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A B S T R A C T

Investigations into the complex behaviors of aggregations of highly mobile animals have not used the

link between image processing technology and simulation modeling fruitfully to address many

fundamental ecological issues. Examples include population censusing, which remains difficult despite

the demonstrated ecological importance of assessing abundance and density of organisms. We introduce

a theoretical framework that connects thermal infrared video imaging with an individual-based

simulation model—an approach that appears to be applicable to a diverse set of aggregated, highly

mobile, nocturnal animals. To demonstrate the framework two applications are presented. The first is a

dense aggregation of Brazilian free-tailed bats (Tadarida brasiliensis) that exhibits an emergence pattern

that has complex dynamics and the second is a sparse local aggregation of agricultural pest moths whose

dynamics are insipid. The first application uses individual-based modeling to mimic the behavior in the

video of bats during a nightly emergence from a cave and to provide reliable estimates of the numbers,

and associated error bounds. The second application uses video recordings of sparse aggregations to

provide consistent estimates of the numbers of flying noctuid moths recorded over a corn and cotton-

dominated agroecosystem in south-central Texas. This does not use a mathematical model because error

estimates tend to be small.
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1. Introduction

1.1. Background information for data

Various taxa ranging from moths (Helicoverpa zea—Westbrook
et al., 1997; Wolf et al., 1986), to desert locust (Schistocerca

gregaria; Baron, 1972; Rainey, 1989) and to bats (Davis et al., 1962;
Cockrum, 1969; McCracken, 2003; Russell and McCracken, 2006)
engage in spectacular flights over great distances. These flights can
involve aggregations of hundreds of thousands, to even billions of
individuals. For example, swarms of desert locusts have been
estimated at 10 billion individuals (Sanchez-Arroyo, 2005) and
similarly, flocks of the extinct passenger pigeon (Ectopistes

migratorius) were estimated in the billions (Sullivan, 2004;
Schorger, 1955). Given the magnitude of the numbers and the
methods available at the time, estimates should be viewed with
caution. Vigilance also extends to the antipodal end of this
spectrum where censuses for small numbers of organisms such as
those made for rare and endangered species (Thompson, 2004).
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Fig. 1. Thermal infrared image of an emergence at Frio Cave, Uvalde, TX. In this field

of view, bats are flying from right to left. The double-column exodus, caused by the

geometry of the opening of the cave, is merging into a single column on the left.
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During summer months, south-central Texas becomes the
home of some of the largest aggregations of mammals known to
mankind, both in total numbers and in population density. For
example, the colony of Brazilian free-tailed bats at Frio Cave, near
Uvalde, TX, has recently been estimated to contain more than 1
million individuals (Betke et al., 2008). Maternity colonies of
Brazilian free-tailed bats emerge nightly from caves and bridges in
massive, spectacular assemblages that can continue for several
hours. Spatial-temporal patterns of emergence can be complex,
ranging from apparently random dispersal to more organized
formations. The most common emergence formation is that of a
single undulating, serpentine-like column. Fig. 1 provides a
snapshot of an emergence from Frio Cave, which has two major
exits. This emergence configuration initially is that of a double
column that eventually merges into a single column. The thermal
infrared video, recorded at Frio Cave in summer 2000, shows
column configuration and the complex emergence dynamics of the
bats emerging over a period of approximately 6 s (see online
materials: Video Betke_BW_filtered_Frio.mpeg).

Brazilian free-tailed bats are active in the Winter Garden area,
an 8 county region of south-central Texas, largely because of an
abundance of prey, many of which are agricultural pest moths
(Kunz et al., 1995; Lee and McCracken, 2002; Cleveland et al.,
2006). The prey of T. brasiliensis includes adults of several
Lepidopteron species in the family Noctuidae (Whitaker et al.,
1996; Lee and McCracken, 2002, 2005), whose larvae are known
agricultural pests, such as fall armyworm (Spodoptera frugiperda),
cabbage looper (Trichoplusia ni), tobacco budworm (Heliothis

virescens) and corn earworm (Helicoverpa zea), also known as
the cotton bollworm. A 15-s video segment of a moth survey is
presented in the online materials (Kennard_WG_moth.video).

1.2. The modeling background

Brazilian free-tailed bats are aerial predators of nocturnal
insects; both predator and prey are known to engage in related
seasonal, long distance migrations (Davis et al., 1962; Westbrook
et al., 1997). The bat–moth interactions in cotton agricultural
systems have recently been modeled using two different
approaches. The first approach uses a model based on a system
of stochastic difference equations to access economic impact of
bats on agroecosystems (Federico et al., 2008). The second is a rule-
based approach, which is an extension of the rule-based
population model for an emergence of bats, BATOIDS (Hallam
et al., 2006). The latter approach uses a BATOID-INSECTOID model
based upon an energetics model of bats (Hallam et al., unpublished
manuscript). Both methods require census data of moth aggrega-
tions and bat colonies as inputs.
1.3. Objectives

The objectives of this paper are to indicate a theoretical
framework grounded in modeling that allows application to
important problems related to ecological complexity. This
framework is utilized to present and develop a methodology
to estimate numbers of bats and moths based on video
recordings and to provide error estimates for numbers of these
organisms as they disperse or forage in airborne aggregations.
The novelty of this research is the construction of a mathema-
tical model that mimics the complex behavioral dynamics of
individuals in an aggregation, to use this model to develop a
video of the simulated dynamics and to generate estimates of
error.

We illustrate the simulation model framework with examples
where the data are presented in video. The first example depicts a
dense aggregation and employs a thermal infrared video of an
emergence of Brazilian free-tailed bats (Tadarida brasiliensis) from
a cave located in south-central Texas. The second represents a
sparse aggregation and uses a reflectance infrared video of noctuid
moths in a corn field in south-central Texas. The illustrations are
based on different methodologies because they differ in scope,
perspective and, to some extent, in scale.

2. Methods

2.1. A dense aggregation that exhibits complex dynamic behavior

The method for assessing a dense aggregation that exhibits
complex dynamic behavior consists of four main steps: (1) develop
a rule-based individual-based mathematical model that depicts
flight behavior; (2) create a video from the simulation that has
similar flight characteristics to those observed in the thermal
infrared video; (3) employ a counting algorithm that yields error
estimates that can be corroborated by the simulation video; and
(4) apply the counting algorithm to enumerate and infer error
estimates for the number of individuals in the censusing video. The
novel issues here are the construction of the model and to find the
error estimates.

2.2. Video processing

The video of a bat emergence from Frio Cave was processed
using a Bayesian method described by Betke et al. (2008). Objects
shown as white dots were considered bats identified by using
temporal and spatial analysis of thermal intensity values.
Temporal analysis involved building a model of mean and
standard deviation of intensity values measured at each pixel
over time. A current pixel value that differed considerably from
the mean value measured at that pixel indicated that a bat may
have appeared at that pixel. The method then examined the
likelihood that bats were detected by additional spatial analysis of
high-intensity regions in each video frame in which significant
unidirectional motion was detected. These regions represented
the warm bats and the relatively warm vegetation. To avoid false
detections of bats where vegetation was present, the method also
analyzed the intensity profile of the entire field of view. The
profiles that included vegetation were relatively flat, whereas
regions of pixels formed by bats contained high-intensity peaks
that corresponded to the warm thorax of the bats and lower
intensity values of their wings. Because the three-dimensional
scene is projected onto the 2D image frame, occlusion may occur
and more than one bat may be imaged in the same high-intensity
region. The method by Betke et al. (2008) used the locations of the
peak intensity values in a candidate region to represent the
locations of single bats (white dots).



Fig. 4. A snapshot of model batoids ‘‘flying’’ across the landscape screen from right

to left. View perspective is from the side.

Fig. 2. Bats fly in a single-column formation from right to left across the field of

view. (a) Thermal infrared video image with bats marked by white dots. (b) The

same frame after removing all pixels that are not contained in high-intensity image

regions.

Fig. 3. Bats enter the frame on the right (region I). Our method counts the bats

leaving the frame on the left (region O). The width of the regions is 1/72 of the width

of the frame.
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Herein, we propose an additional detection algorithm that
further analyzes the size of each region in which the method by
Betke et al. (2008) deemed to have designated a bat. We assume
that a region that is equal or smaller than the average-sized region
in the image frame contains a single bat. We compare the size of
each region to this mean (or median) size. If the size of the current
region is larger than the mean (or median) size, then the ratio
between the size of current region and the mean (or median) is
computed and the next integer greater than this ratio is taken to be
the number of bats represented by the current region. Based on our
detection algorithm, we distinguish three counting methods to
compute the number of individual bats in a video frame. The
‘‘without area’’ method ignores the size of each high-intensity
region and assumes that the observed region represents only one
bat. The ‘‘with mean area’’ method is an attempt to account for
occlusion. It estimates the number of bats in a region that is larger
than the mean area by the ratio between its area and the mean
area. The ‘‘with median area’’ accounts for occlusion similarly, but
uses the median instead of the mean.

The grayscale 1-byte-per-pixel representation of a frame of the
thermal infrared video of the emergence at Frio Cave with the
detected bats labeled as white dots is shown in Fig. 2(a). Fig. 2(b)
shows the same frame in binary format with high-intensity regions
representing bats in white and the background in black (i.e., with
the vegetation removed).

The final step in our estimation process is to count the number
of bats present in the complete video. The frames of the video were
isolated and each was pre-processed. The procedure used to count
the bats in the video must account for the fact that the same bat can
appear in multiple frames. To eliminate multiple counting of the
same bat, we computed the number of bats leaving the frames (see
Fig. 3). We computed the number of departing bats by applying our
counting algorithm to the edge of the image frame (region O in
Fig. 3; O is chosen sufficiently small so that the transition of a bat
across and exiting O has a high probability to occur from one frame
to another). By summing the departing bats for all the frames and
the number of bats present in the last frame, the total number of
bats recorded in the video can then be estimated.

2.3. Construction of the BATOIDS simulation model

We developed a simulated model of individual bats in flight,
BATOIDS, which is a rule-based individual-based formulation with
rudimentary similarities to the ‘‘boids code’’ developed by
Reynolds (1987) and is supported with a real-computational time
3D graphics package (Robert Platt, unpublished). This BATOIDS
model is described in more detail in Hallam et al. (2006). Rules are
specified for Velocity Matching, Collision Avoidance, Community
Predator Avoidance, Individual Predator Avoidance, Subflocking,
and Foraging. Three primary rules (Velocity Matching, Collision
Avoidance, and Individual Predator Avoidance) govern the flight
dynamics of batoids and generate spatial-dynamic patterns that
are topologically similar to those observed in nightly emergences
of Brazilian free-tailed bats. First, the flight velocity of each
individual in the column of batoids is approximately matched to
that of nearby individuals. This is accomplished by each batoid
being assigned a velocity equal to the average speed in the video
plus a small random perturbation rate so that the batoids have
comparable averages but distinctive individual velocities. The
parameters used in the BATOIDS simulator were derived from the
time taken for each bat to cross a frame of the 2D video
(approximately 2 s), the total time of the bat flight (approximately
6 s) and the velocity of each bat (converted pixel velocity, which is
1200 pixels/s according to the GUI of the simulation). Second,
Collision Avoidance requires that each batoid maintain a minimal
distance between its nearest neighbors; this property is likely
implemented by bats during nightly emergences of live bats using
echolocation and sight. Collisions do occur on an accidental risk
level with this second rule imposed owing to their velocity and
individual decisions. Third, each batoid has a tendency to minimize
time spent on the boundary of the emergence column based on the
assumption that bats attempt to diminish direct exposure to avian
predators during nightly emergence flights (Individual Predator
Avoidance). These primary rules are coupled with secondary rules
to yield a transport dynamic with characteristics analogous in
appearance to the dynamics of an actual emergence. Model
features include column formation, a directed advective move-
ment and complex fluctuations within the column. A snapshot of
the simulation model output is given in Fig. 4. Videos of the
dynamics of the simulation can be found in the online materials.
The videos of the simulation include side and top views of the
dynamics of the virtual emergence flight of bats. The online video
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Hallam_3D_emergence.wvm illustrates some of the complex
dynamics that can arise in these emergence simulation videos.
Also in the online materials, we have included pseudocodes
(Online Figs. 3 and 4) for Community and Individual Predator
Avoidance to indicate the perspective of the numerics of the
simulation model.

Images taken from a video generated by the BATOIDS simulator
were used to evaluate the performance of the proposed counting
algorithm. Because the number of bat objects is known in the
simulator, it is used as a baseline to compare with the number of
objects enumerated by the counting algorithm. This estimation
process provides for generation of error rates that are then
translated into error estimation for the thermal infrared video.

2.4. A locally sparse aggregation

The basic census method for assessing a sparse aggregation could
be similar to that above. However, unless there are significant
reasons to develop error estimates for sparse aggregates, such as
might be required to provide precise abundance counts for rare or
endangered species, the development of a rule-based mathematical
model that depicts flight behavior can be avoided or minimized.
Here we focus on counting of sparse objects in a video that involves
small numbers, which leads to error bounds that are small although
the percentage estimates may be large. Our moth assessment
application does not use a simulation model due to its sparseness but
directly employs a counting algorithm to infer the number of
individuals in the censusing video.

2.5. Methodology for moths

The processing methodology for the second example differs
from that used in example 1 and provides a contrast between the
methodology of Betke et al. (2008) and more classical approaches
to counting flying organisms. A primary difference lies in the large
numbers of bats versus the small numbers of moths. This example
is also of interest from the need to estimate the abundance of
resources for insectivores.

The highest intensity of the moths observed in the recorded
video segments was 40 and the background intensity was 10. It is
difficult to detect the moths from the background owing to the
small differences in intensities. To solve this problem automati-
cally, the counting was performed using image segmentation,
which allows distinguishing the required object from the back-
ground objects. The classical counting approach involves image
segmentation coupled with a counting mechanism (Mehmet
Sezgin, 2004; Rosenfeld and Pfaltz, 1996). The most relevant of
the image segmentation algorithms for our problem are thresh-
olding and connected components labeling. These algorithms are
derived by partitioning an image into regions that are similar
according to a set of pre-defined criteria.

To facilitate efficient counting of moths in the video, the frames
in which moths were present were computationally extracted and
saved in a local directory as bitmap images. The two-step
algorithm to determine the presence of a moth in the frame
consists of filtering the relevant foreground pixels in each frame
and labeling them using thresholding and connected component
analysis. In the connected component analysis, region-growing is
used first to differentiate between the background and the
foreground. Once each group is determined, all pixels are labeled
with a grayscale or a color (color labeling). The classical labeling
approach (Rosenfeld and Pfaltz, 1996) performs two raster scans of
the image. The final binary image obtained is given as the input to
the connected component analysis algorithm.

Thresholding segments an image by setting all pixels whose
intensity values are above a prescribed quantity to a foreground
value and all the remaining pixels to a background value. Two
thresholding techniques have been used—relative thresholding
and automatic thresholding. The threshold value in relative
thresholding was determined using a histogram. The histogram
of the image indicates that pixels correspond to a moth range from
intensity levels 15–40 depending on the distance of the moth from
the cameras. Using relative-threshold methods, a pixel is deemed
to belong to the foreground if the difference between its intensity
value and the mean intensity value of the image exceeds a certain
threshold. Online Figs. 1 and 2 are the histograms of a frame with a
moth and one without a moth. In relative thresholding, if pixel
intensity is greater than average pixel intensity by 10, they are
considered foreground pixels otherwise they are regarded as
background pixels.

To determine the threshold automatically, an iterative optimal
threshold selective algorithm has been used. The automated-
threshold method iteratively computes an optimal threshold (Qi,
1999). The minimum value of the histogram of the image was
taken to be the threshold value for the program. This threshold
value is used to convert the original image to a binary image. The
next step in the thresholding process is curve fitting and
approximation of polynomials. The threshold point is found using
this method and then the counting algorithm applied to this
threshold image to obtain the moth count value.

We tested two thresholds to see if a pixel is deemed to belong to
the foreground: 5 and 10 grayscale levels (the dynamic range per
pixel was 255 grayscale levels, i.e., 1 byte/pixel). If the difference
between its intensity value and the mean intensity value of the
image exceeds a certain threshold a pixel is in the foreground. If the
number of foreground pixels is >2 and <300, the image is saved;
otherwise, it is assumed that moths are not present and the current
image can be discarded. The steps are repeated for each frame in
the video. A minimum value of 2 was chosen because there were 2
bright stars in the video whose intensity was close to that of the
moth and 300 was chosen as the maximum value because there
were some frames which had relatively bright backgrounds due to
ambient disturbances (such as increased reflectivity caused by
wind moving plant leaves).

The moth-counting algorithm was developed in C#.Net. The
inputs required are the path of the video file and the frame rate (in
number of frames per second) at which the video was recorded. To
track the progress of the video, the current frame which is being
analyzed and the total frames in the video are displayed. Because
the frames in which moths appear are saved during video
censusing, often we can establish a ‘‘ground truth estimate’’ of
the number of moths in the video by manually stepping through
the frames that are relevant (rather than the complete video).

3. Results

3.1. Bat counting algorithms

We compared the three counting methods defined above
(designated as without area, with mean area, and with median
area) to compute the number of individual bats in a single frame in
various batoid simulations (Online Table 1). The error bounds for
the batoids simulations are used to analyze the bat census data
from the thermal video. Our initial approximation of the number of
bats in the image frame is defined as the count plus the standard
deviation. Over all trials, this produces an average error of 7.4%,
5.2%, and 3.8% for the methods ‘‘without area,’’ ‘‘with mean area,’’
and ‘‘with median area,’’ respectively. From trial 5 onwards, where
the numbers of bats are larger and occlusion begins to be more
important, the average errors are higher (9.3%, 6.2%, and 4.5%,
respectively). Finally, we estimated the numbers of bats in the
infrared thermal video recorded at Frio Cave (see online video



Table 1
Number of bats in the thermal infrared video recorded at Frio Cave using three

counting methods. An error estimate based upon the simulation errors generated

for each method is indicated in parentheses.

Counting method Sum of # of

bats in region O

over all frames

Number of

bats in final

frame

Total # of bats

in thermal

infrared video

Mean 2060 1320 + (81) 3380 + (81)

Median 2066 1344 + (60) 3410 + (60)

Without 2285 1230 + (114) 3515 + (114)

Mean = 3435 + (85) = 3520
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Betke_BW_filtered_Frio.mpeg). The counting procedure indicates
that the total number of bats present in the entire length of the
video is approximately 3435 bats. This is based on averaging our
results for the three counting methods (Table 1). The video
counting methodology indicates that the number of bats in region
O is relatively small (mean of 14.8 bats and a standard deviation of
3.3 bats). For these small numbers, the simulation regions provide
percentage errors whose ranges are negligible. The simulation
errors generated for each counting method produced error
estimates that we applied to the results of these methods for
the video recorded at Frio Cave (Table 1). When the errors are
included and the results for the three methods are averaged, an
upper estimate of 3520 bats was computed.

3.2. Moth-counting algorithms

The moth-counting algorithms were applied to process 3 video
files of different lengths recorded in the field. The shortest video
(3 min) is presented in the online material. Each video file was
processed by the two relative-threshold methods and the
automated-threshold method (Table 2). The number of moths
estimated with these methods was compared using the ‘‘ground
truth’’ number of moths present in each video, which we
established by manually stepping through the saved frames
(online-3mins-10-threshold-avg). The method with the smaller
relative threshold of 5 grayscale levels was most accurate in
estimating the number of moths in the videos. It detected 152 of
159 moths (95.6%) in a 1-h survey video. This method selected 10%
of the total frames as relevant, while the other two methods
selected only 5.5% and 2% of the total frames as relevant,
respectively. Some moths that were too distant from the camera
had pixel intensities almost equal to background and therefore
were not counted by the thresholding technique that required a
relatively high-intensity difference of 10 units. By lowering the
threshold on the difference, it was possible to detect these moths.
Using the automatic technique, some moths were missed because
the threshold value determined by the algorithm was either too
high or too low. Our results indicate that performing connected
Table 2
Results from application of the three versions of the moth-counting algorithm.

Length of video Thresholding algorithm

(difference value)

Total # frames

in video

Frames sele

after thresh

3 min Relative (5) 2,758 312

Relative (10) 26

Automatic 16 16

15 min Relative (5) 26,882 3,120

Relative (10) 4,803

Automatic 633 236

1 h Relative (5) 107,942 12,680

Relative (10) 17,973

Automatic 8,791
component labeling after thresholding eliminated a few unneces-
sary frames (these frames had images of one or two stars with no
moths in them).

The time required to process the data with the relative-
threshold technique is less than with the automatic threshold
algorithm, which must first determine the threshold iteratively
and then apply it to filter relevant foreground pixels.

4. Discussion

A basic tenet of ecology is to have accurate censuses of animals,
including rare and elusive forms (Thompson, 2004), as well as
relatively abundant and communal species (Kunz, 2003; Kunz
et al., in press). Estimates of numbers of organisms are funda-
mental for many ecological applications, including population
dynamics and determination of density dependent processes. A
motivation for our simulation efforts and the basis for the above
examples are to provide reliable estimates for agricultural pest
insects and their predators. Estimates of abundance for pest
species in conventional or transgenic crops are necessary to
determine impacts of genetically modified crops and of the effects
of predation by insectivorous bats and birds. The pest-control
impact of bats can be significant from ecological, economic and
evolutionary perspectives (Cleveland et al., 2006; Federico et al.,
2008). A primary contribution of this paper is to address an
unexplored link between simulation modeling and image proces-
sing by providing a framework for video censusing aggregations of
organisms that include error estimates. This link between image
processing technology and simulation modeling is relevant to
organisms other than those illustrated herein with bats and their
insect prey. The novelty of the approach is to simulate the video
image by a mathematical model, which might prove to be a
significant undertaking because a distinct model might be needed
for each set of organisms to be censused. Thus, effort-benefit issues
need to be considered when censusing highly mobile animals.
Rule-based models seem well adapted to represent the behavior
and movement of highly mobile organisms and thus to minimize
efforts to construct models. These models make it possible to
mimic aggregate dynamics and coupling with visualization and
can produce error estimates in the numerical computation of
aggregates. In the simulation model of our bat example, the rules of
flight that the group of organisms exhibit appear to be well
approximated. The flight behavior of Brazilian free-tailed bats as
they emerge in columns is highly complex, and the primary rules of
our model (Velocity Matching, Collision Avoidance, and Individual
Predator Avoidance) yield complex dynamics appearing similar to
those observed during an actual emergence. Without mimicking
this flight behavior, the errors on the estimates of emerging bats
present would not be as accurate or reliable.

There are methodological issues related to dynamic censuses of
organisms displaying large communal flights that are of both
cted

olding

Frames selected

after labeling

Moths in the

video

Moths

detected

Accuracy

207 14 13 92.90%

21 9 64.90%

7 50.00%

3,052 37 33 89.20%

2,223 28 75.70%

17 45.90%

11,586 159 152 95.60%

8,577 136 85.50%

4,809 107 65.40%
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theoretical and practical interest. The problem of undercounting
because of full or partial occlusion in 2D videos remains an issue.
Despite the use of pixel-area related estimates, our counting
algorithm was inaccurate in frames where there was considerable
overlap in projections of bats. We estimated the numbers of
batoids in various simulation videos (Online Table 2). The videos of
the simulations provided in the online materials (Online videos
Simulation Side View and Simulation View from Above) contained
108 batoids and were composed of 247 frames (the number of
frames is similar to the 225 frames of the video recorded at Frio
Cave). Although the number of batoids in the simulation is
significantly less than the number of bats in the Frio Cave
emergence video, primarily due to the coupling of the simulation
with the real time graphics, it indicates how our counting protocol
handles occlusion. In the simulation, batoids were sporadically
clustered to allow for possible occlusion of the batoids leaving the
frame and those in the final frame. A multi-camera video recording
and an associated counting procedure may help alleviate this
problem, especially if 3D-visualization becomes feasible.

Another issue is that the flow rate of the bats in our example is
not constant in all frames and the total number of bats estimated in
the fixed-time video depends on the flow rate. A variable flow rate
of bats leads to the number of individuals entering the frame being
different from the number of bats leaving the frame, which can
complicate reliable estimation of the number of individuals per
frame.

The situation when organisms ‘‘escape’’ the camera’s focal
length by moving out of vertical range does not occur for the
thermal infrared video that we analyzed, but this could be a factor
in undercounting for other videos. In video recordings in which
bats leave the field of view at the upper edge of the image frame, a
horizontal strip of pixels at the upper and lower edges could be
used in addition to the vertical regions that we used in the present
study.

The counting methodology based on the moth video did not
employ a simulation model. This was rationalized by indicating the
numbers are sparse and error bounds are small. While valid for our
moth survey, this does not imply that error bounds are not
important. Indeed, for rare, endangered or threatened species,
organism numbers are small and discounting error estimates
might suggest that the issue is not as critical to survival as the
situation might actually be.

The contrast and speed of the video requires attention if moths
are counted manually using a player such as Windows Media.
Because of the low difference of intensity between the moth and
the background and the short viewing period of a moth transecting
the camera range, moths can be lost (even at the blink of eye) so the
speed of the original video needs to be decreased when manual
counts are made. Because it is difficult to detect the moths from the
background due to the small differences in intensities, an option is
to increase the contrast in the original video. Here, the contrast of
the original video was not changed before applying the moth-
counting algorithm using the application developed.

5. Conclusions

We conclude that the framework is applicable to many mobile
organisms. It is generic because the methodology can be widely
applied and need not be restricted to nocturnal species. Required
for the framework is a database provided by a video of a behavior.
The simulation procedure that is required could be labor intensive
because it requires construction of a simulation model for the
behavior of the video censused organism. Different behavioral
processes such as the communal bat emergence investigated here
and bat foraging, which is generally not done communally, could
require different but related models.
Acknowledgements

The National Science Foundation grant ITR-0326483 (to T.H.
Kunz, G.F. McCracken, M. Betke, J.K. Westbrook, and P.A. Morton)
and the Cooperative Agreement CR 83214801 (to T.G. Hallam and
G.F. McCracken) with the US Environmental Protection Agency
provided funding for this study.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in

the online version, at doi:10.1016/j.ecocom.2009.05.012.

References

Baron, S., 1972. The Desert Locust. Scribner, New York, p. 228.
Betke, M., Hirsh, D.E., Makris, N.C., McCracken, G.F., Procopio, M., Hristov, N.I., Tang,

S., Bagchi, A., Reichard, J., Horn, J., Crampton, S., Cleveland, C.J., Kunz, T.H., 2008.
Thermal imaging reveals significantly smaller Brazilian free-tailed bat colonies
than previously estimated. Journal of Mammalogy 89, 18–24.

Cleveland, C.J., Betke, M., Federico, P., Frank, J.D., Gomez, I., Hallam, T.G., Horn, J.,
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