
Piecemeal Learning of an Unknown Environment

(Extended Abstract) *

Margrit Betke Ronald L. Rivest Mona Singh
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

We introduce a new learning problem: learning a

graph by piecemeal search, in which the learner

must return every so often to its starting point

(for refueling, say). We present two linear-time

piecemeal-search algorithms for learning city-block

graphs: grid graphs with rectangular obstacles.

1 Introduction

We address the situation where a learner, to per-

form a task better, must learn a complete map of

its environment. For example, the learner might

be a security guard robot, a taxi driver, or a trail

guide.

Exploration of unknown environments has been

addressed by many previous authors, such as Pa-

padimitriou and Yanakakis [7], Blum, Raghavan,

and Schieber [2], Rivest and Schapire [8], Deng and

Papadimitriou [4], Betke [1], Deng, Kameda, and

Papadimitriou [3], and Bar-Eli, Berman, Fiat, and

Yan [5].

This paper considers a new constraint: for some

reason learning must be done “piecemeal” – that

● We gratefully acknowledge support from NSF grant

CCR-8914428, ARO grant I) AAL03-86-K-0171, NSF grant

9217041 -ASC, and the Siemens Corporation. The au-

thors can be reached at margrit Qtheory. lcs. mit. edu,

rivest~theory. lcs. init. edu, and

monattheory. lcs. mit. edu.

Permwsion to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advsntage, the ACM copyright notice and the

mle of the pubhcatlon and Its date appear, and notice la gwen

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ACM COLT ’93 171931CA, USA
@ 1993 ACM 0-89791-61 1-5/93 /0007 /0277 . ..$l .50

is, a little at a time. For example, a rookie taxi

driver might learn a city bit by bit while return-

ing to base between trips. A planetary exploration

robot might need to return to base camp periodi-

cally to refuel, to return collected samples, to avoid

nightfall, or to perform some other task. A tourist

can explore a new section of Rome each day before

returning to her hotel.

The “piecemeal constraint” means that each oj

the learner’s exploration phases must be of limited

duration. Between exploration phases the learner

might perform other unspecified tasks. We assume

that each exploration phase starts and ends at a

fixed start position s. The piecemeal constraint

can make efficient exploration surprisingly difficult.

This paper gives our preliminary results on the gen-

eral problem: two linear-time algorithms for the

piecemeal search of grid graphs with rectangular

obstacles.

2 The formal model

We model the learner’s environment as a finite con-

nected undirected graph G = (V, E) with distin-

guished start vertex s. Vertices represent acces-

sible locations. Edges represent accessibility: if

{r, y} c E then the learner can move from z to y,

or back, in a single step, We assume that vertices

are points in the plane, that edges are straight-line

segments, and that G is planar (no edges cross).

At any vertex the learner can sense only its

global position and the directions of the incident

edges; it has no vision or long-range sensors.

The learner only incurs a cost for traversing

edges; thinking and planning (computation) are

free. The learner is given an upper bound B

on the number of steps it can make (edges it can

277

traverse) in one exploration phase. We assume B

suffices for at least two round trips between .s and

any other single vertex in G; B is at least four times

the radius r of the graph. (Actually, 1 + c round

trips suffice.) Initially all the learner knows is its

starting vertex s and the bound l?. The learner’s

goal is to explore the entire graph: to visit every

vertex and traverse every edge, minimizing the to-

tal number of edges traversed.

This paper focuses on city-block graphs: grid

graphs containing some non-touching axis-parallel

rectangular obstacles. Figure 1 gives an ex-

ample. These graphs are also studied by Pa-

padimitriou and Yanakakis [7], Blum, Raghavan,

and Schieber [2], and Bar-Eli, Berman, Fiat and

Yan [5]. An m x n city-block graph with no ob-

stacles has exactly mn vertices (at points (i, j) for

1 ~ i ~ m, 1< j < n) and 2mn–(m+n)edges (be-

tween points at distance 1 from each other). Ob-

st acles, if present, decrease the number of accessi-

ble locations (vertices) and edges in the city-block

graph

Figure 1: A city-block graph.

3 General remarks and basic ob-

servat ions

A simple approach is to use a known ordinary

search algorithm—breadth-first search or depth-

first search—and just interrupt the search as

needed to return to visit s. This approach fails.

DFS is efficient, since it is linear in the number

of edges in the graph, but it does not guarantee

(efficient) returns to s. That is, it may be that

for some vertex the best return path to s in the

explored graph has length larger than l?.

BFS, on the other hand, always enables efficient

returns to s, since it always knows a shortest path

back to s via explored edges. However, it fails to

be efficient since it explores all the vertices at the

same distance from s before exploring any vertices

which are further away from s. In Figure 2 we give

an example of a graph in which vertices of the same

shortest path distance from s are far away from

each other. For such graphs the cost of relocating

between vertices can make the overall cost of BFS

quadratic in the number of edges in the graph.

.
s

Figure 2: A simple graph for which the cost of BFS

is quadratic in the number of edges.

3.1 Off-line piecemeal search

The ofl-line piecemeal search problem, where the

learner knows the graph initially, is similar to

the well-known Chinese Postman problem [6], but

where the postman must return to the post-office

every so often. (Our off-line problem is the Weak

Postman problem, for postmen who cannot carry

much mail.) The same problem arises when many

postmen must cover the same city wit h their routes.

The simple “interrupted-DFS” approach pro-

vides a good approximation algorithm for the off-

line piecemeal search problem. To traverse every

edge, the learner does a DFS of the entire graph,

and returns to s after every B/2 steps in the DFS

algorithm using shortest paths (computed using its

initial knowledge of G). We do not know an op-

timal off-line algorithm; this may be an NP-hard

problem. The following theorem and proof show

that we can find a good approximate solution for

the off-line problem.

Theorem 1 There exists an approximate solution

to the ofl-line piecemeal search problem for an arbi-

trary undirected graph G = (V, E) which traverses

at most O(\El) edges.

Proofi Assume that the radius of the graph is r

and the explorer is allowed to traverse B > 4r

edges during each phase of the exploration. The

278

explorer looks at the map of the region to be ex- be compact, For city-block graphs, however, we

plored, and (mentally) does a depth first search of

the graph. The path defined by traversing the en-

tire depth first tree has Iengt h 2 IE]. The explorer

then segments this path into pieces of length 2T.

The piecemeal exploration then consists of taking

a shortest path from s to the start of each segment,

traversing the edges in the segment, and taking a

shortest path back to the start vertex. For each

segment, the robot traverses at most 2rI edges to

get to and from the segment. Since there are at

most [91 segments, the number of edge traver-

sals due to interruptions is:

Thus the off-line piecemeal search problem for an

arbitrary undirected graph can be solved so as to

traverse at most 6 [1?I steps. •1

3.2 On-line piecemeal search

We can use the strategy outlined above to obtain

an efficient on-line piecemeal search algorithm. We

will refer to a search as compact if it always knows

a shortest path via explored edges back to s. We

will refer to a search as approximately compact if it

always knows a path back to s via explored edges

of length at most the radius of the graph.

Using the strategy described in the proof of The-

orem 1, we can interrupt an ordinary search algo-

rithm that is both eflcient (time O(E)) and ap-

proximately compact to obtain an efficient piece-

meal search algorithm.

Theorem 2 An eficient, approximately compact

algorithm for searching an undirected graph can be

transformed into an eficient piecemeal search al-

gorithm. ❑

For arbitrary undirected planar ,graphs, we can

show that any compact search algorithm requires

Q(IE 12, edge traversals. For example, exploring

the graph in Figure 2 (known initially only to be

an arbitrary undirected planar graph) would result

in IE 12 edge traversals if the search is required to

present two efficient 0([El) compact search algo-

rithms. Since a compact search algorithm is also

an approximately compact search algorithm, these

two algorithms give efficient piecemeal search algo-

rithms for city-block graphs. The wavefront algo-

rithm is based on BFS, but overcomes the problem

of relocation cost. The ray algorithm is a variant

of DFS that always knows a shortest path back

to s. First, however, we develop some properties

of shortest paths in city-block graphs, based on an

analysis of BFS.

4 Shortest paths in city-block

graphs

A compact algorithm maintains at all times knowl-

edge of a shortest path back tos. Since BFS is com-

pact, we study BFS in some detail to understand

the characteristics of shortest paths in city-block

graphs. Also, our wavefront algorithm is a modifi-

cation of BFS. Figure 3 illustrates the operation of

BFS. Our algorithms depend on the special proper-

ties that shortest paths have in city-block graphs.

Figure 3: Environment explored by breath-first

search, showing only “wavefronts” at odd distance

to s.

Let 6(v, v’) denote the length of the shortest path

between v and v’, and let d[v] denote 6(v, s), the

length of the shortest path from v back to s.

4.1 Monotone paths and the four-way

decomposition

A city-block graph can be usefully divided into

four regions (north, south, east, and west) by four

279

monotone paths: an east-north path, an east-south

path, a west-north path, and a west-south path.

The east-north path starts from s, proceeds east

until it hits an obstacle, then proceeds north until

it hits an obstacle, and so on. The other paths are

similar (see Figure 4).

+ ;

I I

ME IL+ m

Figure 4: The four monotone paths and the four

regions.

It is easy to show that monotone paths are short-

est paths, and that for any vertex, there is a short-

est path to s through only one region. Without

loss of generality, we therefore only consider com-

pact search algorithms that divide the graph into

these four regions, and search these regions sepa-

rately. In this paper, we only discuss what hap-

pens in the northern region; the other regions are

similar. We also assume that each obstacle has a

unique marker; that is, if the explorer hits an obsta-

cle twice, it knows that it is at the same obstacle.

Once the explorer hits the obstacle, it also knows

the dimensions of the obstacle. (We do not need

these assumptions, but use them to simplify the

exposition of our algorithm.)

4.2 BFS and wavefronts

A BFS can be viewed as exploring the graph in

waves that expand outward from s, much as waves

expand from a pebble thrown into a pond. Figure 3

illustrates the wavefronts that can arise.

A wavefront w can then be defined as an ordered

list of explored vertices {VI, Va, vm), such that

d[vi] = d[vl] for all i, and such that 6(v,, V,+l) =

2 for all i. We call d[w] = d[vl] the distance of

the wavefront. In a city-block graph wavefronts

always consist of a sequence of diagonally adjacent

vertices.

There is a natural “successor” relationship be-

t ween BFS wavefronts, as a wavefront at dist ante t

generates a successor at distance t + 1. We infor-

mally consider a wave to be a sequence of successive

wavefronts. Because of obstacles, however, a wave

may split (if it hits an obstacle) or merge (with

another wave, on the far side of an obstacle). Two

wavefronts that merge are called sibling wavefronts,

and the point on an obstacle where they first meet

is called the meeting point of the two wave fronts.

In the northern region, meeting points are always

on the north side of obstacles, and each obstacle

has exactly one meeting point on its northern side.

See Figure 5.

s

Figure 5: Splitting and merging of wavefronts along

a corner of an obstacle. Illustration of meeting

point and sibling wavefronts.

The shape of a wave stays more or less constant,

unless the wave splits, merges with another wa ~,

or curls around the back edge of an obstacle.

In the northern region, the front of an obsta-

cle is its southern side, the back of an obstacle is

its northern side, and the sides of an obstacle are

its east and west sides. A wave always hits the

front of an obstacle first. Consider the shape of a

wave before it hits an obstacle and its shape after

it passes the obstacle. If a peak of the wavefront

hits the obstacle, this peak will not be part of the

shape of the wavefront after it “passes” the obsta-

cle. Instead, this wavefront may have one or two

new peaks which have the same x-coordinates as

the sides of the obstacle (see Figure 6).

The above properties of the shapes of wavefronts

in the northern

on the distance

280

region can be shown

of the wavefronts.

by induction

s

Figure 6: Shapes of wavefronts. Illustration of

peaks and valleys, and front and back of an ob-

stacle. The meeting point is the lowest point in

the valley.

4.3 Canonical shortest paths and meet-

ing points

We now make a fundamental observation on the

nature of shortest paths (in the northern region)

from a vertex v back to s. Without loss of general-

ity, this path goes south whenever possible. If the

path hits the north side of an obstacle, it goes east

if it hits east of the meeting point for that obsta-

cle. Similarly, it goes west if it hits on or west of

the meeting point. Once it reaches a back corner

of the obstacle, it then continues south. If it hits a

monotone path, it follows that back to s.

Meeting points are thus required to compute

canonical shortest paths; we now give a way for

computing meeting points. Let VW and v~ denote

the front-west and front-east corners of an obsta-

cle. The canonical shortest path from any vertex

on the sides or back of the obstacle will go through

one of VW or Vc, whichever yields the shortest path

overall. A shortest path from a meeting point to s

can go either way, for the same overall distance.

Thus, we can determine the meeting point on an

obstacle if the distances d[vW] and d[v,] are both

known.

5 The wavefront algorithm

The wavefront algorithm, presented in this section,

mimics BFS in that it computes exactly the same

set of wavefronts. However, in order to minimize

relocation costs, the wavefronts may be computed

in a different order. Rather than computing all

the wavefronts at distance t before computing any

wavefronts at distance t + 1 (as BFS does), the

wavefront algorithm will cent inue to follow a par-

ticular wave persistently, before it relocates and

pushes another wave along.

We define ezpanding a wavefront w =

(V,, zh,..., v~) as computing a set of zero or more

successor wavefronts by looking at the set of all un-

explored vertices at distance one from any vertex

in w. Every vertex v in a successor wavefront has

d[v] = d[w] + 1. It is easy to argue that a wavefront

of m vertices can be expanded in time O(m).

There is really only one incorrect way to expand

a wavefront and get something other than what

BFS obtained as a successor: to expand a wave-

front that is touching a meeting point before its sib-

ling wavefront has merged with it. Operationally,

this means that the wavefront algorithm is blocked

in the following two situations: (a) it cannot ex-

pand a wavefront from the side around to the back

of an obstacle before the meeting point for that

obstacle has been set (see Figure 7), and (b) it

cannot expand a wavefront that touches a meeting

point until its sibling has arrived there as well (see

Figure 8). A wavefront Wz blocks a wavefront WI

if W2 must be expanded before WI can be safely

expanded. We also say W2 and WI interfere.

I I 1 , 1 ,1,,1, 1 1 1 1 I
I I I I !] II ,1 I I 1 I I

I I I I I I I I I I

Figure 7: Blockage of WI by Wz. Wavefront WI has

finished covering one side of the obstacle and the

meeting point is not set yet.

A wave front w is an expiring wave front if its de-

scendant wavefronts can never interfere with the

expansion of any other wavefronts that now exist

or any of their descendants. For example, a wave-

front w is an expiring wavefront if its endpoints are

both on the front of the same obstacle; w will ex-

pand into the region surrounded by the wavefront

and the obstacle, and then disappear or “expire.”

281

s

Figure 8: Blockage of WI by Wz. Wavefront WI has

reached the meeting point on the obstacle, but the

sibling wavefront W2 has not.

We say that a wavefront expires if it consists of

just one vertex with no unexplored neighbors. The

area delineated by an expiring wavefront can be ex-

plored independent of the rest of the region. This

area may contain obstacles.

I I I I ,), ,, ,8,> I I I 1 I I I
~ 11! I II I I 1

Figure 9: Triangular areas (shaded) delineated by

two expiring wave fronts.

Procedure WAVEFRONT-ALGORITHM is an ef-

ficient compact search algorithm that can be

used to create an efficient piecemeal search al-

gorithm. It repeatedly expands one wavefront

until it splits, merges, expires, or is blocked.

The WAVEFRONT-ALGORITHM takes as an in-

put a start point .s and the boundary coordi-

nates of the environment. It calls procedure

CREATE-MONOTONE-PATHS to explore four mono-

tone paths (see section 4.1) and define the four re-

gions. Then procedure EXPLORE-AREA is called

for each region.

WAVEFRONT-ALGORITHM (S, boundary)

1 CREATE-MONOTONE-PATHS

2 for region = north, south, east, and west

3 initialize current wavefront w - (s)

4 EXPLORE-AREA(W, region)

For each region we keep an ordered list L of non-

expiring wavefronts to be expanded. In the north-

ern region, the wavefronts are ordered by their

west-most z-coordinate. Each obstacle also has a

list of the expiring wavefronts that hit it. We treat

the boundaries as large obstacles. The north re-

gion has been fully explored when all the lists of

wavefronts are empty.

Note that vertices on the monotone paths are

considered initially to be unexplored, and that ex-

panding a wavefront returns a successor that is en-

tirely within the same region.

Each iteration of EXPLORE-AREA (see next page)

expands a wavefront. When EXPAND is called on a

wavefront w, the learner starts expanding w from

its current location, which is a vertex at either one

of the end points of wavefront w. It is convenient,

however to think of EXPAND as finding the unex-

plored neighbors of the vertices in w in parallel.

Depending on what happens during the expan-

sion, the successor wavefront can be split, merged,

blocked, or may expire. (More than one of these

cases may apply.) Procedures MERGE and S PLIT

(see following pages) handle the (not necessarily

disjoint) cases of merging and splitting wavefronts.

Note that we use call-by-reference conventions for

the wave front w and the list L of wavefronts. When

the RELOCATE(W) is called, the learner moves from

its current location to the closest end point of w, via

a shortest path in the explored area of the graph.

In line 15 of EXPLORE-AREA, the learner may

stay at w, if it is unblocked. Otherwise, it relocates

to the unblocked wavefront that is nearest to the

current position as measured by distance within

list L.

Wavefronts are merged when exploration contin-

ues around an obstacle. A wavefront can be merged

with two wave fronts, one on each end. After a

merge, the learner first checks if there is a list of ex-

piring wavefronts for the obstacle where the merge

occurred. If so, the learner explores the areas de-

lineated by these wavefronts by calling procedure

EXPIRE. The result of a merger can also be an

expiring wavefront; in this case, the wavefront is

placed on the ordered list of expiring wavefronts

for the obstacle onto which it will expire (line 9 in

MERGE).

282

EXPLORE-AREA(ZU, region)

1 initialize list of wavefronts L e (w)

2 repeat

3

4

5

6

7

8

9

10
11
12

13

14

15

16

17 until L

EXPAND current wavefront w to successor wavefront w,

current wavefront w e ws

if w is a single vertex with no unexplored neighboring vertices

then remove w from ordered list L of wavefronts

else replace w by w. in ordered list L of wavefronts

if both front corners of any obstacle(s) have been explored

then set meeting points for those obstacle(s)

if w can be merged with adjacent wavefront(s)

then MERGE(W, L, region)

if w hits obstacle(s)

then SPLIT(W, L, region)

if L not empty

then w - unblocked wavefront nearest in L to learner’s location

RELOCATE(W)

is empty

18 if boundary of area being explored has list L, of expiring wavefronts

19 then EXPIRE(L,, region)

SPLIT(W, L, region)

1 split w into appropriate wavefronts

in order Wo,wn

2 remove w from ordered list L of wavefronts

3 fori=O ton

4 if Wi is an expiring wavefront

5 then put wi on ordered list of expiring

wavefronts of appropriate obstacle

6 else put wi on ordered list L

of wavefronts

When procedure SPLIT is called on wavefront w,

we note that the wavefront is either the successor

wavefront, or the successor wavefront merged with

some wavefront which is adjacent to it. Once wave-

front w is split into We,. . ., Wn, we classify each of

these wavefronts as either expiring or non-expiring

wavefronts.

EXPIRE(L., region)

1 for every wavefront w in list L. of

expiring wavefronts

2 RELOCATE(W)

3 EXPLORE-AREA(W, region)

6 Correctness and analysis

The following theorems establish the correctness

of our algorithm, and also show the running time.

Details of the proofs are available in a full version

of this paper.

Theorem 3 The wavefront algorithm is a compact

search algorithm for city-block graphs.

Proof: In Theorem 4 we show by induction on

shortest pat h length that the wavefront algorithm

mimics breadth-first search. Thus it is compact.

We show in Theorem 5 that the algorithm does

not terminate until all vertices have been explored.

Completeness follows. ❑

Theorem 4 The algorithm EXPLORE-AREA ez-

pands the wavefronts so as to maintain compad-

ness.

Proof: This is shown by induction on the distance

of the wavefronts. The key observations are (1)

there is a canonical shortest path from any vertex

v tos which goes south whenever possible, but east

283

MERGE(W, L, region)

1 remove w from list L of wavefronts

2 while there is a sibling wave front w’ with which w can merge

3 do if obstacle which w and w’ are merging around

has a list L. of expiring wavefronts

4 then EXPIRE(L., region)

5 remove w’ from list L of wavefronts

6 merge w and w’ into wave front w’!

7 w - w“

8 if w is an expiring wavefront which does not split

9 then put w on ordered list of expiring wavefronts of appropriate e obstacle

10 else put w in ordered list L of wavefronts

or west around obstacles and (2) a wavefront is

never expanded beyond a meeting point. ❑

Theorem 5 There is always a wavefront which is

not blocked.

Proofi We consider exploration in the north re-

gion. First note that sibling wavefronts cannot

block each other. Moreover, the east-most wave-

front in the northern region cannot be blocked by

anything to its east, and the west-most wavefront

in the north region cannot be blocked by anything

to its west. Thus the explorer can always “follow

a chain of wavefronts)) to either its east or west to

find an unblocked wavefront. ❑

Theorem 6 The wavefront algorithm is linear in

the number of edges in the city-block graph.

Proofi We show that the total number of edge

traversals is no more than 10IEI. Note that

when the procedures CREATE-MONOTONE-PATHS,

Ex PAN D, and RELOCATE are called, the learner ac-

t ually walks through the environment. Thus, we

count the edge traversals for each call of these pro-

cedures.

The learner traverses the edges on the monotone

paths once when it explores them, and once to get

back to the start point. This is clearly at most 21E[

edge traversals. The total number of edge traver-

sals caused by procedure EXPAND is at most 2\ El.

We now only need to consider the edge traversals

due to procedure RELOCATE.

Edges are traversed at most once due to relo-

cations to the nearest wavefront when there is no

blockage. The total number of edges traversed due

to relocations after wavefronts have expired is at

most 2\ E 1. Essentially we have a linear sweep along

the boundary of an obstacle for exploration of ex-

piring wavefronts. We can limit the number of edge

traversals along the boundary of the obstacle due

to recursive calls when expiring wavefronts split.

Edges are traversed at most three times due to

relocations aft er blockage. We know that pro-

ceeding along a “chain of wavefronts” leads the

learner to an unblocked wavefront. The learner

does not traverse, due to blockage, any wavefront

in this chain again. Moreover, the learner does not

move back and forth between wavefronts on dif-

ferent sides of an obstacle. The total number of

edges traversed due to procedure RELOCATE is at

most 61EI. ❑

Theorem 7 A piecemeal algorithm based on the

wavefront algorithm runs in time linear in the num-

ber of edges in the city-block graph.

Proofi This follows immediately from Theorem 2,

Theorem 3 and Theorem 6. ❑

7 Ray algorithm

We now give another efficient compact search al-

gorithm, called the ray algorithm. This thus yields

another efficient piecemeal zdgorithm for searching

284

a city-block graph. This algorithm is simpler than

the wavefront algorithm, but seems less suitable for

generalization.

The ray algorithm also starts by finding the four

monotone paths, and splitting the graph into four

regions to be searched separately. The algorithm

explores in a manner similar to depth-first search,

but maintains compactness by exploring primarily

in a nort hem direction (in the nort hem region),

with east/west excursions limited to one step, ex-

cept for at the back side of obstacles. That is,

the ray algorithm greedily explores just one north-

south ray as far as it knows that compactness is

maintained.

Rays start on one of the monotone paths, pro-

ceeding north until an obstacle is reached. Then

the learner backtracks to the monotone path and

starts exploring a neighboring ray. Once the two

front corners of an obstacle are explored, the short-

est paths to the vertices at the back of an obsta-

cle are known; the “meeting point” is then deter-

mined. Once the meeting point for an obstacle is

known, the learner explores the vertices at the back

of the obstacle, and continues exploration by fol-

lowing rays from the back of the obstacle. (Note

that not all paths to s in the “search tree” defined

by the ray algorithm are shortest paths; the tree

path may go one way around an obstacle while the

algorithm knows that the shortest path goes the

other way around.)

Theorem 8 The ray algorithm is a linear-time

compact search algorithm that can be transformed

into a linear-time piecemeal search of a city-block

graph. •1

8 Conclusions

We have presented efficient algorithms for the

piecemeal search of city-block graphs. We leave as

open problems finding algorithms for the piecemeal

search of

● grid graphs with non-convex obstacles,

● other tessellations, such as triangular tessell-

ations with triangular obstacles, and

● more general classes of graphs, such as the

class of planar graphs.

I?t!t t’’”” ,)l;

—,

I I (1 I I ! !- ,! i I ;!! I I I I ,. [u{ I !
,,, ,- ,,, ,, 1,

I I I I v , I I I I 1 1 Ill I
,1

I I I , I I

Figure 10: Operation of the ray algorithm.

References

[1]

[2]

[3]

[41

[5]

[6]

[7]

Margrit Betke. Algorithms for exploring an un-

known graph. Master’s thesis, MIT Depart-

ment of Electrical Engineering and Computer

Science, February 1992. (Published as MIT

Laboratory for Computer Science Technical Re-

port MIT/LCS/TR-536 (March, 1992)).

Avrim BIum, Prabhakar Raghavan, and Baruch

Schieber. Navigating in unfamiliar geometric

terrain. In Proceedings of Twenty- Third ACM

Symposium on Theory of Computing, pages

494-504. ACM, 1991.

Xiaotie Deng, Tiko Kameda, and Christos H.

Papadimit riou. How to learn an unknown en-

vironment. In Proceedings of the 32nd Sym-

posium on Foundations of Computer Science,

pages 298-303. IEEE, 1991.

Xiaotie Deng and Christos H. Papadimitriou.

Exploring an unknown graph. In Proceedings

of the 31st Symposium on Foundations of Com-

puter Science, volume I, pages 355-361, 1990.

A. Fiat E. Bar-Eli, P. Berman and P. Yan. On-

line navigation in a room. In Symposium on

Discrete Algorithms, pages 237-249, 1992.

Jack Edmonds and Ellis L. Johnson. Matching,

Euler tours and the Chinese Postman. Mathe-

matical Programming, 5:88–124, 1973.

Christos H. Papadimitriou and M. Yanakakis.

Shortest paths without a map. Theoretical

Computer Science, 84:127-150, 1991.

285

[8] Ronald L. Rivest and Robert E. Schapire. In-

ference of finite automata using homing se-

quences. In Proceedings of the Twenty-First

Annual ACM Symposium on Theory of Comp-

uting, pages 41 1–420, Seattle, Washington,

May 1989. ACM. (To appear in Information

and Computation).

286

