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Abstract Some people cannot use their hands to control a

computer mouse due to conditions such as cerebral palsy or

multiple sclerosis. For these individuals, there are various

mouse-replacement solutions. One approach is to enable

them to control the mouse pointer using head motions

captured with a web camera. One such system, the Camera

Mouse, uses an optical flow approach to track a manually-

selected small patch of the subject’s face, such as the

nostril or the edge of the eyebrow. The optical flow tracker

may lose the facial feature when the tracked image patch

drifts away from the initially-selected feature or when a

user makes a rapid head movement. To address the prob-

lem of feature loss, we developed and incorporated the

KERNEL-SUBSET-TRACKER into the Camera Mouse. The

KERNEL-SUBSET-TRACKER is an exemplar-based method that

uses a training set of representative images to produce

online templates for positional tracking. We designed the

augmented Camera Mouse so that it can compute these

templates in real time, employing kernel techniques tradi-

tionally used for classification. We propose three versions

of the KERNEL-SUBSET-TRACKER, each using a different

kernel, and compared their performance to the optical-flow

tracker under five different experimental conditions. Our

experiments with test subjects show that augmenting the

Camera Mouse with the KERNEL-SUBSET-TRACKER improves

communication bandwidth statistically significantly.

Tracking of facial features was accurate, without feature

drift, even during rapid head movements and extreme head

orientations. We conclude by describing how the Camera

Mouse augmented with the KERNEL-SUBSET-TRACKER

enabled a stroke-victim with severe motion impairments to

communicate via an on-screen keyboard.

Keywords Augmentative and alternative communication

(AAC) � Human–computer interaction � Camera-based

interfaces � Computer vision � Assistive technology

1 Introduction

Millions of people worldwide are affected by neurological

disorders that cause communication barriers. If individuals

with severe traumatic brain injuries, strokes, multiple

sclerosis, or cerebral palsy are quadriplegic and nonverbal,

they cannot use the computer with a standard keyboard and

mouse, or a voice recognition system, as a communication

tool.

Among individuals with these severe impairments, the

Camera Mouse has been established as an assistive com-

munication tool in recent years [4]. Individuals, who can

control their head movement, even if the movement range

is very small, use systems such as the Camera Mouse as a

mouse-replacement interface. The Camera Mouse tracks

head movements with a webcam and thereby enables a

computer user to control the movement of the mouse

pointer [5]. The Camera Mouse tracks a small feature on a

user’s face, such as a nostril or eyebrow corner. The

location of the feature in the camera frame is transformed

into the position of the mouse pointer on the screen

(Fig. 1).
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The most recent version of the Camera Mouse uses an

optical flow approach for tracking [23]. Optical-flow

trackers estimate the location of a feature to be tracked by

matching the image patch estimated to contain the feature

in the previous image with the locally best-matching patch

in the current image. Optical-flow trackers are known to

incur ‘‘feature drift’’ [9]. The tracked location may slowly

drift away from the initially-selected feature, for which no

record is kept. Camera Mouse users may experience a slow

drift of the tracked feature along the nose or eyebrow of the

user. Feature loss can also occur when a spastic user makes

a rapid involuntary head motion.

To address the problems of optical-flow tracking, we

introduce the KERNEL-SUBSET-TRACKER. The KERNEL-SUB-

SET-TRACKER uses an exemplar-based approach to track the

user’s head. A training set of representative sample

images of the user’s face (or regions of the face) are

collected at the beginning of the computer session. After

the setup phase, these images are used to create template

images for positional tracking. Our approach is based on

kernel projections [10, 11], a technique from classifica-

tion theory.

We here report a significant improvement of the com-

munication bandwidth of test subjects when the Camera

Mouse is augmented with the KERNEL-SUBSET-TRACKER. We

refer to this system as the Augmented Camera Mouse to

distinguish it from the standard Camera Mouse. The

Augmented Camera Mouse tracks facial features accu-

rately, without any notable drift, even when subjects move

their heads quickly or through extreme orientations, and in

the presence of background clutter. We also report that the

Augmented Camera Mouse successfully tracked the eye-

brow of a user with severe movement impairments. The

user was thus able to generate mouse-click events by

raising his eyebrow.

2 Related work

Assistive technology offers many hardware devices for

people with motion impairments, but very few video-based

mouse-replacement systems. A database of information

about assistive technology, ABLEDATA [1] lists more

than 36,000 products for users with disabilities. The data-

base category ‘‘mouse emulation programs’’ has only 58

entries, and most of these describe education software to be

used with physical switches. Only two systems listed offer

camera-based mouse-pointer control: the Camera Mouse

and the Quick Glance 3TM mouse emulator system by

EyeTech Digital Systems. Quick Glance 3 [33] illuminates

the user’s face with infrared lighting and tracks his or her

pupils using infrared-sensitive cameras. Other infrared-

based commercial mouse-replacement systems are the

SmartNAV [36] system by NaturalPoint, which follows a

reflective dots attached to the user’s head, and the RED

Eye Tracking System by SensoMotoric Instruments [34].

Another SensoMotoric product, the iView X HED [18], is a

head-mounted system for eye tracking. The QualiEye

program [32] by Qualilife is a camera-based mouse-

replacement system that tracks a user’s face using a

webcam.

Unfortunately, commercial hardware solutions are often

prohibitively expensive for many people with disabilities

and their caregivers [22]. The most expensive commercial

products are infrared-based eye-trackers that offer a high

resolution in estimating gaze direction. Users, however,

find it easier to control a mouse pointer with head motions

than with their gaze [3] (in the latter case, users must look

at the location of the mouse pointer while in the former

case, they may look elsewhere, e.g. to plan their next

move). Fortunately, there are a number of free mouse-

emulation systems for users with motion impairments.

The Camera Mouse was the first camera-based mouse-

replacement interface that was freely available to users

with motion impairments [14], for example, to children

with cerebral palsy. In the past decade, a number of other

systems have been developed and tested successfully with

people with motion impairments. The mouse-emulation

system Nouse, for example, uses two web cameras to track

the 3D position of the nose of the user and was tested with

15 users with motion impairments [15]. Another 3D

approach was proposed by Tu et al. [38], which tracked

one subject’s face using a 3D model with 12 facial motion

parameters. Based on the experiments with users with

motion disabilities, Gorodnichy et al. [15] pointed out that

the smoothness and range of the users’ head movements

are often overestimated by developers of camera-based

interfaces.

Kjeldsen [21] focused on the problem of non-smooth

head movements. He created the HeadTracking Pointer, a

a b c

Fig. 1 Mouse replacement systems enable the user to control the

mouse pointer using head movements captured by a webcam. Here,

the user is drawing a line with a painting program by moving his

head. The feature being tracked is a 10 9 10-pixel image patch on the

subject’s left eyebrow. The subject moved his head from his lower left
(a), upward (b), and then to his lower right (c). The image coordinates

of the feature were translated into screen coordinates for the mouse

pointer by a linear mapping
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mouse-replacement system that converts head movement

to pointer movement with a sigmoidal transfer function.

The function adapts the transfer rate based on the pre-

dicted mouse pointer destination and thus yields smooth

mouse pointer movement. A preliminary camera-based

mouse-replacement system, using traditional template

matching techniques, was created by Kim and Ryu [19].

Palleja et al. [30] described a mouse-replacement system

that tracks the head and detects blinks and mouth

movements. Kjeldsen [21] and Kim and Ryu [19] men-

tioned plans to test the proposed interfaces with users

with motion impairments.

Manresa et al. [27] tested an interface developed by

Varona et al. [39] with 10 users with movement dis-

abilities. Interface tracks multiple features on a subject’s

face, such as the nose, eyes, and mouth. The tracker can

recover from tracking failures of individual features

through support from other features. Tracking was

accomplished using intensity gradients in the video

frames. Using the same interface, eight users with

movement disabilities reportedly controlled the tempera-

ture and lighting of a room [31].

Another camera-based mouse-pointer manipulation

system was designed by Loewenich and Maire [22]. This

system uses a boosted cascade of classifiers to detect a

user’s face in the video. During tracking, a collection of

features are tracked using optical flow. This system was

tested with 10 volunteers without movement disabilities.

It will be exciting to see how the computer vision

techniques discussed above will improve the accuracy of

facial feature tracking so that camera-based mouse-

replacement systems can be successful tools for the

larger community of people with movement disabilities.

At this time, unfortunately many individuals with severe

movement disabilities, who use mouse-replacement sys-

tems, gain only limited control of the mouse pointer.

This is due to the difficulties many users have in posi-

tioning the mouse over traditional target areas such as

buttons or web links.

Research efforts have been made to adjust application

software so that it can be used successfully with a mouse-

replacement system. Examples are the WEBMEDIATOR, a

program that alters the display of a web page so that the

fonts of links become larger [40] and the CAMERACANVAS,

an image editing tool for users with severe motion

impairments [20]. Another example is the Hierarchical

Adaptive Interface Layout (HAIL) by Magee and Betke

[26], which is a set of specifications for the design of user

interface applications, such as a web browser and a Twitter

client, that adapt to the user. In HAIL applications, all of

the interactive components take place on configurable

toolbars along the edge of the screen.

Hwang et al. [16] reported that some users with

impairments pause the pointer more often and require up

to five times more submovements to complete the same

task than users without impairments. Wobbrock and

Gajos [41] focused on the difficulty that people with

motion impairments have in positioning the mouse

pointer within a confined area to execute a click com-

mand. They introduced ‘‘goal posts’’ which are circular

graphical boundaries that trigger application actions

when crossed with the mouse pointer. Findlater et al.

[12] used this idea to create ‘‘area cursors’’ that use

goal-crossing and magnification to ease selection of

closely positioned interface targets. Betke et al. [6] pro-

posed to discretize user-defined pointer-movement ges-

tures in order to extract ‘‘pivot points,’’ i.e., screen

regions that the pointer travels to and dwells in. Related

mechanisms are ‘‘gravity wells’’ that draw the mouse

pointer into a target on the screen once it is in proximity

of the target [8] and ‘‘steady clicks,’’ a tool that reduces

button-selection errors by freezing the pointer during

mouse clicks and by suppressing clicks made while the

mouse is moving at a high speed [37].

The Camera Mouse system may be the most-used

freely-available camera-based mouse-replacement system

to date. It has been downloaded 500,000 times as of August

2011 and is popular with users. Our new tracker, the

KERNEL-SUBSET-TRACKER, is designed to support current

Camera Mouse users and also empower new users, who

could not use the Camera Mouse previously due to frequent

feature loss. We incorporated the proposed KERNEL-SUBSET-

TRACKER into the original Camera Mouse software. The

new tracker can be toggled on and off to suit the needs of

the user.

3 The KERNEL-SUBSET-TRACKER

The KERNEL-SUBSET-TRACKER is an exemplar-based tracking

algorithm that uses a representative training set to model

the objects to be tracked. It requires a training phase at the

beginning of the interaction session. In the training phase, a

set of object images is collected as a training set. For face

tracking, the training set consists of images of size

100 9 100 of the face at different orientations of the head

relative to the camera. The training set is used to identify

the object to be tracked in successive image frames during

human-computer interaction. At time t, the KERNEL-SUB-

SET-TRACKER determines a dissimilarity score, distance

di, of the current object at position p, to each training

image qi in the training set Q = {q1, q2, …, qn}. From

such distances, a positional template is created and used to

find the next position p0 of the object in the video frame.
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In the KERNEL-SUBSET-TRACKER, see pseudocode above,

function GETVIDEOFRAME returns the complete image frame

at the current time t. Function GETREALTIMEOBS crops a

subimage located at the current position p from the current

video frame I. This subimage is the real-time observation

q. Function f returns a distance measure between the real-

time observation and each training image qi of the training

set Q. For many distance measures, evaluating f exhaus-

tively becomes untenable for current computers if the

distance measure uses every pixel in the input images. In

Sect. 4, we describe a method to approximate the distance

measure with a kernel (see Sect. 4).

The positional template a is computed by function

CREATETEMPLATE, which takes as inputs the distances d and

the training set Q. Function POSITIONSEARCH computes the

optimal local alignment p0 of template a, given the current

video frame I and the previous position p. Eight subimages

are cropped from the current video frame I from windows

centered at position p and each of its eight neighbors

p ? (-1, -1), p ? (0, -1), p ? (1, -1), p ? (1, 0), p ?

(1, 1), …. The first estimate p̂0 of the position is equal to

the center position of the subimage that best matches

a. The same distance measure used by function f is also

used in the POSITIONSEARCH method to evaluate the eight

alignment candidates. This process is repeated by consid-

ering the eight neighbors of p̂0. Hill climbing proceeds until

none of the neighboring subimages can provide a better

alignment or until a fixed number of iterations has occur-

red. POSITIONSEARCH then returns the locally best estimate

p0. The OUTPUT of the KERNEL-SUBSET-TRACKER for each

frame is the 2D position of the tracked object, the distances

di of the training images and the positional template a of

the tracked object.

4 Distance approximation with kernels

The most computationally intensive component of the

KERNEL-SUBSET TRACKER is the repeated calls to the distance

method f(�, �) for each training image qi in the training

set Q. We describe how to use kernel methods from

machine learning [35] to approximate the distance function

quickly.

Distance functions such as f(�, �) define metric spaces

and likewise inner product functions h�, �i define vector

spaces. The most common inner product is the one for

Euclidean spaces,

ðx1; . . .; xnÞ; ðy1; . . .; ynÞh i ¼
Xn

i¼1

xiyi:

Another example of an inner products is

ðx1;x2Þ; ðy1; y2Þh i ¼ x1y1þ x2y2þ ðx1þ x2Þðy1þ y2Þ: ð1Þ

These inner products are also known as kernels. We use

the notation of kð�; �Þ to describe the kernels. If kð�; �Þ is

semi-positive definite then it is a valid kernel [35].

The main benefit of using kernels is that they endow

distance measures with notions of angles and length and so

projections can be used. Given the distance function f, we

can create a kernel function kð�; �Þ whose induced distance

is equal to the function f. Thus the function f can be iso-

metrically embedded in the vector space implied by the

kernel1. We define such a kernel function kð�; �Þ by

kðq; q0Þ ¼ hðqÞ � 1

2

�
f ðq; q0Þ

�2 þ hðq0Þ; ð2Þ

for any arbitrary function h : Q ! R: In practice, however,

it is easer to define the kernel function directly.

Using the subset projection method described by [11], we

do not need to compute the distance function f between the real-

time observation q and every training image qi. Instead, we can

compute a kernel function f̂ that represents the distance

between a real-time observation q and a small subset of the

training images R � Q; with R = {r1, …, rm}. The results of

these inner products can be used to approximate the distances

di. The pseudocode of KERNEL-SUBSET-TRACKER can be modi-

fied to accommodate this subset projection method by

replacing lines

4: for all n training images qi in Q do

5: di = f(q, qi)

by the subset projection functionality:

4: R = RANDOMSUBSET(Q, dprev)

5: for all m training images rj in R do

6: vj = k(q, rj)

7: for all n training images qi in Q do

8: di ¼ f̂ ðq; qi; vÞ

The RANDOMSUBSET method returns a random subset

R of the training images Q. The probability that a training

1 This is assuming the distance function is Hilbertian.
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image qi will be chosen for a subset R is inversely

proportional to its distance to the previous real-time

observation di
prev. Thus, training images that are similar to

the real-time observation of the previous frame have a higher

probability to be in subset R. In practice, the distances to a

training set Q of size 25 can be approximated using the subset

projection method and a small set R of size 5.

5 Three kernels for the kernel-subset-tracker

In this section, we define three image-based kernels used in

our experiments. An image-based kernel is a function of

two grayscale images that returns a real number repre-

senting their inner product. A simple example of an image-

based kernel function is one which returns the sum of the

pairwise product of the intensity values of the images. On

input images q and q0 of size 100 9 100, this kernel returns

kðq; q0Þ ¼
X100

x¼1

X100

y¼1

qðx; yÞ � q0ðx; yÞ; ð3Þ

with q(x, y) representing the brightness of image q at

position (x, y).

5.1 Threshold kernel

The threshold kernel is the main kernel we used in our

experiments (Fig. 2). This kernel first performs threshold-

ing of a pair of grayscale images according to threshold s to

produce two processed binary observations. It computes

the size of the intersection of the ‘‘1’’ pixels of these two

processed observations. For simplicity, this number is

divided by the number of pixels of the input images to yield

an output between 0 and 1 (the division operation has no

effect on the performance of the kernel).

As we show below, the threshold kernel results in

excellent tracking in certain imaging scenarios; however, it

is not robust to changes in brightness, contrast, or object

scale. This is due to the fixed nature of s, the thresholding

parameter.

5.2 Normalized threshold kernel

We designed the NORMALIZED THRESHOLD KERNEL to provide

a tracking mechanism that is robust to changes in bright-

ness and contrast. This kernel takes as input two grayscale

images q and q0 and outputs a real number between 0 and 1

(see pseudocode). Each input is converted to a binary

image using its mean as the threshold. The size of the

intersection of the two binary images is computed. This

value is normalized by the number of pixels and returned.

This final normalization is a convenience step, having no

effect on the performance of the kernel.

The function NORMALIZED THRESHOLD KERNEL is semi-

positive definite, and thus a valid kernel. It is invariant to

uniform changes in brightness and contrast (Fig. 3).

1: function NORMALIZEDTHRESHOLDKERNEL q, q0

2: m = ComputeMean(q)

3: m0 = ComputeMean(q0)

4: c = 0

5: for x = 1 to width of training images do

6: for y = 1 to height of training images do

7: If qðx; yÞ�m and q0ðx; yÞ�m0 then

8: c = c ? 1

9: return c/NumPixels(q)

5.3 Normalized radial intensity kernel

We introduce the NORMALIZED RADIAL INTENSITY KERNEL

(NRI) to provide a tracking mechanism that is robust to

changes in object scale. The NRI-Kernel computes an inner

product on two grayscale images q and q0 in the following

two part process.

Fig. 2 An example of the threshold kernel. Two grayscale images

are converted to binary images using a set threshold and then

combined to a single binary image using the intersection operation.

The final output is the percentage of ‘‘set’’ pixels in this combined

image

a b

Fig. 3 NORMALIZED THRESHOLD KERNEL. The images (a) were sub-

jected to the lowering of brightness and contrast (b). Thresholding

based on the means of the images results in similar binary images

(a and b) and kernel outputs. This is an example of the invariance of

the NORMALIZED THRESHOLD KERNEL to uniform changes in brightness

and contrast
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The first part converts each grayscale image to an

intermediate feature vector, which is a small array of

positive real numbers between 0 and 1. Each value of the

array represents the summation of intensity values of the

image, along a ray from the center of the image proceeding

in a specified direction. The array is normalized such that

its largest entry is 1.0. An example conversion can be seen

in Fig. 4. We tried a number of different array sizes,

including 8 and 16 rays. We found the best performance of

the KERNEL-SUBSET-TRACKER when we used 32 directions.

The second part of the NRI-Kernel computes an inner

product between the two radial feature vectors v and v0

derived from two images. We tried several methods,

including the standard sum of pairwise multiplication of

the values of the two vectors. However we found the

intersection operation resulted in the best tracking results.

Thus the NRI-Kernel returns the sum of the pairwise

minimum of every pair of values in vectors v and v0. The

sum is normalized (divided by 32) so that the output of the

NRI-Kernel is between 0 and 1. This normalization is done

for ease of comparison, and has no effect on the perfor-

mance of the kernel.

The NRI-Kernel is invariant to small changes in scale of

the object being tracked, since they would not affect the

relative intensity values along the radial directions. The

normalization operation makes the kernel also invariant to

changes of brightness and contrast. Some sample inputs

demonstrating this invariance can be seen in Fig. 5.

6 Positional template creation

In this section we describe the positional template function

CREATEBINARYTEMPLATE we used in the KERNEL-SUB-SET-

TRACKER in conjunction with both the Threshold Kernel

and the Normalized Threshold Kernel. In the CREATEBI-

NARYTEMPLATE function, the positional template a is con-

structed from the observation set Q, where the contribution

of each individual qi to the output is inversely proportional

to its distance di to the real-time observation q. Given are

the distances di of the current frame subimage and the

threshold of the Threshold Kernel s.

The binary image template output a is created by iterating

through every pixel position of the training images and setting

a temporary value d to 0. If the grayscale value of training

image qi is greater than threshold s at the current position index

(xpos, ypos), then it will ‘‘vote’’ for a 1 pixel by adding weight

1/di to d. Similarly 1/di will be subtracted from d if its intensity

is below threshold s. The contribution of each training sample

qi to the construction of a is proportional to 1/di. After all

training images have voted, the output a at position (xpos, ypos)

will have intensity 1 if d C 0, otherwise 0.

1: function CREATEBINARYTEMPLATE Q, s, d

2: forx{pos = 1 to width of training images do

3: for y{pos = 1 to height of training images do

4: d = 0

5: for i = 1 to n do

6: If qi(xpos, ypos) C s then

7: d = d ? 1/di

8: else

9: d = d - 1/di

10: if d C 0 then a(xpos,ypos) = 1 else 0

11: return a

This binary image is then used by the KERNEL-SUBSET-

TRACKER algorithm in a local search to find the new

a b c

Fig. 4 A grayscale image (a) is converted into the intermediate

feature vector (c) used by the NORMALIZED RADIAL INTENSITY KERNEL.

Each number in (c) is an entry of the feature vector, which is created

by summing up the intensity values from the center point in the

directions shown in image b. The result is a feature vector of 32

positive numbers representing the relative intensity of each radial

direction, normalized to be between 0 and 1, as shown in (c), rounded

to one significant digit

Fig. 5 The operations of the NORMALIZED RADIAL INTENSITY KERNEL.

Each row shows the two grayscale input images at increasing scales. The

NRI Kernel converts each image into an feature vector of size 32, where

each value represents the sum of the pixels in a particular direction,

starting from the center position. The feature vectors are shown with the

lengths of rays representing the magnitude of each value. The arrays are

combined into a third feature vector using the minimum operation. The

output is the magnitude of this feature vector normalized to be between 0

and 1. The similarity of the outputs exemplifies how the NRI Kernel

successfully handles local changes in scale
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position of the object in the frame. This action is performed

in the POSITIONSEARCH function of the KERNEL-SUBSET-

TRACKER. At each position in the local search, a grayscale

image is cropped from the current video frame. This image

is thresholded into a binary image using the threshold s of

the kernel. All of the binary images of the neighboring

positions are compared against the template and the current

tracking position is changed to that of the closest matching

neighboring binary image. This process is repeated until a

local maximum is reached.

7 Augmenting the camera mouse with the

KERNEL-SUBSET-TRACKER

In the Augmented Camera Mouse, the user can configure

the KERNEL-SUBSET-TRACKER by selecting a kernel to use,

the size of the training set, and the size of the subset pro-

jection. During the training phase, Augmented Camera

Mouse populates the training set by obtaining a series of

pictures of the user’s head in different positions. To guide

the user in making head movements that yield effective

training images, the Augmented Camera Mouse asks the

user to perform a simple target-reaching task. In this

training phase, the user’s motion is tracked with optical

flow for bootstrapping. The target-reaching task requires

users to move the mouse pointer with their head over a set

of blocks on the screen as shown in Fig. 6. When the

pointer enters a block, a subimage of the user’s face, which

is a 100 9 100 window around the currently tracked

position, is stored as a training image. The number of

blocks n2 (e.g., n = 2, 3, or 4), and the size of blocks are

configurable. The training phase lasts only a few seconds—

as long as it takes the user to move his or her head into the

n2 positions. Retraining is required if the conditions during

the computer session change significantly (e.g., the lighting

changes or the user starts wearing glasses).

The Augmented Camera Mouse uses both the original

optical flow tracking algorithm and the KERNEL-SUBSET-

TRACKER. At each frame, the old position of the facial

feature is updated. The optical flow algorithm first com-

putes an estimate of the position using a 10 9 10 square

patch around the previous position. The KERNEL-SUBSET-

TRACKER then crops a square window of length 100 pixels

around this estimate. The KERNEL-SUBSET-TRACKER refines

the estimate of the position for the next frame, using the

hill climbing POSITIONSEARCH algorithm (Sect. 3).

8 Experiments with subjects without motor

impairments

8.1 Participants

We worked with 19 subjects (16 males, 3 females,

20–40 years of age). The subjects did not have motion

disabilities.

8.2 Apparatus

A Logitech Quickcam Pro 4000, which captures images at

a frame rate of 30 Hz, was used as the video capture

device. The KERNEL-SUBSET-TRACKER software package was

implemented in C??. The experiments were conducted

with a laptop with 4 GB of RAM and Intel Core Duo

2.1 GHz processors.

8.3 Test software

We developed test software that encourages subjects to

move their head significantly while interacting with the

Augmented Camera Mouse interface. Similar to HCI

experiments in the past [2, 17], our test software displays a

series of circles that the user targets with the mouse

pointer. Each circle appears individually and disappears

when the subject moves the mouse pointer to the current

circle, triggering the next circle to become visible (Fig. 7).

To induce different types of user motions, we designed

three target arrangements that differ in placement, order-

ing, and sizes of circles.

8.4 Test procedure and setting

We tested the accuracy of the Augmented Camera Mouse

with regard to tracking a subject’s facial feature during

varied head movements (Fig. 8). The subjects used our

Fig. 6 Target-reaching task during the real-time image-collecting

training phase of the Augmented Camera Mouse. Optical flow is used

for tracking as a bootstrapping technique. The screen initially shows

the overlay of n2 red blocks (here 16) that the user is asked to reach

with the mouse pointer. When the pointer enters a screen block,

the Augmented Camera Mouse obtains a 100 9 100 subimage of the

user’s head (centered around the tracked feature) and adds it to the

training set. The red overlay disappears to indicate that the screen

region has been reached successfully (here, five blocks have been

reached and five training images have been obtained) (color figure

online)
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testing software in 10 sessions for about 30*min, on

average. The subjects sat in front of a cluttered background

and faced the external monitor that contained the test

software that we developed. The test supervisor faced the

laptop monitor that contained the Augmented Camera

Mouse interface. This interface showed the current tracking

positions overlaid on the webcam image (Fig. 1, bottom).

If the Augmented Camera Mouse lost the selected feature,

the supervisor would record the event as a tracking failure

and reinitialize the mouse pointer by manually resetting the

tracking position to the appropriate image feature.

The experiments involved five sessions:

– Normal session. The subject was instructed to move

the mouse pointer to a series of 20 randomly placed

targets. This session represents the typical motions and

orientations which a Camera Mouse user would

encounter in day-to-day operations (Fig. 7a).

– Hastened session. A total of 20 targets were placed

alternatively on the left and right side of the screen. The

subject was instructed to move the mouse as quick as

possible. This session was designed to induce large

horizontal motions (Fig. 7b). We chose not to use

vertical motions to decrease neck strain in the users.

– Boundary session. This session was designed to have

the subject occlude large portions of his or her face due

to moving the head in extreme positions. A total of 20

targets were placed along the boundary of the screen

(Fig. 7c).

– Changed lighting session. The subject was instructed

to move to the same target arrangement as those of the

normal session. The overhead lights in the room were

turned off to create darker lighting condition than that

during the setup phase (Fig. 7a).

– Changed scale session. This session used the same

arrangement as the normal session, but with the camera

moved two feet away from the subject. This resulted in

smaller scaled features (Fig. 7a).

For consistency, the order of the sessions and trackers

was fixed for all subjects. We first worked with the Stan-

dard Camera Mouse and then the Augmented Camera

Mouse. We tested the perfomance of a given tracker in

only the sessions that were appropriate for it. We tested the

Augmented Camera Mouse with the Threshold Kernel, the

Normalized Threshold Kernel, and the Normalized Radial

Intensity Kernel, defined in Sect. 5 Using the Augmented

Camera Mouse with the Normalized Threshold Kernel in

the normal and changed-lighting sessions, we tested the

invariance of the kernel to differences in feature illumi-

nation. In the changed-scale sessions, we tested the

invariance of the Normalized Radial Intensity Kernel to

changes in size of the tracked feature. We also compared

the performance of the Standard Camera Mouse and

Augmented Camera Mouse with the threshold kernel dur-

ing the normal, hastened, and boundary sessions.

During each session the Augmented Camera Mouse

used 25 training images and subset projections of size 5.

The limit for the number of steps of the hill climbing

algorithm for any video frame was set to 10.

The facial feature tracked was the inner left eyebrow

corner. We selected it since it is centered in the face, and

not likely to be occluded. From our experience, when the

eyebrow was the feature tracked, subjects required less

cognitive processing in converting head motions to mouser

pointer motions.

8.5 Analysis procedure

To evaluate the tracking accuracy of the Augmented

Camera Mouse, we compared computed feature positions

against manual ‘‘ground-truth’’ of feature locations. For

each session, an image of the webcam was saved once per

second. After the session was over, an independent

observer used a custom program to mark the location of the

facial feature in each image. For each session, the average

Euclidean distance between the target locations and the

manually marked locations was computed. We use this

distance to represent the error of the tracker with regard to

the hand-marked ‘‘ground truth.’’

We also evaluated the potential of ‘‘feature drift,’’ in

which a tracked point diverges away from the initially

selected feature. The issue of feature drift particularly

a b c

Fig. 7 The placement, size and ordering of the targets in our

experiments. Numbers correspond to the time steps in the experiment

Fig. 8 Sample images captured by the webcam during the testing

phase. The images show different head orientations (a, b, c), rapid

motions (d), changed lighting (e), and changed scale (f). All subjects

were tested in front of the cluttered bookcase shown in the images
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arises when trackers are used for extended periods of time.

The drift measure can be approximated by the increase of

the error of a tracker over time. For each subject session,

feature drift is determined by the slope of the best linear fit

of the error, as computed above, versus time into the ses-

sion. Feature drift is measured in units of pixels per second.

Between 18 and 64 images were saved per session, with

an average of 34 images. The average time to manually

mark the ground truth for each subject was 45 min.

We evaluated the benefit of the Augmented Camera

Mouse with an HCI theoretic performance measure known

as the Index of Performance [24]. This measure describes

the performance of one or many users with a particular

device. The Index of Performance is also known as the

bandwidth of the device, with units in bits per second. The

measure is similar to the performance indices of the elec-

tronic communication devices, with larger values signify-

ing better performance.

The Index of Performance can be approximated using

Fitts’ law [13]. Fitts’ law says that for pointing devices, the

average time it takes a user to use a device to point to a

target is linearly related to the level of difficulty of the task.

It can be stated succinctly as

MT ¼ c1 þ c2 � ID; ð4Þ

where MT represents the (mean) time to reach a target, ID

is the index of difficulty of reaching the target, and c1 and

c2 are constants dependent on the device and the user. Of

the many variants of the index of difficulty, we use an

information theoretic formulation [24, 25],

ID ¼ log
D

W
þ 1

� �
; ð5Þ

where D is the distance to the target and W is the diameter

of the target. The Index of Performance (IP) for a particular

user and device is

IP ¼ 1=c2; ð6Þ

with units of bits per second. We found the Index of Per-

formance experimentally by collecting the behavior of our

group of subjects performing a number of actions with a

particular device. For our purposes the device is the

Standard or Augmented Camera Mouse with different

kernels. An action represents the task of moving the mouse

pointer to a target. A user performing the mouse tracking

experiment with one of the target arrangements shown in

Fig. 7 produces 19 actions. Each action is represented by a

(Movement Time, Index of Difficulty) pair, which contains

the time to move the mouse from the previous to the new

target position and the Index of Difficulty of the task, as

described in Eq. 5. The terms W and D are the width and

distance between the targets in screen pixels, with ranges

of [100, 200] and [128, 976], respectively.

8.6 Results

Using the KERNEL-SUBSET-TRACKER with the threshold ker-

nel, the Augmented Camera Mouse achieved a frame rate

of 30 fps. The other kernels defined in Sect. 5 are more

computationally expensive, but still achieved a frame rate

of 30 fps.

We evaluated the tracking accuracy of the Augmented

Camera Mouse (Table 1). The Augmented Camera Mouse

with the threshold kernel during the normal, hastened, and

boundary sessions performed with an average Euclidean

error distance of 6.1, 7.9, and 7.7 pixel widths, respec-

tively. On average, the width of the eyebrow of the subjects

was 63 pixels. The error in localizing the eyebrow corner

was therefore only about 1/10 the length of the eyebrow,

implying the Augmented Camera Mouse tracked the left

eyebrow with a high degree of accuracy.

The pairwise difference in accuracy of the Augmented

Camera Mouse with the threshold kernel versus the Stan-

dard Camera Mouse was statistically significant. In the

random, hastened and boundary sessions, the (p, t(18))

results were (0.004, 0.002), (0.006, 0.003), and (0, 0)

respectively, based on a t test with 18 degrees of freedom.

The Augmented Camera Mouse was empirically shown

to be very resilient to feature drift (Table 2). The average

feature drift for all configurations used by the Augmented

Camera Mouse was very close to zero, except for the

hastened session with a modest drift of 0.1 pixels per

second. The pairwise difference of feature drift of the

Augmented Camera Mouse with the threshold kernel ver-

sus the Standard Camera Mouse was statistically signifi-

cant, with p = 0.0, t(18) = 0.0 in the random and

boundary sessions. For the hastened sessions a weak sta-

tistical significance was found, with p = 0.22 and

t(18) = 0.11.

We empirically tested the invariance of the specialized

kernels to changes in lighting and scale. The average error

of the normalized threshold kernel was comparable to

average error of the regular threshold in the normal ses-

sions, in terms of average error. The normalized threshold

kernel was shown to be generally invariant to changes in

lighting conditions. The average error in the changed

lighting session increased by 58 % to 9.2 ± 7.1 pixels. The

average and variance of the feature drift are equal in the

normal and changed lighting sessions with the normalized

threshold kernel. Their pairwise difference had p = 0.82

and t(18) = 0.41, indicating no statistical significance.

The Normalized Radial Intensity Kernel (NRI Kernel)

proved to be very effective in tracking the eyebrow at

different distances from the camera. The average tracker

error of the NRI Kernel for the normal and changed scale

sessions decreased from 6.5 pixel widths to 5.6 pixel

widths. The increased distance of the users to the cameras,
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which results in smaller faces in the captured image, is a

likely reason for the decrease. Similar results were

achieved for the feature drift of both sessions with the NRI

Kernel. A pairwise comparison resulted in p = 0.69 and

t(18) = 0.34. indicating no statistical significance in the

difference of drift.

Both the Augmented Camera Mouse and the Standard

Camera Mouse had occasional tracking failures. In par-

ticular when the subject had extreme motions, we measured

the same number of tracking failure losses in the Standard

Camera Mouse and with the Augmented Camera Mouse

using the threshold kernel. The Standard Camera Mouse

had three tracking failures in the hastened sessions. The

Augmented Camera Mouse with the threshold kernel had

one tracking failure in the normal sessions and two in the

hastened sessions. The tests for lighting and scale invari-

ance resulted in a single extra tracking loss in one of the

changed lighting sessions.

The Index of Performance of the Augmented Camera

Mouse was derived from the inverse slope of the best linear

fit of the actions (Fig. 9). The Index of Performance of the

Augmented Camera Mouse was higher than the Standard

Camera Mouse in the Normal and Boundary Sessions, e.g.,

2.9 bits/s versus 1.4 bits/s (Table 3). In both sessions, users

were instructed to move naturally. This indicates when the

users did not rush with the devices, they performed the

tasks quicker with the Augmented Camera Mouse than

the Standard Camera Mouse. In the hastened sessions, we

instructed users to move as quick as possible, and devices

had equal Indices of Performance, due to the rushed

motions of the users. Sessions using the Normalized

Threshold and Normalized Radial Intensity Kernels had

performance measurements lower than the Threshold

Kernel, but higher than the Standard Camera Mouse. The

changed lighting and scale sessions resulted in slightly

lower performance of the Augmented Camera Mouse.

We did not randomize the order of the experiments.

During the experiments, increased familiarity of the users

with the Camera Mouse may cause them to naturally move

the mouse quicker in the sessions at the end of their time

with the trackers. This results in a potential source of bias

for Table 3. To address this issue, we examined the aver-

age acceleration of mouse pointer movements. This mea-

sure is the increase in speed of the movement of the pointer

controlled by subjects within a particular session and it

indicates the rate of learning of the users. The average

acceleration can be approximated by the slope of the best

linear fit of actions in a session. Each action is plotted by

Table 1 Tracking error

Tracker error (pixels)

Tracker Sessions

Normal Hastened Boundary Changed lighting Changed scale

Standard Camera Mouse 9.7 ± 6.2 13 ± 5.8 13 ± 5.9 9 9

Threshold kernel 6.1 ± 2.7 7.9 ± 2.6 7.7 ± 2.7 9 9

Normalized threshold kernel 5.8 ± 2.5 9 9 9.2 ± 7.1 9

Normal radial intensity kernel 6.5 ± 1.7 9 9 9 5.6 ± 2.2

Average and standard deviation of the Euclidean distance in pixels widths between the feature position estimated by the tracker and the ground

truth marking. Each session had 19 subjects and on average 34 images. The field of view of the webcam is 640 by 480 pixels. The 9 symbol

marks sessions that were not tested

Table 2 Drift error

Drift error (pixels per second)

Tracker Sessions

Normal Hastened Boundary Changed lighting Changed scale

Standard Camera Mouse 0.22 ± 0.29 0.25 ± 0.38 0.37 ± 0.31 9 9

Threshold kernel 0.0 ± 0.07 0.1 ± 0.24 0.03 ± 0.1 9 9

Normalized threshold kernel -0.02 ± 0.16 9 9 0 ± 0.1 9

Normalized radial intensity kernel -0.02 ± 0.11 9 9 9 -0.01 ± 0.1

The drift metric represents the rate of error increase of a tracker over time. For each subject session, the feature drift is determined by the slope of

the best linear fit of the error versus time into the session. The values below represent this feature drift, averaged over 19 subjects. They are in

units of pixels per second. The error is determined as for Table 1
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the mouse speed of the pointer during the action (in units of

pixels per second) versus the occurrence time of the action

in the session (in units of seconds). The average increase of

speed across all users is in units of pixels per second

squared.

The average acceleration of the users was heavily cor-

related to the session type and not the tracker used

(Table 4). Users had average accelerations close to zero

when instructed to move naturally (in the normal and

changed lighting and scale sessions), so the bias can be

discounted for those sessions. Users had the same average

acceleration for the boundary sessions with both systems,

indicating no relative bias. Users had high average accel-

erations for the hastened sessions with respective rates of

6.9 and 11 pixels/s2 for the Standard and Augmented

Camera Mouse, indicating the possibility of a comparative

bias between the hastened sessions. From results of

Table 4, we showed that learning was not a significant

factor for bias in Table 3.

9 Experiment with subject with severe motion

impairments

We worked with a quadriplegic subject whose voluntary

motion is severely limited due to a massive stroke, which

had occurred four years earlier. The subject communicates

with friends and family members through eye and eyebrow

motions. In our experiments, we used a blink detection

method [28] to automatically find the eyes of the subject

and then tracked the subject’s eyebrow motion with the

Augmented Camera Mouse. Since the eyebrow motion was

mostly vertical, see Fig. 10, the conversion of this motion

into mouse pointer coordinates would only enable up- and

down cursor movements. We needed to adjust our experi-

ment to the subject’s movement abilities. We therefore

simplified the interaction mechanism and worked with test

programs that only required mouse clicks and not mouse

pointer positions as inputs. Our system automatically

interpreted raised eyebrows as mouse clicks. Click events

were sent to a text-entry program called CUSTOMIZABLE

KEYBOARD [29].

CUSTOMIZABLE KEYBOARD is a scan-based on-screen

keyboard that can be adapted to the user’s motion abilities.

It is similar to virtual scanning keyboards analyzed by [7].

Using the Augmented Camera Mouse with the CUSTOMIZ-

ABLE KEYBOARD, the subject was able to spell out words by

raising his eyebrows and thereby selecting highlighted

letters during a scan of the alphabet.

The eyebrow was tracked using the Augmented Camera

Mouse, in the same configuration as described in Sect. 8.4

The KERNEL-SUBSET-TRACKER was used with the threshold

kernel. A training set of size 25 was used with a real-time

subset of size 5. The training set consisted of images of size

100 9 100 centered at the subject’s eyebrow.

The user task during the training phase, as described in

Sect. 7 had to be adjusted for our subject due to his limited

movement abilities. To enable the Augmented Camera

Mouse to collect training images, we asked the user to look

at the camera, blink a few times, and then raise his eye-

brows. The central location of the eyebrow was detected

using an automatic feature locator that is based on a blink

detection method [28]. A representative set of images of

the subject’s eyebrow in the raised and normal states was

collected every second for 25 s while the subject moved his

eyebrows up and down.

During the test phase of the experiment, the subject

generated click events by raising and lowering his eye-

brows. Upward motions of the tracked feature on the

eyebrow would trigger a click event (Fig. 11). In every

frame, the system determines the vertical difference

Y between the position of the eyebrow in current frame and

in the previous frame. The ‘‘raw Y movement’’ is smoothed

using a moving average of period 20 with exponentially

decreasing weights.

Before the subject could use the Augmented Camera

Mouse as an interface, we needed to specify a threshold for

the range of motion that was comfortable for him and that

could be mapped accurately to a click command. We set

the click threshold manually using the pop-up window

shown in Fig. 12.

The subject used the Augmented Camera Mouse in two

test sessions. The first session lasted 4.7 min and the
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Fig. 9 Index of Performance of the Augmented Camera Mouse with

the threshold kernel in normal sessions. Each point represents the

action of a user in the Normal Sessions, who directs the mouse to a

target, with 400 actions total. The Index of Difficulty (ID) of each

action, corresponding to the size and the distance of the target. For

each action, a higher ID is correlated to more time to reach the target.

The Index of Performance represents the bandwidth of the device, and

is the reciprocal of the slope of the best linear fit of the actions
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second session lasted 6.9 min. The Augmented Camera

Mouse successfully tracked the user’s eyebrow. The user

was able to communicate by raising his eyebrow and

selecting letters, spelling out words, and creating sentences.

To evaluate the tracking accuracy of the Augmented

Camera Mouse, we compared computed feature positions

against manual ‘‘ground-truth’’ markings of feature loca-

tions. For each session, an image from the webcam was

saved once per second. After the session was over, an

independent observer used a custom program to mark

the location of the facial feature in each image. For both

sessions, the average Euclidean distance between the

target locations and the manually marked locations was

Fig. 10 The Augmented Camera Mouse was used to track the

eyebrow of a subject with movement disabilities. The vertical motions

of the subject’s eyebrow were translated into mouse click events

Fig. 11 The difference in Y positions of the feature between frames

is represented by ‘‘Raw Y Movement’’. This value is smoothed using

an exponential average, as represented by the ‘‘Smooth Y Move-

ment’’. Click events are generated when the smoothed Y movement

first transitions from under the click threshold to over it. In the

example above, three clicks were generated

Table 3 Index of performance

Index of performance (bits per second)

Tracker Sessions

Normal Hastened Boundary Changed lighting Changed scale

Standard Camera Mouse 1.4 0.94 2.1 9 9

Threshold kernel 2.9 0.87 2.4 9 9

Normalized threshold kernel 1.9 9 9 1.7 9

Normal. radial intensity kernel 1.7 9 9 9 1.6

The rows represent the type of system used for tracking. The columns represent the tracking session performed. The values represent the Index of

Performance or the bandwidth of the device, in units of bits per second. The Index of Performance is roughly the ratio of the difficulty of reaching

a target to the time to reach it, with larger numbers signifying better performance

Table 4 Learning bias in index of performance measurements

Average acceleration of mouse pointer (pixels/s2)

Tracker Sessions

Normal Hastened Boundary Changed lighting Changed scale

Standard Camera Mouse -0.06 6.9 5.4 9 9

Threshold kernel -0.23 11 5.4 9 9

Normalized threshold kernel 0.14 9 9 0.64 9

Normal. radial intensity kernel 0.82 9 9 9 0.35

The rows represent the type of Kernel-Subset-Kernel used for tracking. The columns represent the tracking session performed. The values

represent the average acceleration of mouse pointer speed of the subjects, which is used to approximate the average rate of learning of the

subjects. The results show that the learning of the subjects had minimal impact on the bias of the Indices of Performance measurements (Table 3)
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computed. We also computed the feature drift, as defined in

Sect. 8.4.

Our results (Table 5) show that the subject’s eyebrow

was tracked accurately by the Augmented Camera Mouse

for the duration of the two test sessions. The average pixel

error was very small and the feature drift was minimal.

10 Conclusions

We introduced the KERNEL-SUBSET-TRACKER, an exemplar

tracker that uses kernel methods traditionally associated

with classification. We showed that the KERNEL-SUBSET-

TRACKER can maintain a sufficiently reliable tracking

performance with a subset size of 5, given 25 training

observations. The setup phase of the KERNEL-SUBSET-

TRACKER is efficient and can be accomplished in real time.

We showed how the standard threshold kernel can be

‘‘normalized’’ to provide invariance to linear changes in

brightness and contrast. As shown experimentally, the

Normalized Radial Intensity Kernel is invariant to changes

in scale. The NRI Kernel is computationally more expen-

sive than the other two kernels, but it still maintains the

same frame rate as the other kernels when used by the

Augmented Camera Mouse. The use of the NRI Kernel is

recommended in interaction scenarios where the user may

move significantly towards or away from the camera.

Additional kernels may be developed in the future that

enable to the KERNEL-SUBSET-TRACKER to achieve invari-

ance to other object transformations that represent user

movement.

Our experimental results show that the Augmented

Camera Mouse had no significant feature drift, and there-

fore was anchored to a particular feature, regardless of fast

movement or extreme head positions. This is an improve-

ment to the Standard Camera Mouse, which was subject to

feature drift, even in the ‘‘normal’’ test sessions.

We tested the Augmented Camera Mouse with a user

with severe movement disabilities. The Augmented Cam-

era Mouse was shown to track the subject’s eyebrow

accurately, enabling him to communicate via mouse click

events.
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