
C. Stary and C. Stephanidis (Eds.): UI4All 2004, LNCS 3196, pp. 426–439, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Method to Extend Functionality
of Pointer Input Devices

Oleg Gusyatin1,2, Mikhail Urinson3, and Margrit Betke1

1 Department of Computer Science, Boston University, Boston, MA 02215
{gusyatin,betke}@bu.edu

http://www.cs.bu.edu/~betke
2 Department of Cognitive and Neural Systems, Boston University, Boston, MA 02215

gusyatin@cns.bu.edu
3 Department of Computer Science, Tufts University, Medford, MA 02155

Mikhail.Urinson@tufts.edu

Abstract. We describe a general method for extending any pointer input device
with an arbitrary set of commands. The proposed interface can be trained by the
user to recognize certain cursor movement patterns and interpret them as spe-
cial input events. Methods for extraction and recognition of such patterns are
general enough to work with low-precision pointing devices, and they can be
adjusted to provide computer access for people with disabilities. The core of the
system is a trainable classifier, in the current implementation an artificial neural
network. The architecture of the neural network automatically adjusts according
to complexity of the classification task. The system demonstrated good accu-
racy and responsiveness during extensive experiments. Some tests included a
severely motion-impaired individual.

1 Introduction

As miniature computers, such as personal digital assistants (PDAs), tablet and wear-
able computers gain popularity, more people face the problem of finding a mobile
alternative for the traditional keyboard. While most portable devices offer a comfort-
able way to perform pointer input, their keyboard substitutes often have significant
drawbacks. On-screen keyboard and graffiti symbol recognition software are among
the most common keyboard alternatives for portable computers with pointer input.
The disadvantage of on-screen keyboard is that it occupies valuable screen space. The
graffiti symbol recognition method (sometimes it also employs a special area, but this
can be avoided) is usually very inflexible: the user has to learn predefined symbols
that might only slightly resemble real letters and digits. Accuracy of recognition and
speed of input depends on the user’s experience with this symbol language, which
will take time to learn. Furthermore, users of traditional desktop and notebook com-
puters, who employ wireless pointing input devices, such as camera-based [1], eye-
gaze [9] and gyroscopic mice, often find keyboards, even wireless keyboards, incon-
venient, for example, during a presentation. For many tasks, being able to access
quickly and accurately even a small number of keys and key combinations could be
very helpful. PDAs and advanced mice address this by having a few customizable

A Method to Extend Functionality of Pointer Input Devices 427

buttons. Similarly, a small number of commands can be recognized by camera-based
interfaces, for example, using eye blinks or eyebrow raises [6].

Some alternative pointer input techniques can be employed by people with dis-
abilities to communicate with the computer. Vision-based human-computer interfaces
allow users with limited range of voluntary motions to control the cursor using head,
eye, or tongue movements [1]. From a more general point of view, the problem of
adding an accessible keyboard to the computer with pointer input is similar to the
problem of developing a convenient keyboard under mobility constraints.

To summarize all the above: several groups of people can benefit from an interface
that allows to quickly access an arbitrary set of commands (keyboard keys and key
combinations, internet browser commands, customizable “shortcut”-like functions,
macros) on a computing device designed for pointer input. This interface should re-
quire minimum resources (no screen space, no additional hardware, small amount of
processor time) and should not demand high precision of cursor control. Finally,
rather than asking the user to memorize or practice predefined symbols, the interface
should “learn” and adjust to “understand” the user’s own commands. This is particu-
larly important to people with severe motion impairments because with the proposed
system they can design symbols according to their physical abilities.

In this paper we describe a general mechanism that extends pointer input function-
ality with an arbitrary set of commands. The core of the system is a trainable classi-
fier, in the current implementation, an Artificial Neural Network (ANN), that is used
to recognize user-defined Spatio-Temporal Patterns (STPs) produced by the cursor.
The classifier has an adaptive architecture that enables it to automatically and effi-
ciently adjust to accommodate the necessary number of classes. We attempted to
make as few assumptions about potential STPs and user abilities and preferences as
possible. As a result, the system can be used with different pointer input devices, and
it can be modified to provide computer access for people with disabilities.

2 System Overview

The system consists of three major components: a preprocessor, a classifier, and an
interpreter as shown in Figure 1. It takes an STP produced by the pointer input device
and produces an operating system event.

Fig. 1. General System Overview.

In our approach, the collection of STPs used by the system, the alphabet, is com-
pletely determined by the user. As a result, the interface is general and can be conven-
iently used for many different tasks. However, the fact that no a priori information is
available about the alphabet and its elements makes the classification problem diffi-
cult. In particular, the classifier has to be able to efficiently distinguish between an
unknown number of classes of unknown appearance and structure. In addition, we

428 Oleg Gusyatin, Mikhail Urinson, and Margrit Betke

want to allow the user to change the alphabet, i.e. add and remove elements at any
moment. Hence, the choice of classifier is limited to models that can dynamically
adjust their architectures without loosing the data that was already computed. A static
classifier is not an option for three reasons. First, its potential, the number of classes it
can distinguish, has an upper bound that may limit the size of alphabet. Second,
among classifiers with enough potential to distinguish between members of a user-
defined alphabet, we want to choose the smallest one for performance reasons. Third,
the alphabet size may change during run time if the user decides to add or delete
symbols. Instead of a static classifier, we use a dynamic one, namely, a neural net-
work with an adaptive architecture as described in Section 4.

As mentioned above, we employ spatio-temporal patterns as alphabet elements.
Simply speaking, an STP is a path produced by the cursor. The temporal component,
mouse events interarrival times, plays secondary role in recognition and its analysis is
described in the next section. The spatial component constituted by path points is
what the classifier actually learns to recognize. In our system, we attempted to mini-
mize the restrictions on path configuration and to let the user decide which patterns
are to be remembered and reproduced easily. However, it was necessary to limit the
path complexity from both below and above. The former was needed because primi-
tive patterns (lines, arcs etc) often emerge during cursor movements and would result
in frequent false recognitions. The upper bound for the path complexity is set indi-
rectly by two parameters, input buffer length and maximum position age, which can
be adjusted for optimal performance (as described in the next section).

STPs undergo only minor preprocessing before being fed to the classifier. The sys-
tem does not employ any sophisticated feature extraction algorithms, for example,
path direction is omitted. However, if poor input quality due to noise, low precision
of pointing device and/or human factors is expected, it might be necessary to employ
a more elaborate preprocessing scheme. In particular, we conducted a number of
experiments to record and analyze input patterns produced by severely disabled peo-
ple using the Camera Mouse [1] as the pointer input device. To solve the problem of
poor input quality, we attempted to extract regions to which the cursor seemed to
converge. We will return to this issue in the discussion section. Let us now describe
the primary components of the system: the high-level recognition procedure and the
low-level classifier.

3 Recognition System

This section describes how input data is preprocessed before being supplied to the
classifier and how the classifier’s output is analyzed and interpreted. These proce-
dures require both intensive processing and close interaction with the input hardware.
A simple but effective scheme is employed to ensure efficient use of computational
resources as well as responsiveness of the system. A recognition pipeline overview is
given in Figure 2.

A Method to Extend Functionality of Pointer Input Devices 429

Fig. 2. Recognition System: The input pattern, drawn from X to Y, is shown processed in seg-
ments (top row). Each segment includes the previous segment plus additional cursor positions
on the input path. The bounding boxes of the segments are resized (bottom row, magnified for
visualization purposes) to fit a fixed size rectangle. The pixels of this rectangle constitute the
classifier input.

3.1 Input Acquisition and Buffering

The system employs two buffers. The main buffer stores the current input segment
processed by the system. The preliminary buffer is necessary to store cursor positions
that do not introduce significant changes to the pointer path in the main buffer. When
the preliminary buffer accumulates enough data, its contents are appended to the main
buffer and recognition is restarted. The purpose of having this temporary buffer is to
prevent interruption of the recognition process due to minor (perhaps, involuntary)
cursor motion. After the main buffer is updated with the new path segment, some of
the old pointer positions are removed from it to ensure it does not exceed its length
limit. Moreover, all positions whose age is older than a certain maximum (typically 1
sec) are also removed. The main buffer length limit and maximum cursor position age
are determined based on the trained STP’s complexity and cursor movement speed.
Their main purpose is to aid the classifier’s operation under the real-time constraints.

3.2 Cursor Path Segmentation and Processing

Because recognition is done continuously and there are no special rules for entering
STPs (unlike graffiti interfaces), the system expects that a pattern may start with any
cursor position (stored in the buffer) and must end with the most recent position in
the buffer. If exhaustive processing of the accumulated input were performed after
each buffer update (which includes path segmentation, multiple scaling operations
and multiple classifier evaluations), a heavy load of computational resources would
result, which would be unacceptable for an interface. To reduce computation time, the
recognition process is suspended until cursor motion reduces, which results in a
smaller rate of buffer reads. Consequently, the time-consuming recognition process
usually runs after all input, which may contain a valid STP, has been acquired, while
the buffer is kept up to date at all times. Furthermore, this allows controlling an ac-
ceptable processor load by adjusting the preliminary buffer length and the main
buffer update-rate threshold.

When the system decides that the current buffer update rate gives it enough time to
process the accumulated input, recognition is initiated. First, the system finds all
cursor path segments that can potentially be recognized as valid STPs. Each segment

430 Oleg Gusyatin, Mikhail Urinson, and Margrit Betke

starts with the most recent position in the buffer. The bounding box of the minimal
segment has to have an area that is at least as large as the classifier input size and it
must be more complex than a line segment. Each following segment contains the
previous one plus enough cursor positions to allow resizing of the bounding box (see
Figure 2). Resizing is necessary to equate the area of the segment bounding box to the
classifier’s input size. The fact that the original segments are usually much larger than
their resized versions allows us to grow segments several pointer positions at a time.

Each resized segment is evaluated by the classifier whose output is stored for
analysis. This operation ends a single processing cycle (segment extraction, resizing,
and evaluation). At this point, the recognition process might be forced to halt until the
interpretation of a command is completed. In this case, the system either interprets
information collected so far, or discards it. Otherwise, a new segment is extracted and
processed. The next section describes how the processing results are analyzed and
interpreted in each case.

3.3 Classifier Output Analysis and Interpretation

As described in the previous part, input path segments are extracted and processed in
order of their length starting from the shortest. As a result, simple STPs, which can
represent frequently used commands (mouse clicks, browse back/forward etc.) are
recognized almost instantly. Very often, however, simple patterns emerge within
more complex ones. A circle, for example, is a very convenient pattern to use, but it
is a part of many digits and letters. For this reason, it is necessary to complete all
processing cycles even if one of the first segments was positively recognized by the
classifier.

In case the system succeeds in recognizing one of the early segments, but then is
interrupted, it has to quickly decide what to do with the recognized STP and start
processing more up-to-date input. It turns out that the best way to make this decision
depends on the user’s proficiency with the system and the currently performed task.
Experienced users who trained the classifier to accurately recognize their input usu-
ally do not need feedback on one command before they can start entering the next
one. During text processing, for example, one can enter letters with only small delays
between each two. On the other hand, an inexperienced user makes more pronounced
delays before starting an STP and after ending it. Moreover, certain tasks, like web
browsing, usually require feedback on one action before the next one can be per-
formed. Hence, in all cases, the time stamps that are stored with all cursor positions
provide the final piece of information necessary to positively identify STPs. If the
endpoints of some input path segment correspond to peaks in the interarrival time of
input events (see Figure 3, bottom), the system can be confident that it did, in fact,
recognize a valid STP. This method significantly increases the system responsive-
ness. However, this method is inappropriate during early stages of training and in
cases of bad control and/or poor precision of the input device. If no good segment
candidate was found by the time recognition is interrupted, the collected data is dis-
carded. Otherwise, the best candidate has to be interpreted, as discussed in the last
paragraph of this section.

A Method to Extend Functionality of Pointer Input Devices 431

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1
ANN output

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300
Interarrival time of input events

time units

Fig. 3. Using the rate of input events to choose an STP. Top: ANN output over a period of 100
time units. Bottom: Interarrival time of input events over a period of 100 time units. At time
t=12, a significant pause in cursor movement was registered, but no candidate STP was recog-
nized by the ANN at that time. At time t=60, the ANN recognized a candidate STP, but no
cursor pause was registered. At time t=88, the ANN recognized a candidate STP and a cursor
pause was registered. Only in the last case does the system output that this candidate STP is a
valid STP.

If two or more overlapping input path segments are recognized by the classifier
(Figure 3, top), the one that correlates in time with the peak in input event interarrival
time is the true STP. The reason why this works is that the speed of the cursor move-
ment is usually rather stable when a valid pattern is being drawn. Tests showed that
this assertion is true in the great majority of cases. STP candidates are compared in
this fashion after all segments have been processed. The best candidate (if there is
one) is then interpreted as described in the next paragraph.

The user can associate each STP with an input event. Any event that an operating
system can process can be chosen, for example, keyboard keys, combination of keys
pressed, mouse clicks, special buttons like back, forward, refresh etc. When the sys-
tem positively recognizes an STP, it generates the corresponding event. In case of
mouse clicks, the exact position of each click event occurrence is determined using
the position of a predefined “hot-spot” relative to the pattern’s bounding box. The
default location of the hot-spot is the center of the bounding box, but any point within
the box can be chosen. Note that it is possible to associate series of events or macros
with STPs, which may be convenient in some applications.

432 Oleg Gusyatin, Mikhail Urinson, and Margrit Betke

4 Artificial Neural Network

The current implementation of the system employs an ANN as an STP classifier. As
described in the overview section, we had two primary requirements for the choice of
the classifier: real-time performance and an adaptive architecture. Although training
an ANN can take a significant amount of time, the evaluation complexity of even
large networks is rather low. In fact, some real-time applications utilize ensembles of
neural networks and still meet all the deadlines. On the other hand, fulfilling the re-
quirement of an adaptive architecture is somewhat problematic because most neural
networks are used with static architectures. In this section we describe a simple neural
network that dynamically changes its architecture to distinguish between an arbitrary
number of classes efficiently. For this problem, we turn to supervised classification
methods using a multi-layer perceptron (MLP) [4] as a base classifier. It is possible to
use supervised classifiers because the alphabet is predefined by the user and consti-
tutes the set of training as well as teaching inputs. We now proceed to discuss the
network architecture, training set acquisition and training methods that we used with
the ANN.

4.1 Adaptive Architecture

The neural network receives the scaled pointer path image pixels as input. Thus, the
size of the input layer equals the resolution of the scaled image, which is a parameter
to the system (16x16 was chosen experimentally). Higher resolution can represent
more complex patters, but takes longer to evaluate. The resolution should be chosen
according to alphabet size and input device precision.

The number of nodes in the output layer equals the number of classes defined by
the user. It changes when the user adds or deletes commands to the alphabet. Note
that adding or deleting a node does not result in the loss of data (e.g. weights) that
was already computed for other nodes.

The size of the hidden layer (only one layer is used), on the other hand, is a pa-
rameter that can be adjusted, and is critical for the network performance and poten-
tial. From the performance point of view, the number of hidden nodes has to be
minimized. Unfortunately, there is no simple relation between the network potential
and the number of nodes and/or weights. As a result, neural network parameters are
usually selected through experimentation rather than computed from strict rules and
formulas. To optimize the architecture and the training of our neural network, we
employ a combination of a method to automatically choose the size of the hidden
layer and a probabilistic technique to assess the likelihood of training convergence.

Given the dimensionality of a classification task, one can estimate the sufficient
number of hidden nodes in a two-layer (one hidden layer) fully connected feed-
forward neural network by bounding the number of weights Nw [7,11]:

() yyx
x

p
yw

p

py NNN
N
N

NN
N

NN
+++

+≤≤

+
11

)(log1 2

(1)

A Method to Extend Functionality of Pointer Input Devices 433

where xN denotes the number of input nodes, yN denotes the number of output

nodes, and pN denote the size of the training set. Number of hidden nodes zN is

then given by:

yx

w
z NN

NN
+

=

(2)

Figure 4 shows minimum, maximum and average zN values as given in Eq. (2).

The best and worst cases correspond to “easy” classification tasks (close to linear)
and “hard” ones (highly non-linear) respectively. Because no a priori information is
available about pattern configurations, it is reasonable to guess that the actual value
lies somewhere in the middle. We initialized the number of hidden nodes to the aver-

age of maximum and minimum zN values.

Fig. 4. Minimum, maximum and average number of hidden nodes Nz for 1–20 classes Ny, 10

examples per class and 256 input nodes Nx.

Slightly overestimating the network potential proved to be not harmful, whereas a
far more complex problem arises if the potential associated with the size of the hid-
den layer is not sufficient to accommodate all classes. This can happen if either the
initial guess is too small or if the user adds more classes (commands) to the existing
network. In such case, it will be impossible to train the network to produce the de-
sired classification. The main difficulty comes from the fact that one cannot tell what
compromises the training procedure: it might just get stuck in a local minimum, or
there might not be a suitable minimum at all. In the first case, training should just be
restarted with random weights, while in the second case, the number of hidden nodes
should be increased – otherwise training may not converge. Taking a probabilistic
approach to this problem, one can estimate the number of training attempts that
should be made before one establishes the inability of the training procedure to con-
verge for a given network state by computing [8]:

434 Oleg Gusyatin, Mikhail Urinson, and Margrit Betke

))(1ln(
))(1ln(
aF
aFN

X

W

−
−

=

(3)

Here N is the number of training attempts taken before changing the architecture, X is
the sum of squared errors on any individual attempt, W is the best (lowest) value for

X,)(aFX is the fraction of attempts which would result in a value of X less than or

equal to a, a confidence threshold, and)(aFW is the fraction of X values that result

in a value of W less than or equal to a. Once N attempts to converge have been made,
the number of hidden nodes should be increased.

We must note the principal difference between our approach and the approach of a
modified Cascade Correlation network (CasCor) [5,10]. Although a CasCor network
implements a dynamical architecture by sequentially increasing (cascading) the num-
ber of hidden layers, it was shown that the potential of such network can be utilized
only with a large (unfeasible in this case) number of training examples [10]. Expand-
ing on this idea, architecture with one hidden layer to which nodes are sequentially
added was later introduced [10]. The resulting network performed at least as well as
the original CasCor on a set of benchmark problems [12]. Although seemingly effi-
cient, the modified CasCor architecture does not take into account a priori informa-
tion about the problem at hand, for example, input dimensionality. In our approach,
the size of the hidden layer is selected according to the complexity of the classifica-
tion task without resorting to traverse architectures which are unlikely to deliver the
potential required for the given task.

4.2 Training

Neural network training proceeds in two stages (see Figure 5). During the first stage,
which we call basic training, the network is presented with only few examples of each
pattern (usually five). In rare cases, these examples are sufficient to train the network
to stably recognize a pattern. However, most STPs require larger training sets to en-
sure correct classification. Basic training provides the network with a rough estimate
of the classification task, so the error rate might be high due to partially learned deci-
sion boundaries of certain classes. In other words, the neural network was not pre-
sented with enough examples of one or more classes to be able to distinguish between
all accurately. The system identifies problematic classes by assigning a confidence
value to each member of the alphabet. Initially, all classes have the same value.

Fig. 5. Training overview.

A Method to Extend Functionality of Pointer Input Devices 435

In the second stage, which we call extended training, the user can start experiment-
ing with the system. During this experimentation, the recognition error rate is usually
still high. The user is asked to notify the system about its mistakes in order to update
the confidence values of the alphabet elements to reflect their recognition error rates.
The confidence values are increased for every correct classification and decreased for
every incorrect one. To speed up the training, the user is asked to provide additional
examples for alphabet elements. The chance of an element being selected is propor-
tional to its confidence value. As a result, STPs that were recognized poorly after
basic training are emphasized during extended training. Each new sample STP is
added to the training set if the current network does not recognize it correctly and is
discarded otherwise. In addition, for each new sample STP, the system continues to
adjust confidence values. The network is updated after each time an additional STP is
entered by the user. This procedure, if continued long enough, typically results in a
sufficient number of examples for each class. In practice, it takes about 5 minutes to
decrease the classification error rate to a point where the system can be used reliably.
The purpose of dividing training into two stages is to ensure that correct classification
will be produced by the network trained on as few examples as possible, hence mini-
mizing training time.

We employ a standard back-propagation training algorithm with gradient descent
and conjugate gradient descent methods [3]. To increase the speed of training and
reduce the likelihood of converging into local minima, we employed different train-
ing modes (stochastic, batch), a momentum term and a variable learning rate [3]. The
first few examples of an alphabet member are trained sequentially in batch mode,
which is quite robust for small training sets. Then training switches to a stochastic
mode, which is more robust for large training sets. Such a combination of training
modes and the techniques mentioned above resulted in rapid convergence.

5 Testing

In this section we describe the methodology and results of the quantitative experi-
ments. In the next section we describe our experiences working with a subject with
severe disabilities and discuss possible extensions of our system.

5.1 Participants

Formal testing was conducted with participation of twenty subjects. The first ten
subjects (Group A) were sophomore year college students with above average com-
puter literacy. The next ten subjects (Group B) were individuals with average com-
puter skills. None of the subjects was previously exposed to the system.

5.2 Methods and Apparatus

The testing procedure consisted of two tasks designed to test both the usability and
the accuracy of the system. In the first task, which targeted primarily usability, sub-
jects were asked to use the system to create an alphabet of five commands by map-

436 Oleg Gusyatin, Mikhail Urinson, and Margrit Betke

ping four arbitrary symbols to the following standard internet browser functions:
“back”, “forward”, “stop”, and “favorites”, respectively. Subjects were asked to map
the last symbol in the alphabet to the mouse single-click event. Upon completion of
this configuration step, subjects were asked to perform basic training and proceed to
interact with the system in its recognition mode to acquire alphabet rankings. After a
period of interaction, subjects were asked to conduct an extended training step for 3
minutes. In this step, the subjects were asked to open an internet browser and, using
only the five newly created symbols, browse the internet in a natural way with the
mouse as the input device.

The second task required subjects to expand an existing alphabet to include ten
symbols to be mapped to keyboard events that correspond to digits 0 through 9 and
the last symbol to the mouse single-click event. The training procedure was the same
as in the first task. Subjects were then asked to launch a word processor and produce
all ten digits in a consecutive order using the mouse as a pointing device.

Note that access to the keyboard and full mouse functionality was allowed only
during the configuration and training stages in both tasks. Results reflecting accuracy
of the system (Recognition Accuracy) were recorded during the actual recognition
stage and consisted of percent of correctly performed actions out of all attempted.
The numbers of attempts were 50 for Task 1 and 10 for Task 2. As a measure of us-
ability, the time it took each subject to configure the system (Average Adjustment
Time) for each task was recorded. Another parameter that was recorded across all
subjects was the average processing time of one symbol (Response Time) during the
session.

All tests were conducted on Pentium IV 1.4 GHz machines running the Windows
XP operating system.

Table 1. Average recognition accuracy of the system and the average adjustment time as meas-
ure of usability for two groups of 10 subjects each performing Task 1 50 times and Task 2 10
times.

Average Recognition
Accuracy

Average Adjustment
Time

Subject Groups

Task 1 Task 2 Task 1 Task 2
A (subjects with
above average
computer skills)

95 % 87 % 3 min 12 min

B (subjects with
average com-
puter skills)

85 % 75 % 6 min 18 min

5.3 Results

The results indicate that both groups of users were able to successfully complete the
tasks assigned during testing (see Table 1). Although it is evident that individuals
with less computer experience (Group B) took longer to adjust to the interface, high
average recognition accuracy was achieved for both groups. Recognition accuracy

A Method to Extend Functionality of Pointer Input Devices 437

depended directly on the duration of the extended training procedure, which was here
limited to 3 minutes (importance of prolonged extended training is discussed in Sec-
tion 4.2). Samples of symbols created by users are shown in Figures 6 and 7.

Results show that an average user as well as a more advanced user can configure
this interface in a relatively short time (see Table 1). At the end of the second testing
task, subjects were capable of using such tools as a calculator user interface without
resorting to a keyboard and using a mouse merely as a pointer input device. The sys-
tem proved to be robust with the average response time under 600 milliseconds.

Fig. 6. Instances of five symbols as produced by a user in Group B in Task 1.

Fig. 7. Instances of five out of eleven symbols as produced by a user in Group B in Task 2.

438 Oleg Gusyatin, Mikhail Urinson, and Margrit Betke

6 Discussion

The system described in this paper is a general interface for communication with the
computer. Since it does not need information about the type of pointer device used to
control the cursor, it provides a general extension to the device’s capabilities. The
system was designed to be modular: each of the main components – input processor,
classifier, and interpreter – can be changed or completely altered to fit particular tasks
and input devices.

The system is intended to replace the functionality of the mouse input device and
some functionality of the keyboard input device. For this purpose, the number of
commands (order of 10-20) and the number of instances of training patterns for each
command (20-30) used in the testing phase were appropriate. The system can poten-
tially be expanded to handle a larger number of commands, for example, fully replac-
ing the functionality of the keyboard. Such expansion, however, will raise the compu-
tational demands of the system requiring a redesign of its major components.

The two major approaches to improve input processing are feature extraction (re-
duces input dimensionality) and to use additional input characteristics (cursor move-
ment direction, speed etc). Feature extraction is beneficial if input characteristics that
emphasize differences between classes can be identified and no significant computa-
tional costs are associated with their extraction. As for using additional input charac-
teristics, this can only be justified if the readily available spatio-temporal information
is not a sufficient representation of the user’s input. We did not choose to extract
additional information because the STPs used carried sufficient information for sym-
bol classification.

The fact that the system performed well during testing, and that users quickly be-
came comfortable with it, encouraged us to tackle a more difficult problem. Taking
into account the constraints placed on the input devices that can be used by disabled
individuals we examined how to modify it to work with camera-based human-
computer interfaces (in particular, the Camera Mouse [1]) to provide an accessibility
solution for these individuals. The major difficulty about recognizing input produced
by motion-impaired users is that, in most cases, the cursor path is significantly dis-
torted by involuntary movements [2]. In other words, a subject can move the cursor
sooner or later to a desired screen position, but the cursor’s trajectory on the way to
the target point is difficult for the subject to reproduce. To address this problem we
explored the idea to discretize the input signal further in order to extract “pivot
points,” i.e., points or regions that the cursor’s path must travel through. The neural
network would then be utilized to classify patterns constituted by pivot points. We
conducted preliminary experiments with a motion-impaired user due to severe cere-
bral palsy, showing that pivot points can indeed be detected and analyzed for classifi-
cation. This approach is a subject of a future investigation.

Acknowledgements. We wish to thank John J. Magee, Rick Hoydt, and the students
of the Boston University Video Game Creators Consortium for assistance. The work
was supported by the National Science Foundation, grants IIS-0093367, IIS-0308213,
IIS-0329009, and EIA-0202067.

A Method to Extend Functionality of Pointer Input Devices 439

References

1. Betke, M., Gips J., Fleming P.: The Camera Mouse: Visual Tracking of Body Features to
Provide Computer Access for People With Severe Disabilities. IEEE Transactions on Neu-
ral Systems and Rehabilitation Engineering, vol. 10, no. 1 (2002)

2. Cloud, R.L., Betke, M., Gips, J.: "Experiments with a Camera-Based Human-Computer In-
terface System." Proceedings of the 7th ERCIM Workshop "User Interfaces for All,"
UI4ALL 2002, pp. 103-110, Paris, France, October 2002.

3. Cun, Y. L., Bottou, L., Orr, G., Muller, K.: Efficient BackProp, Neural Networks: Tricks of
the trade. Springer Lecture Notes in Computer Sciences 1524, pp.5-50 (1998)

4. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. New York: Wiley Interscience
(2001)

5. Fahlman, S.E., Lebiere, C.: The Cascade-Correlation learning architecture. Technical Re-
port CMU-CS-90-100, School of Computer Science, Carnegie Mellon University, Pittsburg
PA (1991)

6. Grauman, K., Betke, J., Lombardi, J., Gips, J., Bradski, G.: Communication via Eye Blinks
and Eyebrow Raises: Video-Based Human-Computer Interfaces. Universal Access in the
Information Society, 2(4), pp. 359-373 (2003)

7. Hecht-Nielsen, R.: Kolmogorov's Mapping Neural Network Existence Theorem. Proceed-
ings of IEEE First Annual Int. Conf. on Neural Networks, San Diego, Vol. 3, pp. 11-13
(1987)

8. Iyer, M.S., Rhinehart, R.R.: A Method to Determine the Required Number of Neural Net-
work Training Repetitions. Proceedings of IEEE Transactions on Neural Networks, vol. 10,
no. 2, pp 427-432 (1999)

9. Kim, K.-N., Ramakrishna, R.S.: Vision-Based Eye-Gaze Tracking for Human Interface.
IEEE International Conf. on Systems, Man, and Cybernetics, Tokyo, Japan (1999)

10. Sjogaard, S.: A Conceptual Approach to Generalization in Dynamic Neural Networks.
Ph.D. Thesis, Aarhus University, Aarhus, Denmark (1991)

11. Widrow, B., Lehr, M.A.: 30 Years of Adaptive Neural Networks: Perceptron, Madaline,
and Backpropagation. Proceedings of the IEEE, vol. 78, No. 9, pp. 1415-1442 (1990)

12. Yeung, D.-Y.: Node Splitting: A Constructive Algorithm for Feed-Forward Neural Net-
works. In Moody, J.E., Hanson, S.J., Lippman, R.P. (eds.) Advances in Neural Information
Processing Systems 4, San Mateo, CA. Morgan Kaufman Publishers, pp. 1072-1079 (1991)

	1 Introduction
	2 System Overview
	3 Recognition System
	3.1 Input Acquisition and Buffering
	3.2 Cursor Path Segmentation and Processing
	3.3 Classifier Output Analysis and Interpretation

	4 Artificial Neural Network
	4.1 Adaptive Architecture
	4.2 Training

	5 Testing
	5.1 Participants
	5.2 Methods and Apparatus
	5.3 Results

	6 Discussion
	References

