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Abstract

Finding the outline of an object in an image is a funda-
mental step in many vision-based applications. It is impor-
tant to demonstrate that the segmentation found accurately
represents the contour of the object in the image. The dis-
crepancy measure model for segmentation analysis focuses
on selecting an appropriate discrepancy measure to com-
pute a score that indicates how similar a query segmen-
tation is to a gold standard segmentation. Observing that
the score depends on the gold standard segmentation, we
propose a framework that expands this approach by intro-
ducing the consideration of how to establish the gold stan-
dard segmentation. The framework shows how to obtain
project-specific performance indicators in a principled way
that links annotation tools, fusion methods, and evaluation
algorithms into a unified model we call SAGE. We also de-
scribe a freely available implementation of SAGE that en-
ables quick segmentation validation against either a single
annotation or a fused annotation. Finally, three studies are
presented to highlight the impact of annotation tools, an-
notators, and fusion methods on establishing trusted gold
standard segmentations for cell and artery images.

1. Introduction
Computer vision applications often rely on a method to

accurately segment the contours of objects of interest in the
scene. It is critical in both academia and industry to demon-
strate that the segmentation algorithm consistently provides
the desired outcome.

Performance analysis of segmentation algorithms varies
depending on the application objectives. Zhang [14] pro-
posed to group evaluation methods into three categories:
“analytical methods”, “empirical methods based on good-
ness measures”, and “empirical methods based on discrep-
ancy measures”. He concluded that methods based on dis-

crepancy measures, which indicate how similar a query seg-
mentation is to a gold standard segmentation (e.g., shape
similarity), are most powerful for segmentation evaluation.
We refer to this evaluation method as the “discrepancy mea-
sure model”. In this work, we focus on performance analy-
sis of segmentations using discrepancy measures.

There has been little discussion about when to use which
segmentation analysis method when calculating discrep-
ancy scores. Numerous papers review evaluation methods
for finding a discrepancy between two segmentations [5, 12,
14]. An active area of research lies in establishing an anno-
tation collection process to obtain gold standard segmenta-
tions including studies about annotation tools and annotator
expertise level [1, 4, 6, 7, 8, 9]. More recently, annotation
fusion methods are being developed to produce a reliable
gold standard segmentation from a collection of annotations
for the cases when intra-annotator and inter-annotator vari-
ation may be high [2, 3, 11, 13].

Finding the appropriate methodology for analyzing
segmentations is important for the following reasons: 1)
gaining an appreciation of a segmentation algorithm design
and 2) providing a reliable foundation that can support
down-stream analyses based on these segmentations. For
example, developers may prematurely dismiss good algo-
rithms when their measures indicate poor results, whether
due to unreliable gold standard segmentations or the wrong
discrepancy measure. Additionally, scientists may reject
downstream analyses, even when measures indicate strong
segmentations, if the gold standard segmentations are not
trusted.

It may be insufficient to approach segmentation analy-
sis by only identifying the appropriate discrepancy mea-
sure to establish a score [14]. This is because the chosen
gold standard segmentation also impacts the score [2]. Fur-
thermore, access to various segmentation analysis tools and
methods is critical for establishing accepted segmentations.



Figure 1. Overview of SAGE (Segmentation Annotation Collection, Gold Standard Generation, and Evaluation), shown in yellow boxes,
within the context of analyzing a query segmentation.

Yet shared toolboxes integrating these have not been devel-
oped, leading to non-novel, time-consuming efforts to build
such systems. Lastly, given that finding a meaningful per-
formance score depends on establishing a trusted gold stan-
dard segmentation, it is unclear how, in practice, to establish
a trusted gold standard segmentation.

The key contributions of this paper are:
• A principled approach for analyzing segmentation

performance that connects annotation collection ap-
proaches, fusion methods, and evaluation algorithms
into a unified framework we call SAGE.
• A freely available system implementing SAGE that is

compatible on many platforms and operating systems
and links existing annotation tools with popular fusion
algorithms and evaluation algorithms enabling quick
segmentation validation against either a single annota-
tion or a fused annotation [10].
• Three studies using the toolbox that highlight the

impact of annotation tools, annotator expertise, and
fusion methods on establishing trusted, i.e., high-
consensus, gold standard segmentations and so mean-
ingful evaluation scores.

In Section 2, we describe SAGE and a toolbox that im-
plements SAGE. In Section 3, we describe three studies that
highlight ways to establish a trusted gold standard segmen-
tation for cell and artery images. In Section 4 we present the
results and in section 5 we analyze the results and discuss
future work. Conclusions are given in Section 6.

2. Methods
We propose in this section a principled approach to

analyze the quality of segmentations. We formulate it
as a model called Segmentation Annotation Collection,
Gold Standard Generation, and Evaluation (SAGE). We
then describe a freely available system implementing this
framework.

2.1. SAGE Framework

SAGE indicates a pipeline of steps to consider when
establishing a process to analyze segmentation perfor-

mance. A flowchart summarizing this model is shown
in Figure 1. SAGE connects methods for collecting
segmentation annotations with algorithms for generating
a gold standard and measures for evaluating how similar a
segmentation is to the gold standard. It expands upon the
discrepancy measure model which considers only selecting
the appropriate evaluation measure to establish a score.

Since one would use SAGE in the context of analyzing
the quality of a segmentation, one first must obtain an im-
age and generate a query segmentation of an object in that
image to analyze (lower path in Figure 1). This segmenta-
tion may be created either automatically or manually. One
then would apply the SAGE model to analyze the quality of
that segmentation (upper path in Figure 1). To use SAGE,
one must first collect annotations, which may be obtained
by one or more annotators. Next, one must establish a gold
standard segmentation, which can be an original annotation
or a fused annotation created by combining multiple annota-
tions. Lastly, one must calculate a score using a discrepancy
measure to assess how similar the query segmentation is to
the gold standard.

2.2. Implementation

We describe here a freely available implementation of
SAGE that links popular segmentation analysis tools in
a single system. It is developed in Java in order to easily
run on various computer hardware with various operating
systems [10]. The system has been validated on Windows
7, Windows XP, and Mac OS X operating systems. The
configurable choices for the system are described in detail
below.

Annotation Collection: The system supports reading
segmentations from the following annotation tools: La-
belMe [9], ImageJ [8], and Amira [1]. More generally, the
system supports reading segmentations in binary image
format, as xml files indicating object boundary points
connected by straight lines, and as xml files indicating all
object points.

Gold Standard Generation: When more than one an-
notation per image is provided, the user can select an orig-
inal annotation or a fused annotation to represent the gold



standard. The system supports two fusion methods: Thresh-
olded Probability Maps [7] and Simultaneous Truth and
Performance Level Estimation (STAPLE) [13].

Thresholded Probability Maps is an algorithm that takes
N input segmentations and M segmentations and then la-
bels a pixel as foreground when M

N ≥ p and background
otherwise. STAPLE is an expectation-maximization algo-
rithm that simultaneously generates gold standard segmen-
tations and infers the performance of each input segmenta-
tion. For the formulation, each pixel is assigned 1 or 0 to
indicate foreground and background respectively, Ti repre-
sents the value for the i-th pixel of the gold standard seg-
mentation, Dij represents the value for the i-th pixel of
the j-th input segmentation, pj represents the fraction of
foreground pixels in the gold standard segmentation labeled
as foreground in the segmentation for the j-th input seg-
mentation, qj represents the fraction of background pixels
in the gold standard segmentation classified as background
in the segmentation for the j-th input segmentation, and
j : Dij = k denotes the set of indexes for which segmenta-
tion j has value k at pixel i. When the performance param-
eters pj and qj are given, pixels are labeled as foreground
when Wi is greater than 0.5 and as background otherwise:

Wi ≡ f(Ti = 1|Di, p, q) =
ai

ai + bi
(1)

ai = f(Ti = 1)
∏

j:Dij=1

pj
∏

j:Dij=0

(1− pj) (2)

bi = f(Ti = 0)
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j:Dij=0

qj
∏

j:Dij=1

(1− qj) (3)

The EM algorithm uses equation 4 to calculate the expected
conditional log likelihood in the E-step and equations 5-6
to update the performance parameters for the M -step.
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Figure 2. Interface of the toolbox for selecting a gold standard
from annotations and fused annotation options.

When the system uses STAPLE, three starting conditions
must be specified: initial performance parameters for in-
put segmentations, probability a pixel in the image is fore-
ground, and convergence threshold. The interface for se-
lecting a gold standard from the original annotations and
fusion segmentations is shown in Figure 2.

Evaluation Measures: The system supports the fol-
lowing six discrepancy measures commonly used to indi-
cate how similar a query segmentation is to a gold stan-
dard segmentation - accuracy, precision, false positive rate,
false negative rate, probability of error, and Hausdorff dis-
tance [5, 12, 14]. For the formulation of these measures, A
represents the gold standard segmentation and B the query
segmentation.

The system uses accuracy to calculate the fraction of the
true cell region captured by the segmented region as |A∩B||A| ;
precision to calculate the average overlap between the two
regions as |A∩B||A∪B| ; false positive rate to calculate the frac-
tion of background pixels in the true segmentation labeled
as foreground in the segmentation; false negative rate to
calculate the fraction of foreground pixels in the true seg-
mentation that are classified as background in the segmen-
tation; probability of error to calculate the probability of
mislabeling an object pixel as background or a background
pixel as object as PE = P (O)∗P (B|O)+P (B)∗P (O|B)
where P (B|O) is the false negative rate, P (O|B) is the
false positive rate, and P (O) and P (B) are the prior prob-
abilities of object and background pixels respectively in the
images; and directed Hausdorff distance to find the point
in A furthest from any point in B and calculate the Eu-
clidean distance from that point to its nearest point in B
as h(A,B) = max

a∈A
{min
b∈B
{d(a, b)}} where d(a, b) is the Eu-

clidean distance between points a and b.



Table 1. Description of image library for annotation
ID # of Images Imaging Modality Object Resolution Avg. Object

Pixel Count
Format

1 35 Phase Contrast Neonatal rat smooth muscle cells 1024×811 35,649 tif
2 48 Phase Contrast Fibroblast cells of the Balb/c 3T3

mouse strain
1030×1300 3,914 tif

3 36 Phase Contrast Vascular smooth muscle cells from rab-
bit aortas

1030×1300 9,880 jpg

4 35 MRI Left renal artery and the iliac bifurca-
tion of a New Zealand White Rabbit

512×512 180 bmp

Table 2. Description of annotator experience

ID Education
Level

Worked
with cell
images

Worked
with MRI
images

Used
ImageJ

Used
Amira

A Undergrad 3 mths None Yes No
B Post-doc 14 yrs 3 mths Yes No
C PhD

student
10 yrs 1 yr Yes No

D Post-doc 2 mths None Yes No
E PhD

student
3 wks 1 yr Yes No

3. Experiments

We ran three case studies using the toolbox to highlight
various ways to establish trusted gold standard segmenta-
tions in practice. These studies examine which annotation
tools to use, who should annotate, and whether fusion meth-
ods should be used. The measure used to evaluate whether a
gold standard segmentation should be trusted is consensus
amongst domain experts. We first characterize the image
libraries and annotators and then describe the experimental
design for each study.

3.1. Image Library for Annotation and Annotators

The intent of creating the image library was to provide
a generalized collection of images representing various im-
age acquisition modalities, object types, and image acquisi-
tion parameters. The image library contains a total of 154
images coming from four datasets. The first three datasets
were collected by observing the cells with a Zeiss Axiovert
S100 microscope and capturing images using a Princeton
Instruments 1300YHS camera. For the first dataset, the
cells were cultured at 37◦C in 5% CO2 on a PAAM hy-
drogel with embedded fluorescent beads with a size of 0.75
microns. For the second dataset, the cells were cultured
at 37◦C in 5% CO2 on a PAAM hydrogel. For the third

dataset, the cells were cultured at 37◦C in 5% CO2 on tis-
sue culture plastic. The fourth dataset contains MRI images
of a left renal artery obtained axially using a 3T MRI scan-
ner (Philips Achieva). A single object from each dataset,
present throughout the sequence of images, was identified
to annotate. The specifications of the datasets are summa-
rized in Table 1.

Five domain experts participated as annotators in the ex-
periments. They had different education levels, experiences
with the image types, and experiences with annotation tools,
as summarized in Table 2.

3.2. Studies

Study 1: Impact of Annotation Tool. The five anno-
tators were asked to annotate the first 154 images with two
annotation tools, ImageJ [8] and Amira [1], using their own
judgement. ImageJ, like LabelMe [9], uses a collection of
user specified points connected by straight lines to produce
a 2D segmentation. Amira collects user brush strokes to
produce a 2D binary mask indicating all pixels in an object.

Annotator A annotated using a touchpad to interface
with a laptop running a Mac operating system and would
annotate in 2-3 hour intervals before taking a break. An-
notator B annotated using a mouse to interface with both
a desktop and laptop running typically on a Linux operat-
ing system and would annotate in 1-2 hour intervals before
taking a break. Annotator C annotated using a touchpad to
interface with a laptop running a Windows 7 operating sys-
tem and would annotate in 1 hour intervals before taking a
break. Annotator D annotated primarily using a mouse to
interface with a laptop running a Windows 7 operating sys-
tem and would annotate in 2 hour intervals before taking a
break. Annotator E annotated using a mouse to interface
with a desktop running a Windows 7 operating system and
would annotate in 3-6 hour intervals before taking a break.

All annotators first annotated using ImageJ on all images
in various orders. Then, within one week, all annotators
annotated using Amira on all images in various orders.

The SAGE implementation was then run over all Im-
ageJ annotations with each person having their annotations



treated as a gold standard. For each of the five gold standard
sets, the system was used to calculate the following six eval-
uation measures indicating how each of the other non-gold
standard annotations compared against the gold standard:
accuracy, precision, false positive rate, false negative rate,
probability of error, and Hausdorff distance. This process
was repeated for the Amira annotations.

Study 2: Impact of Annotators. Study one data is used
to compare annotators qualitatively and quantitatively.

Study 3: Impact of Gold Standard Generation. Four
experts participated in this study. First, a library of annota-
tions was created to include ten annotation options for each
of 98 images in the image library. Five of the annotation
options were the ImageJ annotations produced by the five
annotators. The other five annotation options were gener-
ated using fusion methods implemented in SAGE on the
five input annotations. The five fusion methods are con-
secutively as follows: Thresholded Probability Map with
p = 0.2 (union of annotations); Thresholded Probability
Map with p = 1 (intersection of annotations); Thresholded
Probability Map with p = 0.6 (majority vote); STAPLE
initialized with global foreground set to 0.1, convergence
threshold set to 0, and all performance parameters initial-
ized to 0.7; STAPLE initialized with global foreground set
to 0.1, convergence threshold set to 0, and performance pa-
rameters initialized to the average of performance parame-
ter values assigned by the four experts participating in the
study.

Then, the four experts used the SAGE implementation to
select, from the ten annotations shown simultaneously, the
segmentation best representing the gold standard. All ex-
perts were presented the original images in the same order
and reviewed the 98 images in one sitting. For each image,
the order of the corresponding annotations in the user inter-
face was randomized to prevent the experts from learning
which annotation represented what source.

4. Results
Study 1: Impact of Annotation Tool. Qualitative re-

sults of a set of annotations for an image from each dataset
are shown in Figure 3 where relative size of objects are
preserved. The quantitative results were pre-processed to
include only data where the five annotators annotated the
same object resulting in 153 valid ImageJ images and 152
valid Amira images. For each annotation tool, the average
score for each evaluation measure over all annotator com-
parisons across all images was calculated. Quantitative re-
sults are shown in Table 3.

Study 2: Impact of Annotators. For the post-processed
data, the average evaluation score over all images for every
permutation of two annotators for each evaluation measure
was calculated using SAGE. Quantitative results for Amira
and ImageJ annotations are shown in Table 4.

Table 3. Average evaluation measure score for annotations ob-
tained using different annotation tools are shown where I- indi-
cates ImageJ annotations and M- indicates Amira annotations and
Di indicates the i-th dataset.

Tool Acc Prec FPR FNR POE HD
I-All 0.85 0.72 0.0018 0.15 0.0035 16
M-All 0.87 0.76 0.0018 0.13 0.0034 14
I-D1 0.86 0.74 0.006 0.14 0.011 29
M-D1 0.87 0.77 0.0058 0.13 0.011 30
I-D2 0.86 0.75 0.0004 0.14 0.0008 12
M-D2 0.89 0.80 0.0003 0.11 0.0007 10
I-D3 0.86 0.75 0.0010 0.14 0.002 18
M-D3 0.87 0.77 0.0009 0.13 0.002 16
I-D4 0.82 0.65 0.0002 0.18 0.0004 4
M-D4 0.85 0.73 0.0001 0.15 0.0002 3

Study 3: Impact of Gold Standard Generation: From
the 98 images, where experts voted for the best from 10 seg-
mentations, we found agreement between none of the anno-
tators for 27 images, two annotators for 49 images, three
annotators for 18 images, and four annotators for 4 images.
Where there was consensus, there were five cases of voting
ties. From the 76 cases of voting consensus for a particular
annotation, 26 were for B, 13 were for A, 13 were for the
Probability Threshold Map fusion method with p = 0.6,
8 were for E, 7 were for D, 4 were for STAPLE with uni-
form performance parameters initialized, 3 were for STA-
PLE with performance parameters established by the ex-
perts, and 2 were for the Probability Threshold Map fusion
method with p = 1. AnnotatorC and Probability Threshold
Map fusion method with p = 0.2 did not receive any con-
sensus votes. Fused methods accounted for 9.86% of the
consensuses.

5. Discussion and Future Work
We first discuss the benefit of using the SAGE model.

Then, we analyze the impact of the annotation tools, an-
notators, and fusion methods on establishing trusted gold
standard segmentations in practice.

SAGE Model: Design Analysis. The results of our
studies support the flow of modules used in our SAGE
model. The annotation collection process should precede
gold standard generation since varying the collection meth-
ods leads to differences in the gold standard as observed
qualitatively in Figure 3 and quantitatively in Table 4. The
gold standard generation step should precede the evalua-
tion measure step because varying the gold standard gener-
ation process (e.g., using various fusion methods with var-



Figure 3. Qualitative results showing a set of annotations collected using ImageJ from the five annotators (A-E) for an image from each
dataset (1-4).

Table 4. Average evaluation score over all images for every pair of annotations for each evaluation measure are shown where I- indicates
ImageJ annotations and M- indicates Amira annotations. False positive rate and probability of error scores are all value× 10−2

.

AB AC AD AE BA BC BD BE CA CB CD CE DA DB DC DE EA EB EC ED
I-Acc 0.95 0.92 0.97 0.94 0.81 0.87 0.94 0.89 0.68 0.76 0.81 0.75 0.72 0.82 0.82 0.80 0.81 0.90 0.88 0.93
M-Acc 0.89 0.91 0.93 0.94 0.88 0.92 0.94 0.95 0.80 0.81 0.86 0.88 0.82 0.85 0.88 0.91 0.78 0.80 0.84 0.85
I-Prec 0.78 0.63 0.70 0.76 0.78 0.67 0.77 0.81 0.63 0.67 0.69 0.67 0.70 0.77 0.69 0.74 0.76 0.81 0.67 0.74
M-Prec 0.80 0.73 0.77 0.74 0.80 0.75 0.80 0.76 0.73 0.75 0.76 0.74 0.77 0.80 0.76 0.78 0.74 0.76 0.74 0.78
I-FPR 0.17 0.35 0.32 0.23 0.29 0.24 0.17 0.07 0.24 0.15 0.17 0.10 0.20 0.07 0.11 0.04 0.10 0.12 0.23 0.08
M-FPR 0.10 0.24 0.18 0.30 0.19 0.29 0.20 0.35 0.13 0.08 0.14 0.24 0.13 0.06 0.21 0.26 0.10 0.05 0.15 0.11
I-FNR 0.05 0.08 0.03 0.06 0.19 0.13 0.06 0.11 0.32 0.24 0.19 0.25 0.28 0.18 0.18 0.20 0.12 0.10 0.07 0.19
M-FNR 0.10 0.09 0.07 0.06 0.11 0.09 0.06 0.05 0.21 0.19 0.14 0.12 0.18 0.16 0.12 0.09 0.22 0.20 0.16 0.15
I-POE 0.23 0.43 0.35 0.30 0.23 0.42 0.30 0.27 0.43 0.42 0.42 0.42 0.35 0.30 0.42 0.33 0.30 0.27 0.42 0.33
M-POE 0.29 0.36 0.30 0.38 0.29 0.37 0.26 0.39 0.36 0.37 0.34 0.37 0.30 0.26 0.34 0.34 0.38 0.39 0.37 0.34
I-HD 13 19 14 13 15 20 11 11 17 16 14 15 18 14 21 14 16 13 22 13
M-HD 16 15 13 16 12 12 10 13 15 15 11 14 17 17 14 15 17 18 16 14

ious tuned parameters) while keeping the annotation col-
lection process constant (same collection of input annota-
tions) and evaluation measure constant causes the output
score to vary [2]. Finally, the annotation collection process
is independent from the gold standard generation step be-
cause varying the annotation collection process while keep-
ing the evaluation measure constant and gold standard se-
lection process constant (using a single input annotation as
is), causes the output score to vary as shown in Table 4.

The results therefore suggest that SAGE more accu-
rately describes the factors impacting the performance
score than the the discrepancy measure model. Thus it
shows that SAGE is a useful model to use when analyzing
segmentation quality.

Study 1: Impact of Annotation Tool. Images in Fig-

ure 3 exemplify the variety of annotation challenges in the
four datasets, where objects in dataset 4 are small, the back-
ground in dataset 1 contains clutter, and objects in datasets
2 and 3 have involved contour details.

Quantitatively, the annotator agreement when using
Amira is on average greater than or equal to the annota-
tor agreement when using ImageJ for all 6 measures over
all four datasets. Note that higher values are better for the
accuracy and precision measures, while lower values are
better for the other four measures. In contrast to the find-
ings in Meyer et al’s work [7], which found that there was
no significant difference between annotation methods, this
suggests that inter-annotator variation can be reduced based
on the annotation method used.

Future work will explore the cause of this improvement.



The annotators suggested that the improvement may be be-
cause Amira supports easily erasing and adding pixels to
the segmentation whereas correction is a more involved pro-
cess with ImageJ. Also, Amira identifies an annotation with
a transparent overlay on the image while ImageJ only dis-
plays the segmented line or the filled region making com-
parison against the original image difficult.

Study 2: Impact of Annotators. Images in Figure 3
exemplify the differences between how annotators annotate
images. Quantitatively, the set of measures reveal that edu-
cation level and experience may not be the greatest factors
for achieving annotator consensus. Annotators A and B
agree more (columns AB and BA) than B and C (columns
BC and CB), the most experienced annotators, with re-
spect to Hausdorff distance, probability of error, and preci-
sion while the other measures indicate comparable similar-
ity between annotators. Annotators A and B share similar
agreement (columnsAB andBA) to that betweenB andD
(columnsBD andDB), the most educated annotators, with
respect to accuracy, precision, false negative rate, probabil-
ity of error, and Hausdorff distance. One suggested cause
of the high agreement between A and B was their shared
training for what defines the gold standard, as they were the
only pair from the five annotators that conducted research
together. Future work will explore the impact of shared in-
structions for how to annotate on annotator consensus.

Study 3: Impact of Gold Standard Generation. Fur-
thering the previous analyses of fusion methods [2, 13], we
investigate whether the fusion methods are perceived to pro-
vide improved segmentations over the original annotations.
Results indicate a low preference for fusion methods over
original annotations for our datasets. Future work will in-
vestigate whether fusion methods are preferred for different
applications.

6. Conclusions
Knowledge of the various segmentation analysis

methodologies and access to segmentation analysis tools
are critical for establishing trusted segmentations. We pre-
sented a framework to obtain project specific segmentation
performance indicators in a principled way that links an-
notation collection processes with gold standard genera-
tion methods and evaluation algorithms. Furthermore, by
turning this framework into a toolbox supporting popular
tools and algorithms, we enable researchers to focus on the
most important research issues of developing improved al-
gorithms and establishing reliable gold standard segmenta-
tions. Three user studies run with the toolbox demonstrate
the impact of annotation tools, annotator expertise, and fu-
sion methods on establishing reliable gold standard segmen-
tation. Analyses indicate a preference for the annotation
tool Amira over ImageJ and for original annotations over
fused annotations.
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