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Abstract

Vision-based methods have gained popularity as a tool
for helping to analyze the behavior of bats. Though, for
bats in the wild, there are still no tools capable of estimat-
ing and subsequently analyzing articulated 3D bat pose. We
propose a model-based multi-view articulated 3D bat pose
estimation framework for this novel problem. Key chal-
lenges include the large search space associated with ar-
ticulated 3D pose, the ambiguities that arise from 2D pro-
jections of 3D bodies, and the low resolution image data we
have available. Our method uses multi-view camera geom-
etry and temporal constraints to reduce the state space of
possible articulated 3D bat poses and finds an optimal set
using a Markov Random Field based model.

Our experiments use real video data of flying bats and
gold-standard annotations by a bat biologist. Our results
show, for the first time in the literature, articulated 3D
pose estimates being generated automatically for video se-
quences of bats flying in the wild. The average differences in
body orientation and wing joint angles, between estimates
produced by our method and those based on gold-standard
annotations, ranged from 16

◦
– 21

◦
(i.e., ≈ 17% – 23%) for

orientation and 14
◦
– 26

◦
(i.e., ≈ 7% – 14%) for wing joint

angles.

1. Introduction
Our work is motivated by the desire biologists and

aerospace engineers have to understand how bats fly and
why they behave the way they do. New questions are being
asked about bat behavior: How do large numbers of bats
behave as a group? What is their behavior when they for-
age? How do bats maneuver through dense vegetation while
avoiding obstacles? To aid in answering these types of
questions, researchers have looked to video data for clues.
With advancements in computer vision research, automated
video analysis tools have helped with the quantitative anal-
ysis of video data, saving biologists time and labor. Bats
flying in the wild are shown in Figure 1.

Figure 1. Bats emerging from a cave in Texas at sunset.

Vision-based methods have been used to detect bats in
visible and thermal-infrared video [3, 20, 23], track them in
3D [3, 20, 23], and analyze their kinematics, behaviors, and
flight trajectories [3, 20]. An important distinction among
these works is whether they deal with data captured in a
laboratory or in the wild, and whether they model a bat as a
point or a 3D articulated body.

Works that deal with video data of bats in the wild have
modeled bats as points instead of articulated bodies [20, 23].
To uncover detailed flight behavior of bats in the wild, how-
ever, scientists would like to retrieve their 3D articulated
motion. Works that do model bats as 3D articulated bodies
have relied on data of bats in confined laboratory spaces,
where the motion of a bat can be captured up close in great
detail [3, 11, 17]. The work of Bergou et al. [3] modeled a
bat with a 52 degree of freedom (DOF) articulated model,
whose parameters are estimated from real data. Their data
was obtained by first attaching tape markers to various land-
marks on the bat, then placing the bat in a confined flight
corridor where cameras can be positioned as close as nec-
essary, and finally capturing flight data using high frame
rate (1000 fps) cameras. This high quality data, from mul-
tiple cameras, served as input to a 3D tracking algorithm
whose output led to a set of 3D pose estimates. While this
method and similar approaches may offer relatively accu-
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rate 3D pose estimates, they have several limitations. First,
these methods are not suited for bats in the wild, where the
use of tape markers is especially impractical. Second, there
is no guarantee that bat behavior observed in confined labo-
ratory spaces is representative of behaviors exhibited in the
wild. As a result, analyses performed on data obtained in a
laboratory may be misleading or limited in scope. Lastly,
laboratory experiments tend to be performed on a small
number of bats, one at a time, which is of limited use for
studies on group behavior.

Our proposed work bridges the gap between methods
that use 3D articulated bat models and methods that work on
data of bats in the wild. In particular, we propose a model-
based framework for estimating the 3D pose of bats in the
wild, given multiple low resolution camera views. We call
the system we designed based on this framework 3D-PEB
for 3D Pose Estimation of Bats in the wild.

3D pose estimation for bats in the wild is a new problem
that can build on a substantial amount of work that exists on
3D pose estimation for people. Several survey papers de-
tail the large body of work that exists for human hand pose
estimation, head pose estimation, and full body pose esti-
mation [8, 13, 14, 15]. Among this large body of work, one
popular class of approaches is the model-based approach.
These works leverage a 3D graphics model by generating a
large amount of synthetic views labeled with the 3D pose
that generated them. These labeled views can then be used
directly to compare with an input view. One example of
such an approach is the 3D hand pose estimation work by
Athitsos & Sclaroff [2]. In their work, a synthetic articulat-
ing hand model was used to generate a large set of views.
Each view of the hand, encoded by edge based features, rep-
resented the appearance of a posed hand from the viewpoint
of an orthographic camera. 3D hand pose was estimated for
a novel input image by finding the view whose edges match
best to the input. Our approach is also model-based.

Another class of 3D pose estimation methods are those
that learn a regressor or classifier from a motion capture
dataset. An example of one of these methods was the work
by Agarwal & Triggs [1] for 3D body pose estimation.
Their training data consisted of images of different full body
poses, along with the joint angles that parameterize the 3D
body pose. Then, a Relevance Vector Machine (RVM) was
trained to learn a mapping from shape context based fea-
tures to 3D body pose. Unfortunately, motion capture data
is not readily available for the bats we studied, limiting the
applicability of this class of methods.

Some 3D pose estimation methods, like ours, take ad-
vantage of multiple cameras. The work on 3D human upper
body pose estimation by Hofmann & Gavrila [10] used the
view in each camera to hypothesize a set of 3D pose candi-
dates. The 3D pose candidates were reprojected into other
camera views to evaluate a likelihood. Additionally, like

Figure 2. Overview of the proposed 3D-PEB system. Input and
output are shown with green circles, system components with blue
rectangles, and system dependencies with arrows.

our work, temporal constraints were used.
More recently, depth cameras have been used for 3D

pose estimation [19]. Currently, depth cameras are not vi-
able to record bats in the wild, so such approaches have
limited applicability to our problem.

Our main contribution is the 3D-PEB system for estimat-
ing the articulated 3D pose of bats in the wild, a problem for
which we are the first to offer a vision-based approach. The
second contribution of our work is a description of the chal-
lenges that arise when estimating 3D pose for non-human
articulated bodies, which often lack good 3D models and
training data, and solutions to address them. The third con-
tribution is a set of 3D pose estimates over time, describ-
ing what the body and wings of individual bats are doing
during an emergence of a group of bats from a cave. Our
fourth contribution is a 3D graphics model of the Tadarida
brasiliensis bat, along with calibrated images of bats, both
of which are available online for public use.1 Lastly, we
introduce a part-based feature for use with low resolution
images of bats.

2. Methods

Our proposed system 3D-PEB is made up of four com-
ponents, shown in Figure 2. The system takes dataset-
dependent inputs and produces articulated 3D bat pose es-
timates as output. The training database of rendered views
only depends on the 3D articulated bat model, and is cre-
ated once with the purpose of being reused. The training
database of rendered views and the dataset-dependent in-
puts jointly serve as input to the subsystem responsible for
reducing the pose search space. This subsystem includes
one component that yields a coarse reduction of the pose
search space, and another component which uses a Markov
Random Field (MRF) to produce a fine reduction of the
pose search space. The final system output is a set of ar-
ticulated 3D pose estimates. This framework is detailed in
the following subsections.

1http://www.cs.bu.edu/faculty/betke/research/3dpeb/
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2.1. Dataset Dependent Inputs

3D-PEB operates on inputs extracted from video
datasets. For the purposes of our specific application,
datasets are videos of bats recorded by two or three cameras.
We make the assumption that among the many bats flying
through the field of view of the cameras, some remain un-
occluded in each view for some interval of time. The task of
3D-PEB is to estimate the 3D pose of these individual bats
for an interval of time represented by n frames. To reduce
the scope of this work, we assume the following to be inputs
to 3D-PEB:

• Segmentations {Si,j} of the bat for cameras {i} ⊂
{1, 2, 3}, for all frames j ∈ [1 · · ·n].

• A description of the relative camera geometry, typically
obtained from a calibration procedure.

• A trajectory of the 3D position of the bat {Tj}, j ∈
[1 · · ·n]

These inputs can be obtained using a camera calibra-
tion tool [9], and algorithms for detecting bats in thermal
video [20] and producing 3D tracks [23]. A sample input
segmentation and a typical camera setup are shown in Fig 5.

2.2. 3D Graphics Model

Model-based methods that estimate the 3D pose of an
articulated body require a 3D graphics model of that ar-
ticulated body. In the case of bats, there are many differ-
ent species, so each would potentially require its own 3D
graphics model. In this work, we focused on the bat species
Tadarida brasiliensis for which 3D graphics models are not
readily available. To acquire a model, we built our own us-
ing Blender [6], a free 3D modeling tool.

We based the overall shape of our model, seen in Fig-
ure 3a, on illustrations by biologists [4, 11]. The size of
the model was determined by the average wingspan (≈ 284
mm) and aspect ratio (9) for Tadarida brasiliensis, mea-
sured by biologists [4]. To aid in modeling the articulation
of the wings, we referenced illustrations [11, 21] and video
materials [11]. We designed a model with two joints per
wing, each having one degree of freedom, roughly corre-
sponding to the elbow and the wrist, see Fig. 3b. Our model
is sufficiently powerful to approximate the flying motion of
a bat, typically characterized by a wingbeat cycle consisting
of a downstroke and an upstroke. We define ten key wing
configurations that represent a sampling of a full wingbeat
cycle, see Figure 3c. The wings are assumed to move in a
symmetric manner, so one pair of angles [θ1, θ2] is sufficient
to describe the configuration (articulation) of both wings.

2.3. Training Database of Rendered Views

We used our 3D graphics model to render a large set
of labeled views, collectively referred to as the ‘training

(a)

(b)

(c)

Figure 3. Proposed 3D graphics model of a Tadarida brasilien-
sis bat (a) Top down view (b) Back view of the model where the
articulation of the elbow determines angle θ1 and the wrist deter-
mines angle θ2. (c) Video-based observations were used to man-
ually define 10 key wing configurations. These 10 configurations,
represented by a pair of angles (in degrees), describe a sampling
of a typical wingbeat cycle. Shown from left to right, and top to
bottom, is the downstroke phase followed by the upstroke phase.

database.’ A good training database should capture the
variation in appearance of a bat as its articulated 3D pose
changes. In this paper, the term ‘3D pose,’ which we use in-
terchangeably with ‘articulated 3D pose,’ means a descrip-
tion of how the body of a bat is oriented in 3D, together with
the configuration of its wings. Specifically, the 3D model
is assumed to be centered at the origin of a world coordi-
nate system where its 3D orientation is described by a unit
quaternion. The wing configuration is specified by a pair
of angles [θ1, θ2] (Sect. 2.2). A fixed orthographic camera
model is used to render the appearance of the bat. This ren-
dered view vi is labeled with the 3D pose of a bat pi, and
constitutes a single training sample di = (vi, pi).

Ideally, our training database would need to satisfy the
following property: for any possible view vin, generated by
a camera observing 3D pose pin at test time, there should
be at least one training sample dj with a similar view vj
produced by a similar 3D pose pj . In essence, this prop-
erty can be satisfied for some definition of ‘similar’ if the
training database acts as a good approximation to an ideal
database, which would be infinite in size and contain all
possible views of a flying bat.

To approximate an ideal training database, we densely
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Figure 4. Undirected graphical models are shown for the case of
3 time frames and 3 cameras, where observed nodes are gray and
hidden nodes are white. (a) Basic model. (b) Basic model with
additional constraints represented by edges.

sampled the space of 3D orientations and the space of wing
configurations. If a sphere of views is considered, then sam-
pling the polar angle every 10

◦
for 360

◦
, elevation every

10
◦

for 180
◦
, and camera roll every 10

◦
for 360

◦
yields

a total of 23,328 views. Instead of moving the camera,
we equivalently kept the virtual camera fixed and rotated
the bat according to 23,328 randomly [12] generated unit
quaternions. To keep the database size relatively small, but
sufficient, we kept the wing configurations to one of ten dis-
crete parameters (Fig. 3c). All together, 23,328 orientations
for each of the 10 different wing configurations yielded a
database of 233,280 views. In practice, the view vi asso-
ciated with each training sample di can be represented by
a d-dimensional feature vector fi (Sect. 3.1). The training
samples stored have the form di = (fi, pi).

2.4. Pose Estimation via Graphical Model

We model the problem of articulated 3D bat pose estima-
tion with an undirected graphical model. For each unique
pair of cameras and frame numbers (i, j), i ∈ {1, 2, 3},
j ∈ [1, · · · , n], there are two types of nodes in the graph.
The first type of node is labeled by the random variableXi,j

and it represents the true 3D pose of the bat at frame num-
ber j. An Xi,j is associated with every camera i. Since the
true 3D pose of a bat is not directly accessible, Xi,j is con-
sidered to be a hidden variable or state. The second type of
node is labeled by the random variable Yi,j and it represents
the appearance or observation of a bat as imaged by camera
i at frame number j. Typically Yi,j will be a feature vector
extracted from a segmented bat. All together, this model
will have cn hidden state nodes {Xi,j}, and cn observation
nodes {Yi,j} (c is the number of cameras used); for con-
venience, we write X = {Xi,j}, and Y = {Yi,j}. Figure
4a shows an example of this undirected graphical model for
the case of three frames and three cameras.

Each hidden state Xi,j in the model has a state space
Zi,j initialized to be Z, the set of 3D poses spanned by the
training database D, where |Z| = 233, 280. From here on

out we will express the state space Zi,j by a set of training
samples, and it is to be understood that the state space is
equivalent to the 3D poses spanned by those samples. Ad-
ditionally, we assume that the training samples and features
Y are represented by the same feature and that a suitable
distance measure is available to compare them.

Our goal is to use our observations (features) Y to infer
the most likely set of hidden states (3D poses) X . How-
ever, two problems arise that prevent the direct use of this
graphical model. First, the state space is quite large which
is problematic when the number of frames n grows. Sec-
ond, appearance information alone can be highly ambigu-
ous; for example, a bat flying away from the camera may
appear similar to a bat flying towards the camera. To deal
with problems of search size and ambiguities, we propose
two strategies to progressively shrink the state space. These
strategies, detailed below, leverage the dataset dependent in-
puts along with the training database.

2.5. Rule-based Coarse Reduction of Search Space

To reduce the state space of each nodeXi,j ,we designed
a rule-based system. The first rule takes advantage of the in-
put 3D trajectory T to bias the state space of a hidden state
Xi,j . The heading of a bat at frame number j is given by
the vector hj = [Tj+1−Tj ] for j = 1 and hj = [Tj−Tj−1]
for j > 1. The first rule eliminates 3D poses that represent
a bat flying in a direction very different than the heading hj .
The second rule, defined for frame numbers j > 1, biases
the state space of a hidden state Xi,j to be nearby in pose to
those from the previous time Xi,j−1. The third rule elimi-
nates upside down poses from the state space, since they do
not occur in our datasets. The fourth rule reduces the state
space to only have 3D poses which viewed from camera
i look similar to Yi,j . This represents the assumption that
nearby poses in pose space appear similar in image space,
and feature space, when viewed from the same camera.

The second rule requires that the state space is initialized
well at frame one. To obtain a sufficiently accurate initial-
ization, we use the first rule with the assumption that the
back of the bat points as much towards the sky as possible
while maintaining its heading. Application of the last rule
reduces the state space to size k, by choosing the k samples
with appearance closest to Yi,j , as defined by a feature dis-
tance measure (details in Sect. 3.1). After application of the
four rules to all frames, all hidden states Xi,j will have a
state space of size k.

2.6. Fine Reduction with a Markov Random Field

After our method has reduced the state space of each
node to k candidates, it chooses the single best candidate for
each node. To help guide the choice of best candidates, we
propose two constraints. The first constraint is a temporal
smoothness constraint which introduces a penalty when the
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estimated 3D pose of a bat changes too much from one time
frame to the next. The second constraint is a camera geom-
etry constraint which favors 3D pose estimates that are con-
sistent with the camera geometry. The undirected graphical
model in Figure 4b models these added constraints; vertical
edges in blue represent temporal constraints, and horizontal
edges in red represent camera geometry constraints.

One way to find the most probable 3D poses for the hid-
den states in this undirected graphical model is to com-
pute a maximum a posteriori (MAP) estimate. This can
be formulated as finding the values of X that maximize
P (X|Y ), where P (X|Y ) ∝ P (Y |X)P (X). Here P (X)
is a Markov Random Field (MRF) prior, which encodes our
two constraints, and P (Y |X) is the likelihood that observa-
tions Y came from hidden states X . The forms we selected
for the MRF prior and likelihood function depend on our
design of the MRF model [5, 7], which we first introduce.

MRF Model. A Markov Random Field model is char-
acterized by the Markov property which states that a node
is conditionally independent of all other nodes in the graph
given its neighbors. Additionally, a Markov Random Field
model may be described by a joint distribution that factors
in a special way. In particular, if C is a clique and the set
of random variables belonging to that clique is xC , then the
joint distribution P (x) factors as P (x) = 1

Z

∏
c ψC(xC),

where Z is a normalization constant, and ψC(xC) is a po-
tential function defined on the maximal cliques of the graph.
Maximal cliques in this work are of size 2, so potential
functions are defined on pairs of hidden states connected by
edges. We chose the potential function for temporal edges
et = (xi,j , xi,j′) to be ψT (et) = e−DT (et) and for camera
edges ec = (xi,j , xi′,j) to be ψC(ec) = e−DC(ec).

MRF Prior. Our choice of potential functions yields
the prior P (x) ∝ e−(

∑
et
DT (et)+

∑
ec
DC(ec) ), where the

temporal distance DT is chosen to reflect the change DO

in orientation over time and the change DW not-consistent
with a typical wing beat cycle. The sum DT (Pi, Pj) =
DO(Pi, Pj)+DW (Pi, Pj , θ) expresses this distance, where
Pi and Pj are 3D poses consecutive in time and θ is a tuning
parameter. If unit quaternion q1 represents the first orienta-
tion, and unit quaternion q2 the following, we define DO by
the angle between the two unit quaternions. The distance
DW between two wing configurations is given by a cost
matrix that encodes a typical wing beat cycle by penaliz-
ing two wing configurations which either do not follow the
correct order or are not nearby in the wing beat cycle. The
distance DC due to camera geometry is defined similarly
to DT , but with a different cost matrix that penalizes wing
configurations proportional to their difference.

MRF Likelihood Function. The likelihood function
P (Y |X) is defined on pairs of variables connected by edges
eo. From conditional independence assumptions, the like-
lihood simplifies to P (Y |X) =

∏
v∈V P (Yv|Xv). The in-

Figure 5. Sample data of bats in the wild. Top: A frame from an
infrared video showing bats flying in the wild and the correspond-
ing segmentation to the right. Bottom: A typical field setup of 3
cameras with baselines between 1 m and 2 m.

dividual likelihoods corresponding to each node are cho-
sen as P (Yv|Xv) = e−Df , where Df is the difference
between the feature representation of the observation and
the feature representation of the view corresponding to the
3D pose Xv . The feature and feature distance used in our
experiments are discussed in Section 3.1. Combining the
likelihood and prior the posterior is given by P (X|Y ) ∝
e−(

∑
et
DT (et)+

∑
ec
DC(ec)+

∑
eo
Df (eo) ). Final 3D pose

estimates are obtained using max-product loopy belief prop-
agation (messages initialized to 0) to yield an approximate
MAP estimate. Additional implementation details are avail-
able in [18, 22].

3. Experiments
Our experiments were based on videos taken of Tadarida

brasiliensis emerging from a cave in Texas. Three FLIR
SC8000 thermal infrared cameras were used to record data
at a frame rate of 131.5 fps at a resolution of 1024 × 1024
pixels through a 25 mm lens. Typical camera baselines for
field experiments were in the range of 1 to 2 m (Fig. 5 bot-
tom). Segmentation of the bats from video was performed
by modeling the background intensity with a single Gaus-
sian component per pixel. Pixels with outlier intensities
were labeled as belonging to a bat. An infrared image with
its corresponding segmentation is shown in Fig. 5 top. Af-
ter segmenting a bat, our method computes a corresponding
part-based feature vector, as described in the next section.

3.1. Comparing Part-based Features

To reliably compare real thermal infrared images to
training samples from our approximate 3D graphics model,
we chose the “high level representation” of a part-based
feature. It is an 8-dimensional vector that encodes the
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(a) (b) (c) (d)

Figure 6. Part-based feature: (a) Segmented bat. (b) Boundary
contour unwrapped into a 1D signal from which points of high cur-
vature are extracted. (c) Overlaying the thermal view are clusters
of wingtip points shown as red dots enclosed by white rectangles.
The green dot is the body center. The 2D heading is depicted by a
vector from the green dot to the black dot. (The head and tail of the
bat are also detected but not used in this work.) (d) Non-maximum
suppression yields one wingtip per wing.

overall structure of the bat body by storing the 2D posi-
tion of the wingtips relative to the body center. The body
center is approximated by the warmest pixel on the bat
[16] and can easily be detected across poses. To detect
wingtips, our method extracts the boundary contour of a
bat and chooses the points with large curvature, character-
istic of wingtips, as candidates. Candidates are then clus-
tered and non-maximum suppression is used to select up to
two wingtip positions. Our part-based feature is augmented
with a 2D projection of the 3D heading of the bat, obtained
from the 3D trajectory associated with that individual bat.
The 3D trajectories were generated by using a Kalman fil-
ter to track the 2D position of a bat in each view. These
2D positions were combined with camera geometry infor-
mation (relative rotation and translation) obtained from a
DLT based calibration routine [9] to reconstruct a 3D trajec-
tory. The process of feature extraction is shown in Fig. 6. It
should be noted that the same feature representation is ex-
tracted for all training samples. In this case, the process is
trivial since the color of the wingtips can be specified and
the 3D heading of the model is always known.

To compare features, we chose a simple distance mea-
sure that combines a wingtip position distance dwt with a
2D heading distance dh. The distance between two wingtips
is a combination of the difference in their angles (relative to
the body center) and the difference in their distances from
the body center. The 2D heading distance is the angle be-
tween the two vectors. When one of the features has a dif-
ferent number of wingtips detected than the other, a penalty
is added for the mismatch. When two wingtips are detected
in each feature, the resulting data association problem is
solved by choosing the pair among the two possible pairs
that minimizes the feature distance.

3.2. Experimental Methodology and Results

We designed an experiment where we compared the re-
sults of a baseline algorithm and the results of 3D-PEB to
those obtained from manual annotations. The baseline al-

Table 1. Eo, Eθ1 , and Eθ2 represent differences in orientation and
wing angles, computed by comparing baseline algorithm B and
the proposed system 3D-PEB (noted by P), on two datasets with
183 and 93 frames (cn) respectively, with the gold standards es-
tablished by two annotators, expert annotator A1 and non-expert
annotator A2.

Id # fr. Alg. Expert Ann. A1 Annotator A2

Eo Eθ1 Eθ2 Eo Eθ1 Eθ2

1 183 B 70
◦

45
◦

47
◦

51
◦

43
◦

53
◦

P 17
◦

17
◦

14
◦

16
◦

16
◦

25
◦

2 93 B 59
◦

55
◦

53
◦

59
◦

63
◦

63
◦

P 20
◦

22
◦

18
◦

21
◦

26
◦

26
◦

gorithm B is derived from 3D-PEB by removing the first
three rules from the coarse reduction stage of 3D-PEB and
keeping the MRF model unmodified. In this experiment, the
state space for each node was set to k = 100. For this value
of k our Matlab implementation took ≈ 10 minutes to run,
with most of the time spent on k-nearest neighbor (k-nn)
retrieval, and computation of the potential functions. Rela-
tive to this, the time taken by the max-product algorithm to
converge was negligible.

The experiment was designed to compare the automatic
3D pose estimates from 3D-PEB to a gold standard and thus
examine the accuracy of our proposed algorithm. To obtain
quantitative gold standard annotations of real image data,
we built an annotation tool and asked two annotators to la-
bel 3D pose in an image of a bat by manipulating the 3D
pose of our bat model until it matched a presented image.
All controls on the annotation tool were discretized to 5

◦
in-

crements to make annotation less labor intensive. Annotator
A1 was an expert bat biologist, annotatorA2 a graduate stu-
dent with less expertise.

As a measure of potential inaccuracies in the automated
estimation of 3D pose, we report the differences in orienta-
tion and wing joint angles between automatically-produced
estimates and those that were based on manual annotations.
If unit quaternion qe is the estimated orientation and qa the
gold-standard orientation, then the difference Eo is defined
by the angle, in degrees, between the two unit quaternions.
The maximum possible difference in orientation is 90

◦
. The

differences in the wing angles are defined by the difference
Eθ1 = |θ1e − θ1a| in the elbow angle and the difference
Eθ2 = |θ2e − θ2a| in the wrist angle. The maximum possi-
ble difference in wrist or elbow angle is 180

◦
.

Experimental results are based on estimating the 3D pose
of 276 frames, taken from 2 different videos, representing
the 3D pose of several bats across time and cameras. The
first video (Id 1), is a bat emergence where the 3D pose of
bats change steadily over time. The second video, (Id 2), is
a more chaotic bat emergence where the bats are changing
their 3D pose rapidly.

Quantitative results are summarized in Table 1. Our pro-
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Figure 7. Top: The rows labeled C1 and C3 show frames of a
flight sequence from video 1, seen from camera 1 and 3, respec-
tively, with the part-based feature of the bat overlaid. The 3D pose
estimates produced by 3D-PEB are shown in rows C∗

1 and C∗
3 .

From right to left, every other frame is shown (T1 − T15). Bot-
tom: Estimates for a flight sequence from video 2.

posed algorithm yielded a mean difference in orientation in
the range of 16

◦
– 21

◦
, or ≈ 17% – 23%, considering the

maximum of 90
◦

difference to be 100%. For the wing an-
gles, the mean differences range from 14

◦
– 26

◦
, which is

≈ 7% – 14%. The baseline algorithm has a significantly
higher difference on average, with the mean orientation dif-
ference in the range of 51

◦
– 70

◦
, or ≈ 56% – 77%, and

mean wing angle difference in the range of 35
◦
– 71

◦
, which

is ≈ 25% – 35%.
In addition to quantitative results, we provide qualita-

tive results in Fig. 7. The 3D pose estimates our system
produced for 2 particular bats, selected from two different
videos, are shown on even numbered rows and can be com-
pared visually to the 3D poses observed in the input, shown
on odd numbered rows. Input thermal infrared images are
at their original resolution. In the model, recall that the left
wing is colored blue and the right wing is colored green,
with the head of the bat colored black.

4. Discussion

Our results are the product of many system components
and reflect challenges in both the general problem of 3D
pose estimation and those specific to bats and the datasets
used for our experiments.

A general 3D pose estimation method must find a way to
deal with ambiguities arising when multiple 3D poses map
to nearly identical projections. In our work, ambiguities are
dealt with by filtering out upside down poses and 3D poses
that disagree with the heading of the bat. The errors ob-
tained by baseline algorithm B help validate the need for
these particular rules. The baseline algorithm performs sig-
nificantly (≈ 3 times) worse than 3D-PEB because, without
filtering, many incorrect 3D poses remain in the state space,
and the MRF model is forced to find the best solution among
mostly incorrect candidates.

Many of our design decisions have been influenced by
the application domain of bats. Bats in the wild fly quickly,
so keeping them in the field of view for a reasonable amount
of time requires placing the cameras at a distance from their
flight paths, yielding relatively low spatial and temporal
recording resolutions. At a spatial resolution of approxi-
mately 30 by 30 pixels per bat, its overall body shape can
be seen with some coarse detail on the wings, head, and tail
(Fig 7). At a frame rate of 131.5 fps, the wingbeat cycle can
be seen in a choppy fashion. This level of detail in the input
video influenced both the 3D bat model we developed and
the features we used.

Consequently, a fundamental challenge has been to com-
pare images generated from our 3D bat model with images
generated from a real, fast moving, articulated bat. We ini-
tially chose low level features based on moments, and con-
tours, but these failed to capture semantic similarity across
these two domains. We observed this failure when a k-nn
retrieval produced few good matches and many bad ones.
Our part-based feature, which captures the overall body and
wing structure, was more successful at matching across do-
mains. Detecting the body parts of bats in sequences of
low resolution images is a largely unexplored problem and
solutions here could accelerate progress in this application
domain. More generally, accurate graphics models may not
be available for a variety of animals and other researchers
may find part-based features beneficial for relating projec-
tions from approximate graphics models to real image data.

Explicit experiments were not carried out to determine
robustness of our estimates with respect to input segmenta-
tions. Segmentation quality was not a major concern for the
datasets used because the background was mostly sky and
slow moving.

The frames chosen from both videos, for evaluation, are
typical of the thousands of other frames in those videos.
The bats sampled for our experiments, span a variety of 3D
poses, including less complex and more complex ones.

The evaluation of our method relies on the labor-
intensive process of obtaining a gold standard. A domain
expert was required, who had limited time, making a larger-
scale experiment difficult to carry out. This hurdle should
be considered by anyone wishing to analyze video of wild
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animals, whose motions and articulations are complex and
not amenable to typical marker based motion capture ap-
proaches.

5. Conclusion
The goal of our work has been to design and build a

system which can automatically estimate the articulated 3D
pose of bats flying in the wild. In the context of the chal-
lenges discussed, as well as the novelty of our results, we
find our automated estimates more than suitable for describ-
ing coarse 3D pose of flying bats in the wild. Our paper
describes both the process and the considerations taken in
developing a system for estimating the 3D pose of a wild
animal. We are offering a 3D graphics model of Tadarida
brasiliensis for public use, as well as calibrated images of
bats, and encourage others to experiment with bat images.
This is also the first time in the literature, quantitative and
qualitative results are shown for the automatic 3D pose es-
timation of bats in the wild.

Future work includes looking at how sensitive our sys-
tem is to errors in camera calibration, and experimenting
with different potential functions. We intend to use our sys-
tem to analyze interesting maneuvers performed by bats.
Collaborations with domain experts may lead to applying
more detailed 3D bat models on higher quality bat videos,
and uncovering new patterns in 3D pose that yield insight
into the obstacle avoidance and foraging behaviors of bats.
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