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Abstract. Over the past 30 years, many image segmentation algorithms
have been proposed to cope with challenges arising from varying object
appearance, environmental conditions, and image quality. Which algo-
rithm will work best for any particular image set is not known a priori,
and the search for a single algorithm that will work well in all circum-
stances seems futile. In this paper, we propose to abandon the search
for a single algorithm that works well in general and instead propose to
select a segmentation algorithm most appropriate for the image context.
We implemented this framework by linking segmentation algorithms with
domain-expert-provided classifications to find the boundaries of fibrob-
last cells, which exhibit large appearance variability, in phase-contrast
images. A case study reveals that our system yields higher quality seg-
mentations than nine popular freely-available standalone algorithms.

1 Introduction

By analyzing cell shape over time, researchers hope to gain an understanding of
fundamental biological processes and use this knowledge in turn to diagnose dis-
eases and engineer biomaterials. They often rely on single-cell analysis to discover
the relationship between cell shape and function [1, 2] and how the environment
influences cell phenotype [3]. Such quantitative analysis can depend on detecting
subtle appearance variation which motivates the need for a laboratory protocol
that consistently produces high quality segmentations.

The problem of segmentation of cell images has been extensively studied over
the last few decades [4]. While many algorithms are reported to work well for
particular image sets, it is not clear which single algorithm will work best in
general for the large variety of shapes and appearances, wide range of environ-
mental conditions, and large number of image acquisition methods. Among the
older methods, thresholding, region growing, and feature-based algorithms are
still actively used due to their widespread availability in bioimage analysis sys-
tems and ease of use. Thresholding methods are based on the assumption that
cells (“foreground”) have different intensity values than the background. Otsu
thresholding sets the threshold to the value that minimizes the average variance
between all foreground and background pixels, respectively [5]. Adaptive thresh-
olding adjusts the threshold applied throughout the image, such that it is set to
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Fig. 1. Phase-contrast microscopy images of fibroblasts with relative size preserved.
Context is defined as one of three states of the cell: State 1: Cells that are larger
with respect to the rest of the population and typically have weak edges and thin
branch-like protrusions. State 2: Cells that have average size and exhibit some some
protrusions. State 3: Cells that are smaller with respect to the rest of the population
and commonly have a circular shape, surrounded by a bright-intensity “halo,” with
few or no protrusions.

the mean of the local neighborhood for each pixel. Seeded watershed is a popular
region-growing method that clusters pixels based on spatial proximity and inten-
sity homogeneity, assigning every pixel to the cluster of exactly one of the seed
points. Hough transform with circles is a popular feature-based method that uses
as the foreground the combination of circles that have at least a pre-specified
number of pixels on their boundary in the edge map of the image [6].

Level set based methods have become popular with bioimage analysis sys-
tems [7]. In general, these methods deform an initial contour to a final contour,
separating image foreground from background so that some method-specific im-
age partition condition is enforced. Geodesic active contours evolves the initial
contour to end up in regions with strong edges (high contrast) [8]. Active con-
tours without edges evolves the initial contour to try to separate the image into
two homogeneous regions [9]. Lankton region-based active contours evolves the
initial contour by using the local neighborhood statistics for each pixel in order
to adjust how to separate the sub-region into two homogeneous regions [10]. The
Shi approximation method computationally speeds up the evolution process by
replacing slow real-valued calculations with faster integer-based calculations [11].
The method by Bernard et al. uses a linear combination of B-spline basis func-
tions for process speedup [12]. Recent work suggests that the success of level
set based methods for phase contrast images depends on specialized contour
initialization methods to avoid common curve evolution failures [13, 14].

The key computer vision challenge addressed in this paper is how to auto-
matically obtain accurate contours of objects that can exhibit large variability in
shape and appearance. Instead of searching for a single algorithm that will work
well in all circumstances, we propose a strategy for using context to determine
which algorithm to apply. In our study, we work with phase-contrast microscopy
images showing populations of fibroblasts that undergo significant changes in
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appearance over time, as exemplified in Figure 1. We define context as one of
three cell states used by biologists to characterize fibroblasts.

Our work relates to efforts for combining human and computer resources
to address the segmentation problem. Proposed methods include reducing hu-
man involvement from drawing the boundary of an object to either drawing
a cross [15] or clicking on points both inside and outside of the true bound-
ary [16] to guide a segmentation algorithm. Our work examines how to link a
biologically-defined taxonomy used to distinguish between different fibroblast
appearances with computer vision algorithms. Specifically, we examine whether
we can bridge the gap of terminology between two communities such that the
state of a fibroblast classified by a biologist can be used to choose the best-suited
segmentation algorithm. The key contributions of this paper are:

1. A framework for identifying, based on the image context, the optimal seg-
mentation source.

2. A context-based system that incorporate humans in the loop to generate
segmentations and a case study that demonstrates the system yields higher
quality segmentations than nine popular, freely-available cell segmentation
algorithms.

3. A contour initialization approach for level set based algorithms, called Vari-
ance Maps, that led to high-quality segmentations in phase contrast images.

2 Methods

We propose a framework for identifying, based on image context, which among
many segmentation algorithm options will lead to the highest quality segmen-
tation (Fig. 2). We then describe a system implementing this framework that
combines human and computer expertise to segment highly deformable cells in
phase contrast images. We finally propose an algorithm to automatically create
initial contours needed by level set based algorithms.

2.1 Proposed Context-based Segmentation Framework

Our proposed framework uses image context to identify the best-suited segmen-
tation algorithm to apply. It includes an off-line phase where one defines the
contexts, then establishes a method to identify each context, and finally learns
the optimal segmentation algorithm for each context. In the online phase, a con-
text label is first assigned to the specified image (or image region) and then
the optimal segmentation algorithm for that context is applied. This two-step
process produces the final output segmentation.

In the off-line phase, contexts may be defined manually or automatically.
They could be defined by domain experts who already have built a taxonomy
to differentiate between object or image appearances. One could also use ma-
chine learning algorithms to create classifiers that distinguish between different
contexts based on the image information. Mapping segmentation algorithms to



4

Fig. 2. Example of a system that applies the online phase of the proposed context-based
segmentation framework. For each image, the state of the fibroblast cell is discovered
and then an appropriate final segmentation algorithm is applied.

context may similarly be achieved manually or automatically. Manually, a hu-
man could inspect segmentations created by numerous algorithms for all images
in a particular context and then recommend a best-performing algorithm. This
process would be repeated for each context. Automatically, one would instead
quantitatively validate a set of algorithms and then apply the best performing
one for each context. To do so, one could choose a collection of images for each
context, collect gold standards representing the true boundaries of each object
in every image, define performance metrics, and then choose the algorithm for
each context that returns the highest performance scores.

2.2 Proposed Context-based Segmentation System

We applied the proposed framework to consistently collect high-quality segmen-
tations for fibroblasts in phase contrast images by linking each classified fibrob-
last state from a biologically-defined taxonomy with a best-performing segmen-
tation algorithm for that state. In the off-line phase, a mapping between fibrob-
last states and segmentation algorithms was established. In the online phase,
the context-based segmentation system used these learned pairings to select the
appropriate segmentation algorithm on the fly.

Off-line Phase: First, we define context by adopting three fibroblast states
used by domain experts to distinguish between the spectrum of appearances fi-
broblasts exhibit (Fig. 1). We then evaluated the following nine popular freely-
available cell segmentation algorithms [7] to establish optimal pairings between
each fibroblast state and a segmentation algorithm: adaptive thresholding, Otsu
thresholding [5], Hough transform for circles [6], seeded watershed, geodesic ac-
tive contours [8], active contours without edges [9], Lankton region-based active
contours [10], Shi approximation level set method [11], and Bernard level set
method [12]. Since the five level-set based algorithms are sensitive to initial-
ization and we observed that using basic geometric shapes such as bounding
rectangles as initial contours did not work well for our image sets, we instead
used the output of our proposed segmentation algorithm Variance Maps (Sec-
tion 2.3). It consistently undersegments the fibroblasts while closely hugging
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their boundaries. The “best segmentation algorithm” for each of the three cell
states is determined using the algorithm that returns the highest performance
score for each context (section 3).

On-line Phase: The context-based segmentation system links fibroblast
classifications indicating appearance with computer vision algorithms to cre-
ate accurate segmentations. The system first collects from the domain expert
the fibroblast location (i.e., pixel coordinate) labeled with the fibroblast state
and then applies the optimal segmentation algorithm for that state. The result-
ing segmentation is post-processed by filling any holes in the output object(s)
and, if there is more than one object, filtering out all pixels except those in the
object closest to the centroid of the detection region. This results in a binary
mask identifying the outline of the fibroblast in the image.

2.3 Proposed Contour Initialization Algorithm: Variance Maps

Variance Maps takes advantage of the observation that in our phase contrast
image sets, the variability of intensity values inside cells is often larger than the
variability of intensity values in the background. The algorithm runs in linear
time with respect to the number of pixels in the image and consists of two steps:
1) for every pixel in the image, compute the image texture and 2) threshold
the resulting texture image to distinguish between foreground and background
pixels. Our key design decisions were the image texture measure, neighborhood
type, and threshold value on the texture image.

The texture measure we ultimately chose builds off the standard deviation
transform proposed by Bradhurst et al. [17], which computes the variance σ2(N)
of the intensity values I(x, y) of pixels in a circular neighborhood N with radius r
as σ2(N) = 1/|N |

∑
(x,y)∈N I(x, y)2− (1/|N |

∑
(x,y)∈N I(x, y))2. To improve the

computational efficiency of the variance equation, we used square instead of
circular neighborhoods. We used a width and height of 2r + 1 pixels, resulting
in a neighborhood size of |N | = (2r + 1)2 and the following variance equation:

σ2(N) =
1

|N |

x+r∑
x−r

y+r∑
y−r

I(x, y)2 −

(
1

|N |

x+r∑
x−r

y+r∑
y−r

I(x, y)

)2

, (1)

which can then be computed in time constant in the number of pixels with
the integral image S. The integral image S assigns each pixel a value equal
to the sum of all of the image intensity values above and to the left of it:
S(X,Y ) =

∑X
x=1

∑Y
y=1 I(x, y). Then, the sum of the intensity values in a square

neighborhood of size (2r+ 1)2 surrounding a pixel located at (x, y) is computed
by
∑x+r

x−r
∑y+r

y−r I(x, y) = S(x+r, y+r)−S(x−r−1, y+r)−S(x+r, y−r−1)+
S(x− r−1, y− r−1). A similar integral image can be computed for the squared
image values in order to compute 1/(2r+1)2

∑x+r
x−r

∑y+r
y−r I(x, y)2. We freely share

this code (http://www.cs.bu.edu/∼betke/BiomedicalImageSegmentation).
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Fig. 3. Representative segmentation results. For a fibroblast in each state (rows 1–3),
the figure shows the raw image (col. 1), the gold standard (col. 2), the algorithm-drawn
segmentations (cols. 3–11), and the segmentation created by Variance Maps used to
initialize the level set based methods (col. 12).

3 Experiments and Results

Our experiments involved an evaluation of the proposed context-based segmen-
tation system in comparison to the nine stand-alone cell segmentation methods.
The image library shows fibroblasts of the Balb /c 3T3 mouse strain cultured at
37◦C in 5% CO2. It was generated by a domain expert to represent the variability
of fibroblast appearances when captured using various image acquisition param-
eters under different environmental conditions. It contains 125 images showing
361 fibroblasts.

We quantitatively analyzed the quality of each segmentation by computing
how closely it matched each gold standard region, using the Jaccard similarity
index, a standard evaluation metric. This metric computes the number of pix-
els common to both the algorithm-generated and gold-standard regions that is

also in the combination of their regions (i.e., |A∩B||A∪B| where A represents the set

of pixels in the gold standard segmentation and B represents the set of pixels
in the segmentation to analyze). Because of known limitations with the tradi-
tional approach for using manual annotation to establish gold standard segmen-
tations[18], we instead established the gold standard segmentation by having a
domain expert choose the segmentation best representing each fibroblast from
the collection of the manual annotation, nine algorithm-generated segmenta-
tions, and the Variance Maps segmentation. The domain expert chose the best
segmentation from the 11 segmentations shown simultaneously. To prevent that
the experts may learn the algorithmic or manual source of the segmentations,
the user interface randomized the order of presented segmentations.

To analyze the standalone segmentation algorithms, we created nine sets of
segmentations for each of 361 fibroblasts using the nine algorithms supported in
the proposed context-based segmentation system (Fig. 3). We then computed
scores indicating the quality for all 3,610 generated segmentations and report
average scores for the whole image library (Table 1, row 2) as well as based
on each of the three cell states (Table 1, rows 3–5).

To analyze our context-based segmentation system, we partitioned the data
into three sets and then conducted three experiments. In each experiment, we
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Table 1. Mean precision score for each algorithm evaluated for all 361 cells (row 2)
and based on fibroblast state (rows 3–5).

Dataset AdTh Otsu HoTr Wate Case ChVe Lank Shi Bern

All 0.36 0.44 0.61 0.76 0.65 0.51 0.65 0.37 0.32

State 1 0.22 0.25 0.55 0.80 0.66 0.41 0.67 0.14 0.12

State 2 0.33 0.38 0.51 0.85 0.69 0.47 0.72 0.29 0.19

State 3 0.49 0.64 0.76 0.65 0.61 0.63 0.56 0.63 0.60

trained on one third of the data to learn the optimal segmentation algorithm for
each cell state (offline phase) and then tested the system on the remaining two
thirds of the data with the optimal algorithm (online phase). We averaged scores
from the three experiments. We found that in each experiment, the context-based
segmentation system selected the Hough Transform for fibroblasts in state 3 and
the seeded watershed method for fibroblasts in states 1 and 2. The context-based
segmentation algorithm gives an average score for the three experiments of 0.80,
which exceeds the average score for the best standalone segmentation algorithm
(Watershed) by 4 percent points.

To analyze our proposed Variance Maps algorithm for creating the initial
contour for the level set based methods, we used two measures: accuracy to cal-
culate the fraction of the true cell region captured by the segmented region (i.e.,
|A∩B|
|A| where A represents the set of pixels in the gold standard segmentation

and B represents the set of pixels in the segmentation to analyze) and the afore-
mentioned Jaccard similarity index. We found the mean accuracy score was 0.97
and the mean Jaccard similarity index was 0.51 for all 361 cells.

4 Discussion

We found that linking domain-expertise from the computer vision and biology
communities led to benefits for both communities. Biology experts could obtain
high quality annotations efficiently by relying on their domain-specific taxonomy
of images rather than by learning about segmentation algorithms. Similarly, com-
puter vision experts could leverage the biology-defined taxonomies distinguish-
ing between different image contexts in order to achieve improved segmentation
performance over nine stand-alone methods.

We infer from our experiments that we can learn more about the strengths
and weaknesses of various segmentation algorithms and the simple versus difficult
images to segment by analyzing algorithm performance on a variety of image
sets. The algorithms generally performed the best with cells in state 3 and the
worst for fibroblasts in state 1. This suggests the commonly smooth, circular
shape of state-3 fibroblasts surrounded by a bright “halo” is easier to capture
automatically than state-1 fibroblasts that commonly have weak edges and thin,
branch-like protrusions. Furthermore, the results demonstrate that the variation
between the best and worst performing algorithms for fibroblasts in state 1
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is nearly twice the variation of the best and worst performing algorithms for
fibroblasts in state 3, indicating algorithm choice matters more for fibroblasts
with ill-defined edges and protrusions. We hypothesize that similar algorithm
performance will be observed for other cell types that also can often range in
appearance from round with halos to thin with protrusions.

We observed that the proposed Variance Maps algorithm used to create the
initial contours for the level set based algorithms consistently captured the entire
true fibroblast region, albeit without capturing the fine boundary details (last
column, Fig. 3). We found that this algorithm yielded a good initial contour
estimate to pair with level set based methods for a wide range of cell appearances
observed in phase contrast images.

5 Conclusions

Identifying a segmentation algorithm that works well in general can be chal-
lenging, especially when the data exhibit significant variability. We proposed a
framework for selecting the best-suited segmentation algorithm to apply based
on context. We described an implementation of this approach that combines
domain experts with fully-automated algorithms to use a combination of seg-
mentation algorithms instead of applying any single method. We found this
method yielded improved segmentation results over nine popular, freely avail-
able cell segmentation algorithms on phase-contrast images of highly deformable
cells. Future work will explore how to remove human involvement by building
a classifier to automatically predict from the raw image the cell state. Possi-
ble future research directions will also include generalizing this work by linking
other expert-based image taxonomies with segmentation algorithms and running
a larger-scale study with more algorithms and image sets to analyze the factors
that influence the successes and failures of algorithms.
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