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Abstract

Analyses of biomedical images often rely on demarcat-
ing the boundaries of biological structures (segmentation).
While numerous approaches are adopted to address the
segmentation problem including collecting annotations
from domain-experts and automated algorithms, the lack
of comparative benchmarking makes it challenging to
determine the current state-of-art, recognize limitations of
existing approaches, and identify relevant future research
directions. To provide practical guidance, we evalu-
ated and compared the performance of trained experts,
crowdsourced non-experts, and algorithms for annotating
305 objects coming from six datasets that include phase
contrast, fluorescence, and magnetic resonance images.
Compared to the gold standard established by expert
consensus, we found the best annotators were experts, fol-
lowed by non-experts, and then algorithms. This analysis
revealed that online paid crowdsourced workers without
domain-specific backgrounds are reliable annotators to
use as part of the laboratory protocol for segmenting
biomedical images. We also found that fusing the seg-
mentations created by crowdsourced internet workers and
algorithms yielded improved segmentation results over
segmentations created by single crowdsourced or algorithm
annotations respectively. We invite extensions of our work
by sharing our data sets and associated segmentation
annotations (http://www.cs.bu.edu/∼betke/
BiomedicalImageSegmentation).

1. Introduction

Imaging has become a common and important tool for
advancing our understanding of biomedical processes, en-
abling observation both within and outside of living organ-
isms (i.e., in vivo and in vitro) [1, 2]. In principle, collected
images will contribute to the discovery of how the human
body functions in both healthy and diseased states which
will in turn greatly assist in the treatment and prevention

Figure 1. Representative images from the six datasets in the image
library. Segmentation methods that accurately delineate bound-
aries of biological structures must handle appearance variations
with respect to intensity, size, and shape; faint edges separating
structures from the background; and backgrounds with clutter.

of diseases and the engineering of biomaterials. However,
the bottleneck limiting progress is often extracting informa-
tion from the large number of captured images and typi-
cally depends on finding boundaries of biological structures
(segmentations), whether analyzing morphology, classifica-
tion, or motion. As a result, common questions asked by
individuals analyzing biomedical images is “what segmen-
tation collection approach is sufficient to consistently and
efficiently find the desired boundaries of biological struc-
tures in their images?” and “given that derived biological
interpretations are influenced by the accuracy of the bound-
aries of biological structures, what segmentation collection
approach will yield the most accurate boundaries?”

Often, domain experts draw the boundaries of biological
structures using annotation software such as ImageJ [3] or
Amira [4] [5]. The key motivating assumption for this ap-
proach is that human annotators trained on how to interpret
images collected using particular biomedical image acqui-
sition systems can distinguish between true object bound-
aries and image noise/artifacts and so draw highly accurate
boundaries. However, this approach is time-consuming, ex-
pensive and does not scale.
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Table 1. Salient properties characterizing each dataset in the image library and the number of objects per dataset.
ID Modality Object Type Mag. Avg. Pixel

Count
Avg. Cir-
cularity

Avg. Object
Intensity

Avg. Bkgrnd
Intensity

#
Objs

1 Phase Contrast Rat smooth muscle cells 40x 35,613 0.15 64 61 35
2 Phase Contrast Rabbit smooth muscle cells 10x 10,963 0.29 52 50 69
3 Phase Contrast Fibroblasts 10x 3,937 0.53 58 50 47
4 Fluorescence Lu melanoma cells 10x 836 0.53 48 17 61
5 Fluorescence WM993 melanoma cells 10x 1,119 0.71 54 19 58
6 MRI Rabbit aorta 10x 216 0.94 25 42 35

To overcome the obstacles associated with relying on
manual annotation by experts, developers have been in-
tegrating segmentation algorithms into publicly available
image analysis systems and researchers have been de-
signing new algorithms to tackle open segmentation chal-
lenges [3, 6, 7]. Older methods including thresholding (e.g.,
Otsu Thresholding [8]), feature-based (e..g, Hough Trans-
form [9]), and region growing (e.g., Seeded Watershed [10])
algorithms are still actively used, in part because of their
ease of use and widespread availability in bioimage analy-
sis systems. Level-set based algorithms are more recent de-
velopments; their success typically depend on selecting an
appropriate initial contour which gets evolved into the final
boundary [6, 16]. Although the continued development and
wide-spread sharing of new segmentation tools are valu-
able for assisting with the effort required to analyze the
large number of images, the number of automation meth-
ods are becoming too numerous to explore for both non-
experts and experts. A challenge for individuals trying to
choose from the abundance of options is how to infer from
isolated studies reported for lab-specific datasets which tool
will work well for their biomedical image sets since there
are no comparison studies that include algorithms from the
past 15 years and analyze algorithms on more than a couple
of datasets [14, 15].

An alternative option is to leverage recently available,
easy-to-use crowdsourcing systems that make it plausible
for manual annotations to be a scalable solution to the seg-
mentation problem [17]. This begs the question of whether
large groups of non-trained humans can be leveraged to
consistently draw accurate boundaries for biomedical im-
age sets.

The purposes of this work are to facilitate making an in-
formed choice quickly about which segmentation collection
approach will work well for biomedical image sets and to
highlight limitations of existing methods. The key contri-
butions of this work are:

• Evaluating and comparing the performance of biomed-
ical image segmentation by trained experts, non-
experts and automated segmentation algorithms

• Demonstrating a reliable process for using online, paid

crowdsourced workers as part of the laboratory proto-
col for segmenting biomedical images

• Publicly sharing a library of images collected and used
for biomedical research with associated expert annota-
tions

2. Biomedical Image Library (BU-BIL)

We compiled a generalized image library using images
recorded for biology and biomedical research studies at
Boston University for which high-quality image segmenta-
tions were required (Table 1). Our image library includes
six datasets that represent three imaging modalities and six
object types (Table 1). We instructed the providers of the
datasets to choose images that capture the various environ-
mental conditions and imaging noise that arose in their stud-
ies. We asked these experts to then select objects from those
images that reflect the natural diversity of shape and appear-
ances that these objects can exhibit. We finally cropped the
image subregions containing the identified objects to cre-
ate our image library (discussed below). The outcome was
a library with 305 objects from 235 images. We verified
by visual inspection that the image library includes a vari-
ety of object appearances, backgrounds, and properties dis-
tinguishing objects from the background (Fig. 1). We call
this collection the Boston University Biomedical Image Li-
brary (BU-BIL) and share it publicly and describe these
datasets below (http://www.cs.bu.edu/∼betke/
BiomedicalImageSegmentation).

Phase Contrast Images of Cells (datasets 1–3): Im-
ages were collected by observing the cells with a Zeiss
Axiovert S100 microscope, a Ludl motorized stage, and a
cooled Princeton Instruments CCD camera. In each ex-
periment, a density of 103 cells/cm2 was selected to re-
duce cell-cell interactions. For dataset 1, the neonatal rat
smooth muscle cells (Coriell Cell Repositories, NJ) were
cultured on PAAM hydrogel that contained embedded 0.75-
µm fluorescent beads to facilitate imaging of gel deforma-
tion, and incubated at 37◦C in 5% CO2 for a minimum
of 18 hours. Image dimensions were 1,024 by 811 pixels
and pixels were recorded using eight bits. For datasets 2–
3, the vascular muscle cells from New Zealand White and



Watanabe Heritable Hyperlipidemic (WHHL) rabbit aor-
tas (Brown Family Research) and fibroblasts of the Balb/c
3T3 mouse strain (American Type Culture Collection, VA)
were cultured at 37◦C in 5% CO2 in Dulbecco’s modi-
fied Eagle’s medium (Invitrogen, NY) supplemented with
penicillin, streptomycin, L-glutamine, and 10% bovine calf
serum (Hyclone, UT). Six hours before image acquisition,
the cells were seeded onto a tissue culture plastic substrate.
Image dimensions were 1,300 by 1,030 pixels for both
datasets. Dataset 2 was recorded using one byte per pixel
and dataset 3 was recorded using 2 bytes per pixel.

Fluorescence Images of Cells (datasets 4–5): Images
were collected by observing the cells with a Zeiss Axiovert
S100 microscope, a Ludl motorized stage, and a cooled
Princeton Instruments CCD camera (1,300 x 1,030 pix-
els, 1-byte/pixel). The 1205 Lu and WM993 melanoma
cells (Wistar Institute) were each cultured at 37◦C in 5%
CO2 in Dulbecco’s modified Eagle’s medium supplemented
with penicillin, streptomycin, L-glutamine, and 10% bovine
calf serum (Invitrogen, NY). Cells were patterned onto a
dish using a microfabricated polydimethylsiloxane (PDMS)
stencil with a 600 micron hole. After 6 hours incubation at
37◦C in 5% CO2, the stencil was peeled away and media
was added to the dish. The patterned cells were placed in a
custom constructed microscope incubator to maintain stable
culture conditions.

Magnetic Resonance Images of Aortas (dataset 6): Mag-
netic resonance images (MRIs) were collected axially of the
aorta of two New Zealand White Rabbits. A 3T Philips
Achieva MRI scanner was used to collect each series of im-
ages of physical locations along the aorta at cross-cuts 4mm
apart showing the volume of the aorta that extends from the
left renal bifurcation to the iliac bifurcation (512 x 512 pix-
els, 1-byte/pixel). The iliac and left renal bifurcation are
both roughly perpendicular to the aorta. The aorta runs ap-
proximately perpendicular to the axial scan direction. Each
pixel represents approximately 0.23 x 0.23 mm. The dataset
includes a complete MRI scan with 22 images and a partial
MRI scan with 13 images

Image Cropping: We cropped all images so that there is
exactly one dominant object in the foreground. To do this,
an expert-drawn segmentation is used to detect the object
location, and increase the bounding box size by a percent-
age of the original bounding box dimensions, which main-
tains the original region proportions. For datasets 1-5, we
used 50% and for dataset 6 we used 125%. The datasets rep-
resent biological structures that range in size from approxi-
mately hundreds to tens of thousands of pixels (Table 1).

3. Methods
We collected multiple annotations for each of the 305

objects in our image library using trained domain experts;
online, paid crowdsourced workers; and algorithms. Expert

annotations are freely shared.

3.1. Expert-Drawn Annotations

A total of ten trained domain experts participated as an-
notators. Some of the annotators were also the creators of
the image data. They had a vested interest in the quality of
the segmentations they produced because they needed accu-
rate object boundaries for their biomedical research studies.

The annotators created segmentations using three com-
puter annotation tools: ImageJ [3], Amira [4], and an iPad
touchpad drawing program [18]. ImageJ takes as input
user specified points and connects them sequentially with
straight lines to produce a 2D segmentation. Both Amira
and the touchpad drawing program take as input user brush
strokes to produce a 2D binary mask indicating all pixels in
an object. All domain experts had experience with biomed-
ical images and ImageJ. We instructed the annotators to
identify the object regions using their own judgment.

3.2. Crowdsourced-Drawn Annotations

We collected seven crowdsourced segmentation annota-
tions for each of the 305 objects.

The annotators created segmentations using the on-line
image annotation tool LabelMe [19]. LabelMe supports
tracing the boundary of objects by taking as input user spec-
ified points and connecting them sequentially with straight
lines. The annotator finishes annotating an object by click-
ing on the starting point or right clicking with the computer
mouse. If a mistake is made, the annotator can delete and
redraw the object boundary.

We recruited annotators from the Amazon Mechanical
Turk internet marketplace. We posted each drawing task for
each image to Mechanical Turk as a HIT paired with a price
to be paid upon completion of the task. An internet worker
could review the HIT before accepting the job. Workers
were first shown step-by-step annotation instructions fol-
lowed by pictures exemplifying good and bad annotations
(Fig. 2a). After accepting the HIT, a worker was then pre-
sented the drawing interface to create the object boundary
(Fig. 2b). A worker could submit a HIT after meeting ei-
ther of the two criteria for finishing the annotation. We paid
workers $0.02 for each submitted HIT and accepted all sub-
mitted HITs. We only accepted workers that had previously
completed at least 100 human intelligence tasks (HITs) and
received at least a 92% approval rating.

3.3. Computer-Drawn Annotations

We evaluated six publicly available algorithms that rep-
resent four key classes of algorithms commonly reported in
the literature for biomedical images [20]: thresholding (i.e.,
Otsu thresholding [8]), feature-based (i.e., Hough trans-
form for circles [9]), region-growing (i.e., seeded water-
shed [10]), and deformable models (i.e., Chan Vese level set



Figure 2. Crowdsourcing user interface. An example of (a) the annotation instructions given for datasets 1-5 and (b) a segmentation
annotation created using the interface that internet workers use to complete the drawing task, LabelMe.

method [11], Lankton region-based level set method [13],
and Shi approximation level set method [12]).

Otsu thresholding (Otsu) is based on the assumption that
biological structures (“foreground”) have different inten-
sity values than the background [8]. It finds the value that
minimizes the average variance between all foreground and
background pixels respectively and then assigns all pixels
with intensities below that value as background and the rest
of the pixels as foreground.

Hough transform with circles (HoTr) finds the set of cir-
cles that have at least a pre-specified number of pixels on
their boundary in the edge map of the image [9]. We com-
bine these circles to create the final segmentation.

Seeded watershed (SeWa) is based on the assumption
that the biological structure and background can be sep-
arated based on intensity homogeneity and spatial prox-
imity [10]. The algorithm starts from initial markers and
then iteratively adds unassigned neighboring pixels to one
of the markers until every pixel is assigned to the region
of exactly one marker. The algorithm runs on the gradient
map of the image. We automatically set two initial mark-
ers: we used the convex hull of the Hough Transform for
Circles segmentation for the background marker and the
eroded Hough Transform for Circles segmentation for the
foreground marker.

The three level set based methods deform an initial con-
tour to a final contour, separating image foreground from
background so that some method-specific image partition
condition is enforced. Chan Vese level set method (ChVe)
evolves the initial contour to try to separate the image into
two homogeneous intensity regions [11]. The Shi approxi-

mation level set method (Shi) computationally speeds up the
evolution process by replacing slow real-valued calculations
with faster integer-based calculations [12]. Lankton region-
based level set method (Lank) evolves the initial contour by
using the local neighborhood statistics for each pixel in or-
der to adjust how to separate the sub-region into two homo-
geneous intensity regions [13]. For all three methods, we
automatically created initial contours using the boundary of
a circle drawn at the center of the image region with a di-
ameter slightly smaller than the smallest image dimension.
For all three methods, we set a maximum number of 2000
iterations before algorithm termination.

We built a system that facilitates applying all the seg-
mentation algorithms on all images in the library with one
command. The system processes all images sequentially.
For each image, the workflow is to apply a segmentation al-
gorithm, post-process by filling any holes and keeping the
largest object, and finally save the resulting binary segmen-
tation as an image. We wrapped publicly available code
for each of the six segmentation algorithms into six mod-
ules that adapt the the original code interface into a shared,
compatible interface in the system (Table 2).

3.4. Fused Annotations

We evaluate segmentations created by an ensemble al-
gorithm to examine how combining multiple segmentations
compares with stand-alone segmentations. We used Proba-
bility Maps (P-map) which takes as input N segmentations
and outputs a single segmentation where a pixel is labeled
as foreground when at least M of the segmentations label
it as foreground and background otherwise. We chose this



Table 2. List of segmentation sources evaluated in the study and associated publicly available code and systems used.
Segmentation Source (Acronym) Publicly Available System/Code
Expert Annotators (Expe) Amira [4]; ImageJ [3]; iPad touchpad drawing program [18]
Non-Expert Annotators (NoEx) LabelMe [19]
Otsu Thresholding [8] (Otsu) MATLAB [7]; ImageJ plug-in [3]
Hough Transform for Circles [9] (HoTr) MATLAB [7]; ImageJ plug-in [3]
Seeded Watershed [10] (SeWa) MATLAB [7]; ImageJ plug-in [3]
Chan Vese level set method [11] (ChVe) MATLAB [6]
Shi approximation level set method [12] (Shi) MATLAB [6]
Lankton region-based level set method [13] (Lank) MATLAB [6]

method because it is simple to understand and does not re-
quire tuning a set of complex algorithm parameters. We
then post-process the segmentation result by filling holes
and keeping only the largest object.

4. Experiments
To evaluate the segmentation sources, we analyzed a to-

tal of 6,148 segmentations created by 10 experts, 58 crowd-
sourced workers, and six algorithms. The studies were de-
signed to examine 1) which source among experts, non-
experts, and algorithms yields the most accurate segmen-
tations?, 2) how well does each of the segmentation sources
generalize to different biological structure characteristics
and image modalities?, and 3) what are the limitations of
each segmentation source?

4.1. Performance Evaluation Methodology

To evaluate segmentation quality, we computed scores
that indicate how closely annotations match gold stan-
dard segmentations, i.e., representations of “true” biologi-
cal structure regions, using the region overlap ratio, a stan-
dard evaluation metric. This metric computes the number
of pixels common to both the annotation and gold-standard
regions that are in the combination of regions (i.e., |A∩B||A∪B| ,
where A represents the set of pixels in the gold standard
segmentation and B represents the set of pixels in the anno-
tation). Scores range from 0 to 1 with higher scores reflect-
ing greater similarity and so better performance.

To establish high-quality gold standard segmentations,
we used the consensus between expert-drawn segmenta-
tions. For each image, we applied the fused annotation
method (Section 3.4), using as input all available expert an-
notations and setting M to the minimum value that returns
a majority vote.

4.2. Analysis of Segmentation Sources

We computed the overlap ratio for every segmentation
produced by all experts, non-experts, and algorithms. These
scores are the foundation for our subsequent analyses.

We first independently analyzed for each of the three seg-
mentation sources all scores over the entire image library,

the subset of phase contrast images (datasets 1-3), the sub-
set of fluorescence images (datasets 4-5), and the subset of
magnetic resonance images (dataset 6).

We next analyzed the variability within each of the three
segmentation sources for each dataset. For experts, we eval-
uated based on each annotation set, which is defined as a
particular annotator using a single annotation tool. For non-
experts, we evaluated based on each batch from the seven
batches of crowdsourced annotations we collected per im-
age. For algorithms, we evaluated based on each set of al-
gorithm drawn segmentation results generated.

Finally, we analyzed whether combining segmentations
could lead to improved results for the non-expert and algo-
rithmic sources. We applied the fused annotation method
(Section 3.4) independently to the set of non-expert and al-
gorithm annotations, and chose M = 4 because its the min-
imum value that returns a majority vote. We then computed
the overlap ratio for all resulting segmentations.

4.3. Image Library Characterization

We characterized the diversity of biological structures
and environmental conditions in the image library to sup-
port analyses that suggest which algorithms cater to particu-
lar image conditions versus generalize well. Gold standard
segmentations were used to compute the area, circularity,
i.e., degree of deviation from a circle, and average intensity
of the biological structure as well as average background
intensity for each image region.

5. Results
5.1. Analysis of Segmentation Sources

We found overall that the experts consistently drew
more accurate segmentations than non-experts who consis-
tently drew more accurate segmentations than algorithms,
when evaluating by comparing the median score of all an-
alyzed segmentations against the gold standard segmenta-
tions (Fig. 3; All). The median score over the entire image
library is 0.85 for experts, 0.82 for non-experts, and 0.36 for
algorithms. With respect to how annotation quality relates
to imaging modality, we found that all three segmentation



Figure 3. Region overlap ratio scores for segmentations created
by experts (red), non-experts (green), and algorithms (blue), aver-
aged over all data, and data of each of the three image modal-
ities. For each annotation source, the central mark of the box
denotes the median score and the box edges the 25th and 75th
percentiles scores. The whiskers extend to the most extreme data
points not considered outliers, and the outliers are plotted individ-
ually (black). Surprisingly, the quality of annotations of internet
workers follows closely that of experts, and algorithms perform on
average much worse. Automated segmentation techniques strug-
gle particularly with interpreting the outlines of cells in phase con-
trast images and aortas in MRIs. The best annotations were col-
lected for fluorescence images, followed by phase contrast images,
and then MRIs for all three annotation sources.

sources consistently drew segmentations best matching gold
standard segmentations for the studied fluorescence images,
followed by phase contrast images, and finally magnetic
resonance images (Fig. 3; Fluorescence, Phase Contrast,
MRI). These observations that errors in drawn boundaries
are often increasingly severe for experts, non-experts, and
algorithms and for fluorescence, phase contrast, and mag-
netic resonance images are exemplified in Figure 4. We
found that outliers often stemmed from annotating the in-
correct object for humans and identifying no object for al-
gorithms (e.g., Fig. 4; col 6, “Worst Algorithm”).

We observed that the consistency of quality between an-
notations was the greatest for experts, followed by non-
experts, and finally the least between algorithms (Fig. 3).
Within each of the three annotation sources, we observe for
each dataset there was variability in quality between differ-
ent sets of collected annotations with respect to the median
score and the amount of variability of agreement with the
gold standard (Fig. 5a-c). Among the six tested algorithms,
we found that the gold standard segmentations are most ac-
curately captured by HoTr for dataset 1 with a median score
of 0.31, HoTr for dataset 2 with a median score of 0.59;
SeWe for dataset 3 with a median score of 0.66; and Otsu
for dataset 4 with a median score of 0.63; HoTr for dataset
5 with a median score of 0.63; and SeWe for dataset 6 with

Figure 4. Representative segmentation results. Raw images (row
1), followed by fused, highest-scoring, and lowest-scoring seg-
mentations for experts (rows 2–4), non-experts (rows 5–7), and
algorithms are shown for a biological structure from each dataset
in the image library (cols 1–6).

a median score of 0.59.
We found that combining segmentations with the fused

annotation method led to improved results for both non-
experts and algorithms. For non-experts, the median score
for the fused annotations was higher than all individual an-
notation sets for every dataset (Fig. 5b). For algorithms, the
median score for the fused annotations was higher than all
individual annotation sets for datasets 4 and 5 which are the
fluorescence datasets (Fig. 5c).

We found that 58 workers created all crowdsourced an-
notations. The drawing tasks for datasets 1 through 6 were
completed by 18, 24, 22, 27, 24, and 23 unique workers,
respectively, taking on average 60 s, 50 s, 38 s, 36 s 43 s,
and 47 s per object, respectively.

5.2. Image Library Characterization

We found that structures in the fluorescence and mag-
netic resonance images mostly appear rounder, i.e., circular-
ity values closer to 1, than structures observed in the phase
contrast images, i.e., circularity values closer to 0 (Table 1).
This is exemplified in Fig. 4 with structures in datasets 1 and
2 appearing less round than structures in the other datasets.
The difference between the average pixel intensity for the
biological structure and background reported in Table 1



Figure 5. Variability within region overlap ratio scores obtained for each annotation set for each dataset (phase contrast in red, orange,
and yellow; fluorescence in green and blue; MRI in purple. See Fig. 3 for the explanation of a box plot visualization). The top plot (a)
summarizes scores based on different combinations of an expert, annotation tool used by that expert, and dataset. The plot reveals that the
performance of experts differs noticeably, especially for phase contrast data, and that annotations of phase contrast images with Amira were
more accurate than with ImageJ. The middle plot (b) shows scores averaged over the results of each of the seven batches of crowdsourced
segmentation annotations collected per each object and the fused annotation created by combining all seven annotations per object. The
fused annotation approach yielded the highest median score for all datasets (last box for each color). The bottom plot (c) shows that the
performance of the algorithms varies widely across datasets. The fused annotation approach was a clear winner for the fluorescence data.

reflects what can be observed in Fig. 4, where structures
in the fluorescence and magnetic resonance images have a
stronger contrast to the background than structures in phase
contrast images.

6. Discussion

Our results indicate that all experts and non-experts con-
sistently drew imperfect, yet high-quality segmentations
while no single algorithm consistently performed well for
allstudied images. We also found that experts, non-experts
and algorithms share which image modality/object type was

most difficult for them to annotate. Annotations of cells
on fluorescence data was most accurate and annotations of
aortas on MRI data least accurate. We aimed to conduct
our studies on datasets that together represent a diversity
of appearances for biological structure types, environmen-
tal conditions, and imaging modalities. We suggest BU-BIL
and the analyzed segmentation methods as a starting point
towards learning which sources generalize well versus cater
to particular image conditions.

It is valuable for the research community to realize that
the contributions of untrained internet workers can be very
close in quality to those of domain experts trained to inter-



pret biomedical images. Such crowdsourced work can be
solicited through online annotation systems with easy-to-
use graphical user interfaces to inexpensively and quickly
obtain boundaries for biomedical images with consistent ac-
curacy. Our results lead us to suggest that the contributions
of online crowdsourced workers without domain-specific
backgrounds may be successfully included in a laboratory
protocol for segmenting biomedical images.

We were surprised to observe that, among the set of
freely-shared algorithms evaluated in this study, no single
algorithm worked well in general and that older algorithms
regularly outperformed newer algorithms. While we hy-
pothesize that the level set based algorithms may be opti-
mized by tuning parameters and contour initializations to
yield better results for specific datasets, we caution against
assuming that such tuned methods will effortlessly lead to
improved results across the board. We suggest that the ob-
served performance inconsistency of newer segmentation
methods should instead motivate future work. This work
needs to answer the question how to select an algorithm,
among a given set, based on image context so that the best
performing algorithm is applied when it will perform best.

7. Conclusions
Analyses on biomedical images often rely on finding

boundaries of biological structures and so are influenced by
the accuracy of the used segmentations. To examine how to
consistently and efficiently collect high quality segmenta-
tions, we evaluated 6,148 segmentations created by experts,
non-experts, and algorithms on our proposed biomedical
image library representing fluorescence, phase contrast, and
magnetic resonance images showing cells and aortas. Our
study demonstrates that crowdsourced workers are a viable
source for replacing domain experts in consistently collect-
ing high-quality segmentations for biomedical images. Our
results also reveal that none of the studied algorithms per-
formed well for all datasets in the image library and all algo-
rithms yielded lower quality results than segmentations pro-
duced by crowdsourced workers. We facilitate extensions of
this work by sharing our image library with annotations.
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