
the gradient magnitude over the object so as to discard 
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Figure 2: The autocorrelation surfaces of models Euro- 
pean no-entry, Stop and Priority with contraction param- 
eters sz and sy increasing from the lower left to the top 
right of the surfaces. The white centers of the autocorrela- 
tion surfaces are the correlation peaks and correspond to 
the contractional coherence areas of the signs. The Euro- 
pean no-entry sign’s contractional coherence area is much 
greater than the Stop sign’s, which means that the con- 
tractional parameters sz and sy are easier to resolve for 
the Stop sign. 

all information pertinent to the object’s recognizabil- 
ity that is not contained in its edges. The danger in 
edge-based methods, therefore, is that a potentially 
larger amount of information may come from slowly 
varying brightness changes accumulated throughout 
the object’s area than from rapid changes at edges. 
In this case, edge-based recognition methods are in- 
herently sub-optimal. Conversely, if the predominant 
positional information about an object is concentrated 
in its edges, the foregoing analysis of Fisher informa- 
tion, coherence scales and complexity remains equally 
pertinent regardless the method of recognition. More- 
over, the foregoing analysis goes beyond consideration 
of positional variations, as expressed in terms of the 
horizontal and vertical gradient components also used 
in edge-methods, but also accounts for the general lin- 
ear variations permissible in an affine transformation. 
7 Maximum likelihood estimation of 

In this section, we derive a method for recogniz- 
ing an object imaged in a complex scene that attains 
the theoretical lower bound on mean-square error for 
any unbiased estimate, and therefore is by definition 
statistically optimal and information-conserving. 

Given image data I, and following classical es- 
timation theory, we use the likelihood function 
of Eq. 3, to derive the maximum likelihood esti- 
mate i i ~ ~  = argmax,P(Ila) of the parameters a, 

an object in a scene image 

which can be found by solving the likelihood equa- 
tion = 0. Since = 

2 
8;; 8 (-& C f N ( I k  - mk(a))) , the maximum likeli- 

hood estimate 

Figure 3: Comparison of complexity C for various traf- 
fic signs: Signs with inscriptions and human figures have 
higher complexity than signs composed only of simple ge- 
ometric shapes. Our data analysis shows that the ability 
to unambiguously resolve a sign increases with the sign’s 
complexity. 

Angle Complexities of Signs 
I I I I I I I 

12 
11 
10 
9 

7 
6 I I I I I I I I 

Contractional Complexities of Signs 

1 6nn 

400 , I I  
200 I I I I I I 

Figure 4: The rotational and contractional complexities 
of the traffic sign models. 
where region B consists of background unrelated to 
the object while region O+ is the union of all pixels 
that contain the cxpected object q(x, y; a) as well as a 
slightly perturbed or variational object q(s, y; a+ Aa). 
The first sum in Eq. 23 can be discarded, because the 
background does not depend on the object properties 
described by a. The maximum likelihood estimate is 

After expanding the square, this reduces to 
then ~ M L  argmina C(z,v)Eot (I(s, 9) - ~ ( x 7  I/; a>>2- 

G M L  = argmax I ( s , y ) q ( x , y ; a ) ,  (24) 

because the data energy C(z,y)EO+ (I(., Y ) ) ~  is al- 
ways independent of a, and, for small perturbations 
of a about its true value, the expected object energy 
&z,y)EO+ (m(x,  y; a))2 can be taken as a constant in- 
dependent of a. 

We interpret q(z, y; a), in Eq. 24, as a multidimen- 
sional matched filter, which, when evaluated at some 

8 

(z,$/)W+ 

150 

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on July 28,2010 at 17:01:00 UTC from IEEE Xplore.  Restrictions apply. 



It is noteworthy that 
ched filter is di- 
Cauchy-Schwartz 

When the estimate 
value, small changes in 

very near to its true 
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in Eq. 24, so that the 
is the maximum likeli 

weighted matched filte ut, the location of its 
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maximum likelihoo , and hence the weighted 
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information-preserving when the signal-to-noise-mtio 
(SNR) E / 0 2  is high, as it is for the recognition prob- 
lem with CCD data [2]. An experimental proof of &r 
method's statistical optimality is readily provided by 
inspection of Fig. 5. Over the entire global peak, 
the weighted matched filter, a comparison of noiseless 
object replicas versus noisy image data, is indistin- 
guishable from the autocorrelation of the coincident 
noiseless object replicas. This confirms that our ap- 
proach is information-conserving, and therefore takes 
optimal advantage of all the image data pertinent to 
the object's recognizability. 

8 Brightness invariance of flat surfaces 
The brightness of an object depends on its re- 

flectance properties, its shape, and its illumination. 
In particular, the scene radiance L of a surface 
patch centered at  world point (X,Y,Z) is propor- 
tional to the image irradiance or intensity W mea- 
sured at  the corresponding pixel (z,y), such that 
W(z,y) = gL(X,Y,Z), where g is a function of 
parameters of the imaging system [5]. Since the 
sensitivity of our imaging system is uniform over 
the whole image, we can assume that g is con- 
stant. The scene radiance is related to the ob- 
ject's bidirectional reflectance distribution function f,. 
and the source irradiance Ei by L,.(X,Y,Z) = 

where s(X,Y,Z) is the direction of a collimated 
light source, and v(X,Y,Z) is the direction of the 
camera. For a flat surface, however, the direction 
of the collimated source is constant over the ob- 
ject such that s = s(X,Y,Z). Under the benign 
assumption that the object's reflectance has direc- 
tional properties that are separable from its spa- 
tial properties, we have f,(s, v(X, Y, Z ) ,  X, Y, 2) = 
frl (s, v(X, Y, 2)) e(X, Y, 2). A special case of this 
is a Lambertian surface where f,.l(s,v) = l/r and 
e(X, Y, 2) is the albedo. If the camera is at least a few 
object lengths away then its directional variations over 
the object will be so small that the camera's direction 
can be considered constant such that v = v(X, Y, 2). 
Then the image brightness I = W-7 becomes 

f,.(s(X, y, Z),V(X, y, z>, x, y, W W X ,  y, Z)), 

(27) I = c, e-'(X,Y, Z),  

which, to within the constant factor c, = 
(gfTl(s, v)Ei(s))-' , is invariant to changes in the ge- 
ometry of the source, receiver and object. It is note- 
worthy that in the case of a Lambertian surface, the 
above result is valid regardless of whether v(X, Y, 2) 
is effectively constant or not. By distributivity, these 
results are easily extended to a hemispherical distri- 
bution of distant sources, such as the sky, so that the 
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image brightness of the flat object remains invariant 
to changes in the geometry of the source, receiver and 
object to within the constant factor c,. 

9 Recognition of flat objects 
The output of the weighted matched filter, given in 

Eq. 25, is invariant to linear transformations of image 
brightness of the form 1‘(x, y) = c l l ( z ,  y) + c2, where 
c1 and c2 are scalar constants [2]. But the analysis 
of the previous section shows that, to within a scalar 
factor, the image brightness of a flat object remains 
invariant to changes in scene shading brought upon 
by changes in the geometry of the source, receiver and 
object. The output of our weighted matched filter, 
therefore, is invariant to such changes in scene shad- 
ing, as is our optimal estimate of the parameters a and 
necessary for object recognition. 

10 Experimental results 
Our data consists of more than 3280 complex real- 

world images. The details of the implementation of 
the system and related references can be found in Refs. 
[l, 21. The system recognizes 94% of the traffic signs 
correctly and misclassifies 6%. The system perfor- 
mance depends on the complexity of the signs in the 
scene images. For example, the low-complexity Eu- 
ropean no-entry and European yield signs generally 
result in high filter outputs for arbitrary scenes and 
are therefore responsible for most of the false matches. 
Conversely, traffic signs with inscriptions and compli- 
cated shapes are generally more complex and easier 
to unambiguously recognize. This fact can be used 
apriori in evaluating the cross-class performance of a 
recognition system. 

11 Summary and conclusions 
We have developed a general method for object 

recognition that is information-conserving, attains the 
theoretical lower bound on estimation error for any un- 
biased estimate regardless the method of estimation, 
and is therefore statistically optimal. Our work pro- 
vides a foundation for quantitative comparisons be- 
tween different recognition methods and shows under 
what special circumstances sub-optimal techniques, 
such as purely edge-based methods, can become op- 
timal. We have applied our theoretical results to de- 
velop a system that has successfully recognized traffic 
signs in thousands of complex real-world scenes. 

In future work, we will extend our approach to non- 
planar 3-D objects, using physical models [5,  9, 71 
that describe the imaging process and the object’s re- 
flectance properties. 
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Figure 5 :  A scene image with a oneway sign and three 
ambiguity surfaces computed for all possible translations 
of the replica of a oneway sign with fixed angle and scaling 
parameters. The top right surface is the sign’s autocor- 
relation, The middle left surface is computed using the 
matched (M) filter (Eq. 39), the middle right surface is 
computed using the weighted matched (WM) filter (Eq. 
40). The correlation peak of the surfaces is a white spot 
located in the upper left of each plot. The graph shows 
horizontal slices through the global peaks of the ambigu- 
ity surfaces. The methods converge at the true solution. 
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