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ABSTRACT

This paper describes and evaluates a real-time
vision system that detects and tracks vehicles
on highways under reduced visibility conditions.
The system uses a forward looking video cam-
era in a moving car to estimate the distances of
the car to other vehicles on the road. Results
of experiments on images sequences in difficult
visibility conditions are presented.

1 Introduction

Vision systems that automatically analyze high-
way scenes from a moving vehicle have been re-
markably successful in fair weather conditions
(see, for example, [2, 3, 4, 6, 7, 8, 11, 12, 13] ).
Reliability of these systems, however, is also re-
quired for reduced visibility conditions that are
due to rainy or snowy weather, tunnels and un-
derpasses, and driving at night, dusk and dawn.
Changes in road appearance due to weather
conditions have been addressed for a station-
ary vision system that detects and tracks vehi-
cles, for example, in Ref. [10]. Reference [9] de-
scribes how visibility estimates lead to reliable
lane tracking from a moving vehicle.

Our initial system for highway scene analysis,
introduced in Ref. [1], failed in reduced visibil-
ity conditions, heavy traffic, and on highways

*Email: betke@cs.bc.edu

with cluttered roadsides. Our new system over-
comes some of these problems by analyzing the
whole highway scene, in particular, by deter-
mining the visibility conditions, segmenting the
road using color information, and then recogniz-
ing and tracking lane markings, road boundaries
and multiple cars on the road. Our vision sys-
tem does not need any initialization by a human
operator, but recognizes the cars it tracks auto-
matically. The video data is processed in real
time without any specialized hardware. All we
need is an ordinary video camera and a low-cost
PC with an image capture board.

2 Vision system overview

The input data of the vision system consists
of color image sequences taken from a camera
mounted inside our car, just behind the wind-
shield. The images show the environment in
front of the car — the road, other cars, bridges,
and trees next to the road. The primary task of
the system is to distinguish the cars from other
stationary and moving objects in the images
and recognize them as cars. The vision system
outputs an online description of road parame-
ters and locations and sizes of other vehicles in
the images. This description is then used to
estimate the positions of the vehicles in the en-
vironment and their distances from the camera-
assisted car. The vision system contains four
main components: the car detector, the road



detector, the tracker, and the process coordi-
nator (see Figure 1). Refs. [1, 2] provide the
details of earlier versions of the system.

The road detector determines if the images are
taken at daytime or night, including tunnel or
snow conditions, and then finds the road bound-
ary and lane markings. Its outputs are used by
the car detector to steer the search for poten-
tial cars within each image frame. Once the car
detector recognizes a potential car, the process
coordinator creates a tracking process for it and
provides the tracker with information about the
size and location of the potential car. For each
tracking process, the tracker analyzes the his-
tory of the tracked areas in the previous image
frames and determines how likely it is that the
area in the current image contains a car. If it
contains a car with high probability, the tracker
outputs the distance to the car.
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Figure 1: The real-time vision system.

3 Vehicle Detection and Track-
ing

Our system detects vehicles in the input video
by analyzing the motion information provided

by multiple consecutive image frames and the
color components, edge features, correlation
and symmetry in single frames. The system
also makes use of prior knowledge of vehicle and
road appearances, for example, vehicle shapes
and road color. References [1, 2] describe our
methods in detail. We provide a summary of
detection and tracking tools here:

e Temporal differences of consecutive image
frames and estimates of sizes and speeds of
cars passing the camera-assisted car from
behind are used for initial passing car de-
tection.

e Vehicles in the far distance usually show
very little relative motion between them-
selves and the camera-assisted car, so that
temporal methods fail to detect them.
Feature-based methods are therefore used
instead, which analyze horizontal and ver-
tical edge projections.

e Given only one or two images, it is very
difficult to automatically recognize that an
image region is indeed containing a vehicle
(often only part of the vehicle is caught).
The vision system therefore employs its
tracking capabilities to recognize if the im-
aged object is a vehicle.

e The system crops tracked objects from the
scene and uses them as online models to
create templates. These templates are re-
sized and matched online using the nor-
malized correlation coefficient. In addition,
the symmetry of the tracked objects is ex-
ploited.

e Due to the strong up-and-down motion of
the video camera in the camera-assisted
car, tracking windows are adjusted adap-
tively.

¢ Road boundaries and lane markings are de-
tected in each frame by a spatial recursive
least squares filter [5].

e A statistical model for “road color” is com-
puted offline, which is then used online to



classify the pixels that image the road and
to discriminate them from pixels that im-
age obstacles such as other vehicles.

In addition, a statistical model for “daytime sky
color” is computed offline and used online to dis-
tinguish daytime scenes from tunnel and night
scenes. Detecting the rear lights of a tracked
object, as described in the following paragraph,
provides additional information that the system
uses to identify the object as a vehicle. This
is benefical in particular for reduced visibility
driving, e.g. in a tunnel, at night or in snowy
conditions.

3.1 Rear light detection

The rear light detection algorithm searches for
bright spots in image regions that are most
likely to contain rear lights, in particular, the
middle 3/5 and near the sides of the tracking
windows. To reduce the search time, only the
red component of each image frame is analyzed,
which is sufficient for rear light detection.

The algorithm detects the rear lights by looking
for a pair of bright pixel values in the tracking
window that exceeds a certain threshold. To
find this pair and the centroid of each light,
the algorithm exploits the symmetry of the rear
lights with respect to the vertical axis of the
tracking window. It can therefore eliminate
false rear light candidates that are due to other
effects, such as specular reflections or lights in
the background.

For windows that track cars at less than 10m
distance, a threshold that is very close to the
brightest possible value 255, e.g. 250, is used,
because at such small distances bright rear
lights cause “blooming effects” in CCD cameras,
especially in poorly lit highway scenes, at night
or in tunnels. For smaller tracking windows that
contain cars at more than 10m distance, a lower
threshold of 200 was chosen experimentally.

Note that we cannot distinguish rear light and

rear break light detection, because the position
of the rear lights and the rear break lights on
a car need not be separated in the US. This
means that our algorithm finds either rear lights
(if turned on) or rear break lights (when used).
Figures 2 and 3 illustrate rear light detection
results for typical scenes.

3.2 Distance Estimation

The perspective projection equations for a pin
hole camera model are used to obtain distance
estimates. The coordinate origin of the 3D
world coordinate system is placed at the pin
hole, the X and Y-coordinate axes are parallel
to the image coordinate axes z and y, and the
Z-axis is placed along the optical axis. High-
way lanes usually have negligible slopes along
the width of each lane, so we can assume that
the camera’s pitch angle is zero if placed hori-
zontally level on the dashboard. If the camera
is also placed at zero roll and yaw angles, the
actual roll angle depends on the slope along the
length of the lane and the actual yaw angle de-
pends on the lane’s curvature. Given conversion
factors cporiz and cyery from pixels to mm for
our camera and estimates of the width W and
height H of a typical car, we use the perspective
equations Z = Cpopir fW/w and Z = cyeri f H/h,
where Z is the distance between the camera-
assisted car and the car that is being tracked
in meters, w is the car width and h the car
height in pixels, and f is the focal length in mm.
Given our assumptions, the distance estimates
are most reliable for typically sized cars that
are tracked immediately in front of the camera-
assisted car.

4 Experimental Results

The analzed data consists of RGB video taken
on American highways and city expressways at
daytime and at night. The city expressway data
included several tunnel sequences. Figure 2 and



Figure 3 show results for sequences in reduced
visiblity due to snow, night driving, and tunnel.

5 Conclusions

We have presented a real-time vision system
that detects and tracks vehicles on highways
under reduced visibility conditions. The sys-
tem works well on snowy highways, at night
when the background is uniformly dark, and in
certain tunnels. However, at night on city ex-
pressways, when there are many city lights in
the background, the system has problems find-
ing vehicle outlines and distinguishing vehicles
on the road from obstacles in the background.
Traffic congestion worsens the problem. How-
ever, even in these extremely difficult condi-
tions, the system usually finds and track the
cars that are directly in front of the camera-
assisted car and only misses or misidentifies the
sizes of the cars in adjacent lanes. A more pre-
cise 3D-world model of the adjacent lanes and
the highway background than the one that we
incorporated into the system should yield more
reliable results in these difficult conditions.
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Figure 2: Detecting and tracking two cars on a snowy highway. The images are shown with their
frame numbers in their lower right corners. In frame 3, the system determines that the data is taken
at daytime. The black rectangles show regions within which moving objects are detected. Yellow
crosses indicate the top of the cars and white crosses indicate the bottom left and right car corners
and rear light positions. The rectangles and crosses turn white when the system recognizes these
objects to be cars. Underneath the middle image row, one of the tracking processes is illustrated
in three ways: on the left, the vertical edge map of the tracked window is shown, in the middle,
pixels identified not to belong to the road, but instead to an obstacle, are shown in white, and on
the right, the most recent template used to compute the normalized correlation is shown. The text
underneath shows the most recent correlation coefficient and distance estimate. The three graphs
underneath the image sequence show position estimates. The left graph shows the z-coordinates
of the left and right side of the left tracked car (“left” and “right”) and the z-coordinates of its left
and right rear lights (“II” and “r]”). The middle graph shows the y-coordinates of the bottom side
of the left tracked car (“car bottom”) and the y-coordinates of its left and right rear lights (“rear
lights”). The right graph shows the distance estimates for both cars.



DIRECT DEPOSIT we .
piege 4 . pp EFUNDS. T ABOUT 48 Houps
T : 3
REFUNDS oo UT 48 HOURS

. in
, PBOUT 48 Hours

Figure 3: Detecting and tracking cars at night and in a tunnel (see caption of previous figure for
color code). The cars in front of the camera-assisted car are detected and tracked reliably. The
front car is detected and identified as a car at frame 24 and tracked until frame 260 in the night
sequence, and identified at frame 14 and tracked until frame 258 in the tunnel sequence. The size
of the cars in the other lanes are not detected correctly (frame 217 in night sequence and frame
194 in tunnel sequence).



