
1248 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 6, NOVEMBER 2008

A Human–Computer Interface Using Symmetry
Between Eyes to Detect Gaze Direction
John J. Magee, Margrit Betke, James Gips, Matthew R. Scott, and Benjamin N. Waber

Abstract—In the cases of paralysis so severe that a person’s
ability to control movement is limited to the muscles around the
eyes, eye movements or blinks are the only way for the person
to communicate. Interfaces that assist in such communication
are often intrusive, require special hardware, or rely on active
infrared illumination. A nonintrusive communication interface
system called EyeKeys was therefore developed, which runs on a
consumer-grade computer with video input from an inexpensive
Universal Serial Bus camera and works without special lighting.
The system detects and tracks the person’s face using multiscale
template correlation. The symmetry between left and right eyes
is exploited to detect if the person is looking at the camera or to
the left or right side. The detected eye direction can then be used
to control applications such as spelling programs or games. The
game “BlockEscape” was developed to evaluate the performance
of EyeKeys and compare it to a mouse substitution interface.
Experiments with EyeKeys have shown that it is an easily used
computer input and control device for able-bodied people and has
the potential to become a practical tool for people with severe
paralysis.

Index Terms—Assistive technology, disabled computer users,
face detection, face tracking, gaze estimation, video-based
human–computer interfaces, webcams.

I. INTRODUCTION

EXTREME paralysis can result from a traumatic brain in-
jury, for example, due to a traffic accident or from cerebral

palsy, brain-stem stroke [1], [2], or degenerative neurological
diseases, such as multiple sclerosis (MS) or amyotrophic lateral
sclerosis (ALS or “Lou Gehrig’s disease”). According to the
National Multiple Sclerosis Society [3], approximately 400 000
Americans acknowledge having MS, and every week, about
200 people are diagnosed. Worldwide, MS may affect over
two million individuals. According to the ALS Association [4],

Manuscript received February 21, 2005; revised January 9, 2008 and
February 8, 2008. Current version published October 20, 2008. This work
was supported in part by The Whitaker Foundation, by the National Science
Foundation under Grants IIS-0713229, IIS-0308213, IIS-039009, IIS-0093367,
P200A01031, and EIA-0202067, and by the Office of Naval Research under
Grant N000140110444. This paper was recommended by Associate Editor
R. Hess.

J. J. Magee is with the Computer Science Department, Boston University,
Boston, MA 02215 USA.

M. Betke is with the Computer Science Department, Boston Univer-
sity, Boston, MA 02215 USA and also with the Harvard Medical School,
Boston, MA 02115 USA (e-mail: betke@cs.bu.edu).

J. Gips is with the Information Systems Department, Boston College,
Chestnut Hill, MA 02467 USA.

M. R. Scott is with Microsoft, Redmond, WA 98052-6399 USA.
B. N. Waber is with The Media Laboratory, Massachusetts Institute of

Technology, Cambridge, MA 02139-4307 USA.
Digital Object Identifier 10.1109/TSMCA.2008.2003466

Fig. 1. Two views of a subject with severe cerebral palsy who is using the
EyeKeys system with a webcam. The switch attached to his wheelchair is an
assistive technology that he uses regularly.

as many as 30 000 Americans are estimated to have the disease
at any given time.

For people with severe paralysis, communication abilities
are extremely limited—often to yes and no responses using
eye movements or blinks, since the eye muscles are the only
muscles they can control. The goal of this paper is to help stop
an active mind from being trapped in a body that has difficulty
communicating. As progress toward that goal, we created a
camera-based computer interface called EyeKeys that makes
communication possible by detecting the eye-gaze direction
and simulating computer keyboard input. The system is shown
in use in Fig. 1.

The most basic interface for people with disabilities is a me-
chanical switch which allows users with some motor control to
operate equipment such as wheelchairs or computer programs.
A switch mounted near the user’s head, which is activated
by leaning the head into it, for example, is shown in Fig. 1.
Other systems employ mouth-actuated joysticks, breath-puffing
straws, tongue-movement analysis, infrared head-pointing de-
vices, or head-mounted cameras as interfaces (e.g., [5]–[13]).
Systems based on electrooculography use electrodes placed on
the face to detect the movements of the eyes [14], [15].

Currently, available interfaces cannot be used by some of
the most severely paralyzed individuals. They also have the
drawback that they must be attached to the user, which is
often perceived as intrusive. Electrooculographic sensors, for
example, must touch the user’s face and can be uncomfortable.
Some users, since they cannot move to protect themselves, are
very defensive about people placing electrodes on their face or
touching their face. The large headgear of some head-mounted
eye-gaze-detection systems is not suited for all users, partic-
ularly small children. Given these issues, it was an important
design requirement for our gaze-detection system to not touch
the user. The camera was therefore placed in front of the user at
a short distance rather than on a head mount.

Many current camera-based interfaces that analyze eye in-
formation make use of active infrared illumination [16]–[27].

1083-4427/$25.00 © 2008 IEEE

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on July 06,2010 at 19:46:15 UTC from IEEE Xplore. Restrictions apply.

MAGEE et al.: HUMAN–COMPUTER INTERFACE USING SYMMETRY BETWEEN EYES TO DETECT GAZE DIRECTION 1249

Fig. 2. Communication interfaces for people with severe disabilities: (top) EagleEyes in use with five electrodes. (Bottom) The Camera Mouse in use with (d) a
pan/zoom/tilt camera and (c) a webcam. Users with [(a), (b), and (d)] severe cerebral palsy and (c) ALS, (c) write messages, (d) play games, and (b) create art.

Fig. 3. Spelling interface programs for use with the EagleEyes and Camera
Mouse interface systems. (Left) Spelling method based on letter groups [30].
(Right) On-screen keyboard [28].

In many approaches, the infrared light reflects off the back of
the eye to create a distinct “bright pupil effect” in the image.
The light is synchronized with the camera to illuminate the eyes
in alternate frames. The eyes are then located by comparing
a frame with this bright pupil effect with a subsequent frame
without the illuminated pupils. Typically, the relative gaze
direction of an eye is found by analyzing the difference between
the center of the bright eye pixel area and the reflection off the
surface of the eye from the light source. There is a concern
that infrared camera-based interfaces require a complicated
calibration procedure which is difficult for small children to
follow. Another issue is that they are too expensive for many
users, typically costing over $10 000 (e.g., [5]).

Avoiding specialized hardware and infrared light sources are
important goals of more recent efforts in designing camera-
based computer interfaces for people with severe disabilities
(e.g., [28] and [29]). One successful system is the Camera
Mouse [28], which is available as a free download at
http://www.cameramouse.org. People with disabilities control
a mouse pointer by moving their head, nose, chin, finger, or
any body feature that they can move, while the system uses
video to track the motion (Fig. 2). The Camera Mouse is
regularly used by many people to control application programs
to enter messages, create art, navigate the Internet, or play
games (Fig. 3). It is successful for those who can move their
heads or limbs; however, people who can only move their
eyes are unable to use it. These are the people for whom we

aim to provide a communication device. Our interface system
therefore only uses information from the eyes.

One method to locate the eyes is to use a series of intentional
blinks [29], [31], [32]. Some people with severe disabilities
simply cannot blink voluntarily. The proposed system does not
require a blink-based initialization. It instead tracks the face in
order to locate the eyes. Face detection and tracking research
has yielded a variety of methods [33], [34] that use features,
textures, color, or templates, for example, that are tracked in
either two [31], [35]–[37] or three dimensions [38], [39].

Skin color analysis is often used as part of a face detection
system (e.g., [31], [35], and [37]). Various methods and color
spaces can be used to segment pixels that are likely skin from
pixels that may belong to the background. This is a difficult
problem because skin tones are widely varied over the popula-
tion. The system presented here uses color and motion infor-
mation as a preprocessing mask. Similar approaches have been
used previously to segment the background and foreground
(e.g., [40]).

Existing methods for eye detection and tracking, as well
as gaze analysis, that do not rely on infrared lighting typi-
cally depend on high-resolution images of eyes, often obtained
by pan/tilt/zoom cameras or cameras that are head mounted
[41]–[49]. The system proposed here was designed around an
inexpensive visible-light “webcam,” and it works with images
that have a lower resolution than the images used in previous
approaches (e.g., [41] and [43]–[54]). These approaches require
high-resolution images of the eyes for appearance- or feature-
based methods that locate, for example, eye corners, eyelids,
or contours of the iris. An exception is the work by Kawato
and Tetsutani [55], who used low-resolution video to track the
position of the eyes by tracking a template region between the
eyes, which is updated online. Since EyeKeys works with lower
resolution images of the eyes, the user may move further from
the camera and still allow the system to function. The use of
webcams also allows the system to be made available to people
at significantly less expense than those requiring specialized
hardware.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on July 06,2010 at 19:46:15 UTC from IEEE Xplore. Restrictions apply.

1250 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 6, NOVEMBER 2008

Fig. 4. Configuration layout of the EyeKeys system. The user faces both the
camera and the computer monitor. The computer uses the camera to detect if the
user’s eyes move to the right or to the left. The dashed lines indicate possible
view directions of the person’s eyes.

Another interesting eye-gaze estimation method is presented
by Darrel et al. [56]. In this method, the correlation response of
three eye templates is measured and interpolated to infer gaze
direction. This method may need the templates to be trained on
the user for best performance and also relies on images of the
eye that are of the same scale as the template.

The EyeKeys system combines existing computer vision
techniques in a new way to quickly track the face using multi-
scale template correlation with the aid of skin color and motion
analyses. The left and right eyes are compared to determine
if the user is looking at the center or to the left or right side.
The new approach exploits the symmetry of the face when
comparing the eyes. The output of the system can be used to
control applications such as spelling programs or games.

Earlier work and preliminary tests of the system have been
reported previously [57]–[59]. In the traditional human–
computer interface configuration, the computer user sits in
front of a keyboard, mouse, and monitor. Interfaces based on
computer vision techniques are designed to mimic that setup,
with a camera substituting for the input devices. In the EyeKeys
system, instead of hands controlling the keyboard and mouse,
the movement of the eyes effectively controls the computer
through the use of the camera directed at the user’s face (Fig. 4).
In the case of a severely disabled user, a dual display is useful
in that an assistant can monitor the computer vision interface
on one display while the user’s application is displayed on
the other screen. A triple monitor configuration could also be
used so that the user moves his or her eyes between the three
displays. The system can also be configured to use a large
projected display instead of a monitor.

II. METHODS

The system consists of two main modules: 1) the face detec-
tor and tracker, and 2) the eye analysis module (Fig. 5). The
2-D face tracker locates the scale and position of the face and
a region containing the eyes. The eye analysis module then
refines the estimate of the location of the eyes and determines
if the eyes are looking toward the center, to the left, or to the
right of the camera. The output from the eye module can be
the input to a simple computer control interface by simulating
a key press. The user’s eye movements can be interpreted,
for example, as a selection command. While the command is
issued, the user is supposed to keep his or her head relatively

Fig. 5. EyeKeys’ system flowchart.

Fig. 6. Pyramids PColor and PMotion before the application of a low-pass
filter and PCorrelation computed by the face detection and tracking algorithm.
Regions with potential skin color are shown in white in PColor. Regions with
strong changes in brightness, which are typically due to motion, are shown in
white in PMotion. High correlation values between face subimage and template
face are visualized by bright gray levels in PCorrelation. The face was detected
in the (white cross) third smallest resolution image.

stable. The system assumes that the user is facing the camera
and the computer monitor and has the ability to move his or her
eye toward the left and right. The user’s head should be upright
and not rotated away from the camera. Although the system
can be calibrated for intersession lighting variations, the system
assumes constant intrasession illumination. Illumination is also
assumed to be primarily frontal or uniform on the face.

A. Face Detection and Tracking

The system uses color, motion, and correlation-based tem-
plate matching to detect and track faces. It can detect and track
different size faces at various distances to the camera. This
allows users to move closer or farther from the camera and
still be detected automatically. To achieve this, the system uses
image pyramids [60], as shown in Fig. 6. Each pyramid consists
of eight levels. The highest resolution image in the pyramid is
the 640 × 480 video frame, and the lowest resolution image
contains 32 × 24 pixels. In each level of the pyramid, the
system searches for a face of size 12 × 16. This approach allows
the system to operate in real time. The level of the pyramid at
which the face is detected can then be used to infer the “true”
size and location of the face, which is the size and location

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on July 06,2010 at 19:46:15 UTC from IEEE Xplore. Restrictions apply.

MAGEE et al.: HUMAN–COMPUTER INTERFACE USING SYMMETRY BETWEEN EYES TO DETECT GAZE DIRECTION 1251

Fig. 7. (Top row) Intermediate images produced during color analysis. (a) Regions with potential skin color are shown in white. (b) Low-pass filtering of
image (a). (c) Binary color mask computed by thresholding image (b). The facial features (nose and eyes) in (a) are marked as potential face pixels in (c); some
background pixels in (a) are removed in (c). (Bottom row) Intermediate images produced during motion analysis. (d) Regions with motion, computed from frame
differencing, are shown in white. (e) Low-pass filtering of image (d). (f) Binary motion mask computed by thresholding image (e).

of the face in the original video frame. In the case where the
person is far from the camera and appears relatively small in
the video frame, the system can efficiently detect the face in
a high-resolution level of the pyramid. In the case where the
person is close to the camera and therefore appears relatively
large in the original video frame, the face is detected efficiently
in a lower resolution level of the pyramid.

The face tracking algorithm computes pyramids PColor and
PMotion from the result of a color histogram lookup C and a
motion image M , as described in Sections I and II hereafter.
These pyramids are used to mask the pyramid PInput of the
input video frame to yield a pyramid PMaskedInput, which
is then used to compute a pyramid PCorrelation of template
correlation values, as described in Section III hereafter.

Face Detection and Tracking Algorithm
input: Color video, 640 × 480 pixels, state at t − 1
output: Location and scale of face: (x, y, scale).
for Each video frame It do

/∗ Color image analysis ∗/
Ct ← histogram-lookup(It)
PColor ← pyramid-decimate(Ct)
PColor ← average-filter(PColor, 12 × 16)
PColor ← threshold(PColor, 10)

/∗ Motion analysis ∗/
Mt ← |It − It−1|
PMotion ← pyramid-decimate(Mt)
PMotion ← average-filter(PMotion, 12 × 16)
PMotion ← threshold(PMotion, 10)
PMotion ← add-prior-location (PMotion, x, y, scale,

state at t − 1)
/∗ Correlation-based template matching ∗/

PInput ← pyramid-decimate(It)
PMaskedInput ← PInput&PColor&PMotion

PCorrelation ← correlate (PMaskedInput, face template)
/∗ Find location and scale of the face ∗/

(x, y, scale) ← arg-max-value(PCorrelation)
end

1) Skin Color Analysis: The color input image, which con-
tains three 8-bit values for each pixel in the red/green/blue color
space, is converted into the luminance/chrominance (YUV)

color space [61]. A binary map of likely skin pixels in the
image [Fig. 7(a)] is created by comparing the UV values of the
image to a histogram of UV values for skin pixels in a set of
training images. The color histogram was trained on images of
15 different faces. For each face, the pixels within a rectangle
covering most of the facial region were considered skin pixels.
The histogram can be retrained during system operation by
clicking on areas of skin in the live video. The histogram can
be saved and loaded so that it can be used again for the same
user or lighting conditions without retraining. This is useful if
the default histogram is not appropriate for a specific user or
environment.

The binary map of likely skin pixels [Fig. 7(a)] is smoothed
with a 5 × 5 approximation to a Gaussian filter [60], [62]
[Fig. 7(b)] and then decimated into the other pyramid levels by
removing rows and columns. In each pyramid level, a low-pass
filter that averages the grayscale values over a neighborhood of
12 × 16 is applied, which is the size of the face that the system
aims to detect in that level. Thresholding the filter output by ten
gray levels then yields a binary image of potential face regions
[Fig. 7(c)]. The filter and threshold serve to remove small areas
in the background, which are incorrectly detected as skin, and
fill in holes in the binary mask [Fig. 7(a)], which were not
detected as skin but could be part of the face.

2) Motion Detection: As in the skin color analysis, a pre-
processing mask—here, the motion mask [Fig. 7(f)]—is created
to aid face detection. The analysis is based on the assumption
that, if the user moves, frame differencing should find the pixels
where motion occurs in the image. The frame differencing
creates the motion image [Fig. 7(d)]

M(x, y) = |It(x, y) − It−1(x, y)| (1)

where the pixel values M(x, y) are the absolute difference
between the grayscale values of the current image frame It and
the previous image frame It−1 (grayscale values are provided
by the Y channel of the YUV color image). Since the frame
rate of the camera used is 15 frames per second, those frames
represent images taken approximately 67 ms apart. A higher
frame rate may require the algorithm to be modified to maintain
a similar temporal separation between frames.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on July 06,2010 at 19:46:15 UTC from IEEE Xplore. Restrictions apply.

1252 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 6, NOVEMBER 2008

Fig. 8. (Left) Average and (right) user-specific face templates used by the
correlation algorithm to find the scale and location of the face. In this user-
specific face template, the user was more brightly lit from one side.

The motion image is decimated into a pyramid. As in the
color analysis, the goal is to find a face of size 12 × 16.
A low-pass averaging filter of support 12 × 16 is therefore
applied to remove motion that cannot be due to the motion of
the face [Fig. 7(e)]. Subsequent thresholding with a threshold
value of ten gray levels then results in the binary motion mask
[Fig. 7(f)]. Fig. 6(b) shows a motion mask pyramid with the
low-pass filter disabled to better highlight pixels that contribute
to the motion image.

In the case when there is little or no motion, the system
tries to find the face near the same location and scale as found
in a previous frame. It sets the locations within five pixels of
the previously found face location to one in the binary motion
image and thus prevents the motion mask from excluding the
previous face location from subsequent processing. The two
adjacent motion pyramid levels are also modified in this way to
account for small movements toward or away from the camera,
which are not detected by the motion analysis. When the system
initializes and there is no previously detected face location, the
center of the image is set as the default prior location for all
pyramid levels.

3) Detection and Tracking Via Correlation: Template
matching based on the normalized correlation coefficient [63]
is used to estimate the location of the face. A 12 × 16 face
template [Fig. 8(a)] was created by averaging the brightness
values of eight face images aligned by a paint program. The
grayscale images in the input pyramid are convolved with the
binary images in the color and motion pyramids, which yields a
pyramid PMaskedInput of masked grayscale images [Fig. 6(c)].
The face template is then correlated with the images over
all levels of PMaskedInput in order to search for the position
and scale of the face in the scene that matches best with
the template face. The maximum correlation peak among all
of the levels indicates the location of the face. The scale of
the face is inferred by the level of the pyramid at which the
maximum is found. Masking the grayscale input image with
information from the color and motion analyses serves two
purposes. First, it eliminates possible ambiguous correlation
peaks in the background, and second, the search space for the
correlation function is reduced.

An average face template has been used previously in face
detection (e.g., [64]). EyeKeys can detect faces that were
not used in creating the default template, because the default
template is a relatively small and coarse representation of an

Fig. 9. Motion detected by frame differencing is thresholded and used as a
mask for the left–right image differencing.

“average human face.” The operator also has the option to
initialize the template with the face of the current user. This
can be done by clicking on the user’s nose in the image on the
screen and then selecting the correct face scale. Note also that,
to allow detection and tracking of the interface user’s face, there
should be only one face in the field of view of the camera.

4) Computational Complexity of Face Tracker: The corre-
lation module of the face tracker is the most computationally
expensive function of the system. The face tracker employs
multiscale techniques in order to provide real-time perfor-
mance. The template correlation over the image pyramid is
more efficient than performing multiple correlations with a
scaled template. Color and motion information is used to im-
prove accuracy and reduce the search space of the template
matching method, which further improves efficiency.

In the face detection, all of the following processes have a
computation time that is linear in the number of pixels in the
image: histogram lookup, pyramid decimation, thresholding,
frame differencing, and image masking. The averaging filter
and normalized correlation have a fixed filter size; thus, they
remain linear in the number of pixels.

B. Eye Analysis

Given the estimate of face location provided by the face
tracker, the approximate location and scale of the eyes can
be inferred from simple anthropomorphic properties: The eyes
must be located in a region above the center of the face, the left
eye must be on the right side of this image region, and the right
eye is on the left. Taking advantage of these properties, the eye
analysis module crops out two subimages containing the eyes
from the highest resolution image. The size of the subimages
depends on the scale at which the face was found. To simplify
the eye analysis, the system produces eye images of a fixed size
of 60 × 80 pixels by linear interpolation.

1) Motion Analysis and Stabilization and Eye-Corner De-
tection: Ideally, the system computes cropped eye images in
which the position of the eyes does not change even as the
head moves. However, a slight movement of the head may
not be accurately tracked by the face tracker, which would
result in an apparent movement of the position of the eyes
within the cropped eye images. Our method requires the eyes
to be located in the same position in each cropped eye image.
Motion in the cropped eye images also occurs during blinks and
eye movements. The system tries to distinguish these different
movements and only use the eye movements as a communica-
tion tool. It therefore “stabilizes” the eye images so that further
analysis can provide information about gaze direction.

The stabilization process involves frame differencing (1),
which creates a binary eye-motion image (Fig. 9) with a

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on July 06,2010 at 19:46:15 UTC from IEEE Xplore. Restrictions apply.

MAGEE et al.: HUMAN–COMPUTER INTERFACE USING SYMMETRY BETWEEN EYES TO DETECT GAZE DIRECTION 1253

Fig. 10. Two gaze examples: (Left column) A gaze straight ahead and (right
column) a gaze to the user’s left. (Top and middle) Eye images automatically
extracted from input video by face tracker and aligned by motion analysis.
(Top) Right eye. (Middle) Mirrored left eye. (Bottom) Difference between
top and middle images; zero values shown in gray. Right difference image
shows a region of low brightness difference values in black and high brightness
difference values in white.

threshold value of 30 units of grayscale differences. The
first-order moments or “centers of mass” [62] of these images
are then used to adjust the estimates of the eye locations in the
face image.

In some cases, the first-order moments of the binary
eye-motion images do not yield proper alignment of the eye
images. A secondary alignment technique based on detecting
eye corners was thus introduced. This method uses an 8 × 8
image template of an eye corner for each eye. The peak of the
normalized correlation coefficient is found in each correspond-
ing eye image. The located eye corners are then used to adjust
the cropped eye images so that the left and right eye images
will properly align for comparison (see below). A moving
history of the eye-corner locations is used to determine if the
motion-based estimate described earlier is used or if the current
best correlation match is used to adjust the eye locations.

The two eye regions are recentered at the newly estimated
eye locations. The eyes then appear in the same relative
locations in the eye images.

2) Left–Right Eye Comparisons: The following original
method is the most important contribution of this paper. The
system compares the stabilized left and right eye images to
determine where the user is looking. To accomplish this, it
mirrors the left eye image I� (Fig. 10, middle) and subtracts it
from the right eye image Ir (Fig. 10, top). If the user is looking
straight at the camera, the brightness difference is very small
(Fig. 10, bottom left), and the system concludes that the user is
looking straight. If the eyes are looking left, the left eye appears
to look right in the mirrored left eye image, and the brightness
difference of the eye images is large (Fig. 10, bottom right) and
the system can conclude that the user is looking to the side.
To determine the direction, the signed differences are projected
onto the x-axis to yield a vector a = a1, . . . , am, where

ai =
n∑

j=1

(Ir(i, j) − I�(m − i, j)) (2)

Fig. 11. Results of projecting the signed difference between right and mir-
rored left eyes onto the x-axis. (Top) Result of left-looking eyes. (Bottom)
Result of right-looking eyes.

where m is the eye image width, and n is the height. If the user
is looking left, this signed difference operation creates large
values in the projection because the dark-gray iris and pupil
pixels in I� are subtracted from the light-gray eye sclera pixels
in Ir, followed by small values in the projection because light-
gray eye sclera pixels in I� are subtracted from dark-gray iris
and pupil pixels in Ir. Vice versa, if the user is looking right,
there will be a valley in the projection, followed by a peak
(Fig. 11). If the user is looking straight, the grayscale values
of the two eye images are similar, thus creating low values in
the projection.

If the illumination of the face is not primarily uniform or
from the front, the difference of illumination of the eyes may
push the projections up or down. To compensate for this, if side
illumination is present, the projections are adjusted up or down
by 50% of the difference of the average brightness between the
left and right eye images.

Two thresholds Tp and Td are used to evaluate whether an
eye motion occurred to the right, left, or not at all. First, the
maximum and minimum components

amin = min
i

(ai) amax = max
i

(ai) (3)

of the projection vector a, where i = 1, . . . ,m, are compared
to the projection threshold Tp:

amin < −Tp amax > Tp. (4)

A threshold value Tp = 750 assures that there is a sufficient
brightness difference between the mirrored left eye and the right
eye to indicate a motion.

The second threshold Td is used to guarantee a minimal spa-
tial difference between the minimum and maximum projection
values when motion is detected. This helps prevent motion that
is not an intentional eye movement from being detected. The

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on July 06,2010 at 19:46:15 UTC from IEEE Xplore. Restrictions apply.

1254 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 6, NOVEMBER 2008

implementation uses a value of Td = 8 pixel units. Given the
indices

imin = arg min
i

(ai) imax = arg max
i

(ai) (5)

of the minimum and maximum projection values, the direction
of motion is determined as follows:

imax − imin > Td ⇒ ‘right motion’ (6)

imax − imin < −Td ⇒ ‘left motion.’ (7)

The thresholds can be adjusted to change the specificity and
sensitivity of the system in detecting eye motion and gaze
direction. The computational complexity of the eye analysis,
in particular, resampling, first-order moments, and difference
projections, is linear in the size of the input image. The search
for the minimum and maximum projection values is linear in
the width m of the cropped eye image.

Gaze Analysis Algorithm
input: Video 640 × 480, face location and scale (x, y, scale)
output: Gaze classification: left, center (default), right
for Each video frame It do

/∗ Compute eye region of interests (ROIs)∗/
ROIleft ← compute-ROI(x, y, scale, left)
ROIright ← compute-ROI(x, y, scale, right)

/∗ Crop and rescale eye images ∗/
I�,t ← crop-resize-ROI(It, ROIleft, scale)
Ir,t ← crop-resize-ROI(It, ROIright, scale)

∗/ Motion stabilization ∗/
M�,t ← |I�,t − I�,t−1|
M�,t ← threshold(M�,t, 30)
Mr,t ← |Ir,t − Ir,t−1|
Mr,t ← threshold(Mr,t, 30)
Moment� ← first-order-moment(M�,t)
Momentr ← first-order-moment(Mr,t)
I� ← recenter-eye(I�,t, Moment�, Corner-Template�)
Ir ← recenter-eye (Ir,t, Momentr, Corner-Templater)

/∗ Left-right eye comparison ∗/
/∗ M� and Mr are recentered motion masks ∗/
I� ← I�&M�, Ir ← Ir&Mr

a ← compute-difference-projection(I�, Ir)
a ← illumination-compensation(a, I�, Ir)
amin ← min(a), amax ← max(a)
imin ← arg min(a), imax ← arg max(a)
if amin < −Tp and amax > Tp then

if imax − imin > Td output: right
if imax − imin < −Td output: left

Default Output: center
end

C. Controlling the Computer With EyeKeys

The detected direction of gaze motion is used to control the
computer by sending a message to the operating system to
simulate an event, such as a keyboard press. A limit was set
on how frequently events can be triggered in order to prevent
too many events in quick succession from being triggered.

TABLE I
INTERFACE MAPPINGS FOR HCI APPLICATIONS

Experimental analysis found that setting this limit to once every
0.5 s works well. In the default version of EyeKeys, when “right
motion” is detected (6), a right arrow key press is simulated.
When “left motion” is detected (7), a left arrow key press is
simulated. The simulated keys can be changed, depending on
the application the user wishes to control. In addition to key
presses, EyeKeys can simulate left and right mouse movements.

Examples of human–computer interaction (HCI) programs
that can be used with EyeKeys are scan-based text entry pro-
grams, augmented web browsers, and some games. Table I
gives possible mappings for some applications that work under
the constraint that only two types of inputs are possible.

Scan-based text entry programs use an on-screen keyboard
or other groups of letters placed on the screen (Fig. 3) and auto-
matically scan through the choice of letters or groups of letters
[65], [66]. When the intended group or letter is highlighted,
the user can select it by moving the eyes either left or right.
Looking center means “select nothing.” Alternatively, looking
at one direction can move the highlighted selection to the next
letter, while looking the other direction can select the currently
highlighted letter. Using these methods, the computer user can
construct words or entire sentences.

EyeKeys can be used as an interface to navigate the World
Wide Web if the detected direction of gaze motion is used to
control the tab and enter keys. Looking left maps to the tab
key to move to the next link, and looking right maps to the
enter key to follow a link. Web sites yahoo.com or myway.com
have starting pages useful for navigating the Web with EyeKeys
due to their hierarchical menus. Finding a page, for example,
with the weather in Boston requires following only four links:
Weather → United States → Massachusetts → Boston. For
a satisfying browsing experience, currently available web
browsers would have to be augmented to allow the use of
the “back” button. The browser by Larson and Gips [67], for
example, asks each time a new page appears whether the user
wants to proceed or go back.

D. BlockEscape Game

The game BlockEscape was developed as a tool to test the
performance of EyeKeys as an interface. The game can also
be configured with other camera-based interfaces, such as the
Camera Mouse [28], to test their performance. The goal was
to create a game that provides test subjects with an engaging
experience and, at the same time, gathers statistics about the
interface performance. This was a challenging task because
people with severe disabilities can typically only play for short

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on July 06,2010 at 19:46:15 UTC from IEEE Xplore. Restrictions apply.

MAGEE et al.: HUMAN–COMPUTER INTERFACE USING SYMMETRY BETWEEN EYES TO DETECT GAZE DIRECTION 1255

Fig. 12. Screenshot of the game BlockEscape. As the white block falls toward
the bottom of the screen, the player navigates it through the holes in the black
walls, which move upward, by initiating “move block left” or “move block
right” commands.

periods of time, and during this time, performance data must be
collected.

In the BlockEscape game (Fig. 12), the screen contains a
number of horizontal walls that are separated vertically by a
fixed distance. Each wall has one or more holes of various
widths. The number of and distance between walls and the
number and width of holes are parameters that can be set before
playing. At the beginning of the game, a block appears on top
of the screen. The goal of the game is for the user to lead the
block through the holes in the walls until it reaches the bottom
of the screen. The game was implemented so that the user only
needs to initiate the block’s horizontal movement by issuing
“move block left” or “move block right” commands. The block
continues to move in the initiated direction until the user issues
a command for movement in the opposite direction. The block’s
vertical motion is automatic—when a hole is reached, the block
“falls through” to the next wall or at bottom of the screen. The
speed of the block can be set before playing.

The game can be configured so that, at the beginning of play-
ing, the screen is empty, and during playing, the walls appear
at the bottom of the screen and move upward at a constant
rate. When a wall reaches the user’s block, it pushes the block
upward. The user wins if he or she leads the block through the
holes in the walls to the bottom of the screen and loses if a wall
pushes the block up to the top of the screen. The higher the
wall speed is set, the more difficult the game becomes. The wall
sequence of a particular play can be reconstructed, allowing the
user to play the same game multiple times. This also allows
different users to play the same game, which was useful for
the analysis of EyeKeys. During playing, usage statistics, in
particular, the departure of the user-controlled block from an
optimal path, were computed based on the positions of the
block, walls, and holes and compiled into Extensible Markup
Language documents. In the case for games with single-hole
walls, the distance di,t = |xi,t − hi| from the block’s position
xi,t on wall i at time t to hole hi was computed and compared
with previous distance di,t−1. A binary deviation score bi,t was
defined to measure whether the block moved closer or farther
away from the hole:

bi,t =
{

0, if di,t < di,t−1 or t = 1
1, otherwise

(8)

for t = 1, . . . , Ti, where Ti is the number of the game-update
cycles during which the block is on wall i. Note that this
deviation measure can be easily extended to include cases with
multiple holes in a wall. The departure D from the optimal path
was accumulated for the n walls of the game:

D =
n∑

i=1

Ti∑
t=1

bi,t. (9)

The optimal path could be easily determined by a player. Thus,
when the keyboard was used to control the block movement, D
was zero. When a video-based interface was used, the nonzero
values of D were assumed to be due to false detections of the
interface rather than misjudgments of the player. Here, the term
“false detection” refers to two problems—false classification,
for example, the user wanted to issue a move-left command
by looking left and the interface falsely detected a right look.
It also refers to false positive detection, i.e., the user looked
around without the intent to issue a command, but the system
interpreted the look as a command.

III. EXPERIMENTS AND RESULTS

A. EyeKeys Detection and Classification Experiment

Experiments were conducted to determine if the system can
detect when a user intentionally looks to the left or to the right.

1) Methodology: EyeKeys was tested with the camera
mounted on the end of an articulated arm, which allowed the
camera to be optimally positioned in front of the computer
monitor (Fig. 4). In this experiment, the Universal Serial Bus
(USB) camera used was a Logitech Quickcam Pro 4000 with a
retail price of $79.99 in 2004. (We also observed the system in
use with other cameras of the same and different models.) The
tests were run on an Athlon 2100 computer and conducted at the
Image and Video Computing laboratory at Boston University.

The default face template used by the tracker was first
updated to include the test subject (to isolate the performance
of the eye analysis method). Test subjects were told to look at
the computer monitor. When asked to look left, the tester was
instructed to move his or her eyes to look at a target point to the
left of the monitor. A similar target was to the right side of the
monitor. After the look was completed, the user was asked to
look back at the monitor.

A random sequence of 20 looks was created: ten to the left
and ten to the right. The same sequence was used for all the test
subjects. The system’s classification of each look was recorded.
If the system did not recognize a look, the user was asked to
repeat it. The number of tries required to make a recognition
was recorded. The first experiment involved tests without the
eye-corner stabilization method, while the second experiment
included the eye-corner stabilization method.

2) Results: In the first experiment, the EyeKeys system was
tested by eight able-bodied people. The faces of all test subjects
were correctly tracked in both location and scale while moving
between 50 and 150 cm from the camera. The system correctly
classified 140 (87.5%) of the 160 detected looks to the left
or right. For the system to detect 160 looks, the users had to
make 248 attempts. On average, 1.77 (248/140) actual looks

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on July 06,2010 at 19:46:15 UTC from IEEE Xplore. Restrictions apply.

1256 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 6, NOVEMBER 2008

TABLE II
NUMBER OF ACTUAL AND DETECTED LEFT AND RIGHT

LOOKS IN TESTING THE EYEKEYS SYSTEM

TABLE III
NUMBER OF ACTUAL AND DETECTED LEFT AND RIGHT LOOKS IN

TESTING THE EYEKEYS SYSTEM, WITH EYE-CORNER

STABILIZATION METHOD

are made for each correctly identified look event, which would
correspond to an overall detection rate of 56.4%. The high
number of look attempts and low overall detection rate were
due to high thresholds that were chosen to avoid false detection
of looks, since it was deemed better to miss a look than to
misclassify a look. The results are summarized in Table II.
For some of the test subjects, EyeKeys was more successful
in detecting and classifying looks. For example, it correctly
identified all 20 looks of one subject who only made 24 actual
looks (a true positive detection rate of 100% and a false negative
detection rate of 83%).

Cases where an incorrect recognition (false negative or pos-
itive detections, or false classifications) occurred were mostly
due to a problem with aligning the right and mirrored-left eyes
using the method based on the first-order moment of eye differ-
ence image described earlier. Possible solutions to this problem
are discussed in Section IV. Other incorrect recognitions were
due to the system missing a look in one direction but detecting
eye movement back to the center position as a move in the
opposite direction (i.e., a false negative detection, followed
immediately by a false positive detection).

In the second experiment, EyeKeys was tested with four sub-
jects using the same methodology but with the eye-corner sta-
bilization intended to overcome the problem aligning the right
and mirrored-left eyes, as described earlier. These subjects were
a subset of the eight able-bodied subjects from the previous
experiment. Each subject was observed until 20 detections had
been achieved. The overall detection rate increased from 56.4%
in the first experiment to 75/94 = 79.7% in this experiment
(Table III).

B. Side Illumination Experiment

An experiment was conducted on the performance improve-
ment of the EyeKeys classification system under a side illumi-
nation condition.

1) Methodology: This experiment followed similar method-
ology as the classification experiment described in the previous
section. A table lamp was set up to illuminate the subject’s
face from the side, while ambient room lighting remained
on. A shade was used on the lamp, and it was angled away

TABLE IV
NUMBER OF ACTUAL AND DETECTED LEFT AND RIGHT LOOKS IN

TESTING THE EYEKEYS SYSTEM, WITH AND WITHOUT SIDE

ILLUMINATION ADJUSTMENT METHOD

from the face to diffuse the lighting slightly (otherwise, the
lighting would saturate the face image on one side). A sequence
of looks was observed first without the illumination adjust-
ment method and then repeated again with the illumination
adjustment method. Three subjects, which were a subset of
the subjects in the other experiments, were observed for this
experiment. The subjects were familiar with the system at this
point; therefore, learning during this experiment was unlikely
to be a factor in the results.

2) Results: The results of this experiment show an improve-
ment of performance of the system under side illumination
conditions with the illumination adjustment method enabled.
The overall detection rate increased from 45/101 = 44.6%
without side illumination adjustment to 53/73 = 72.6% with
the illumination adaptation (Table IV).

C. BlockEscape Experiment

An experiment was conducted to evaluate the use of EyeKeys
as an interface to a possible real-world application—here, the
BlockEscape game.

1) Methodology: Four able-bodied subjects were read the
rules of BlockEscape, followed by two demonstrations of the
game using a mouse. The Camera Mouse was chosen in this
experiment so that the effectiveness of EyeKeys could be
compared to a previously developed HCI system for people
with disabilities. The keyboard was selected as a control against
the video-based HCI systems. All subjects were unfamiliar with
BlockEscape, EyeKeys, and the Camera Mouse.

In the “practice phase,” the subjects were allowed to become
familiar with the game and the interfaces. They played up to
three trial games, or for up to 3 min, on the keyboard, Camera
Mouse, and EyeKeys. They were then asked to play at least one
game for 30 s with each device. For the “trial phase,” the test
subjects played three games on each input device.

2) Results: Users had different levels of success with Eye-
Keys. One user mastered EyeKeys quickly, winning all three
games, but had trouble with the Camera Mouse: losing one
game and performing poorly on another. The other users im-
proved their performance on succeeding games with EyeKeys.
Table V summarizes the results. The number of errors made by
the camera-based interfaces was small—on average, less than
three misclassifications per game—and the users were thus able
to win the game at a high rate.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on July 06,2010 at 19:46:15 UTC from IEEE Xplore. Restrictions apply.

MAGEE et al.: HUMAN–COMPUTER INTERFACE USING SYMMETRY BETWEEN EYES TO DETECT GAZE DIRECTION 1257

TABLE V
NUMBER OF DEPARTURES D FROM THE OPTIMAL PATH AND WINS FOR

FOUR USERS EMPLOYING THREE DEVICES TO PLAY BLOCKESCAPE

D. System Limitation Experiments

Experiments were conducted to determine the limitations of
the system when the computer user’s head was tilted forward
or sideways, turned sideways, or located at different distances
from camera and when the angle between the user’s center and
side looks was changed.

1) Methodology: During the head orientation experiments,
the subjects sat in front of the computer using the system
while slowly turning or tilting their heads. The video of these
experiments, recorded by a second camera, was then analyzed
to determine at which head orientations the EyeKeys system
performed reliably. Distance limits were similarly obtained by
moving the subjects’ heads to predetermined distances from the
camera and observing EyeKeys’ performance. The minimum
eye angle was determined by placing targets for a user to move
their eyes to the side and adjusting them closer or further from
center.

2) Results: The head orientation experiments determined
that the face tracker generally fails during a left or right head
turn of approximately 39◦ and a tilt of about 20◦. The head
tracker does not work well when the user’s head is tilted
sideways. The face was tracked reliably for a camera-to-head
distance of 70 to 160 cm. A look had to be at least 30◦ to the
left or right sides for a reliable eye-motion detection.

E. Real-Time Performance of System

To be a useful human–computer interface, a video-based
face and eye analysis system must run in real time and must
not use all of the processing power of the computer, since
the same computer has to run both the camera-based interface
as well as the user program, such as a text entry program or
game. The EyeKeys system worked within these constraints.
It achieved real-time performance at 15 frames per second,
which is the limit of the USB camera at 640 × 480 resolu-
tion, while application programs, such as the BlockEscape
game, were running concurrently. The windows task manager
reports 58%–62% CPU usage while only EyeKeys is running.

IV. DISCUSSION

A. Testing Experience and Comparisons

The test subjects had little difficulty learning the EyeKeys
interface. After only a minute of practice, able-bodied users
could use it to play the BlockEscape game.

The performance of EyeKeys was similar to the perfor-
mance of the Camera Mouse. However, when the tracking
method failed in the Camera Mouse, the interface performance
decreased dramatically, and manual intervention to reset the
tracker was needed. With EyeKeys, a false detection could be

easily rectified in applications, such as BlockEscape, that are
forgiving of incorrect inputs—the user only needed to look in
the appropriate direction to correct a mistake.

Some users preferred EyeKeys over the Camera Mouse
because EyeKeys did not require them to move their heads
in order to interact with the computer. Others did not like to
move their eyes to interact with the computer and preferred the
Camera Mouse. Users of both interfaces had to face the “Midas
Touch Problem” [68]—in order to avoid issuing not-intended
commands, they had to restrict their natural movements.
Camera Mouse users could not turn their heads, EyeKeys users
could not look around to observe their environment. EyeKeys’
gaze analysis algorithm, however, was able to correctly in-
terpret some eye movements that users made to observe the
computer screen, as long as these movements were not too rapid
to inadvertently trigger computer commands.

It initially seems awkward for a person to have to look
away from the screen to make a selection. When working
with the system, however, we experienced that the required
rapid movement of the eye feels much like a natural saccadic
eye movement. It is over so quickly that it does not seem
to distract the user’s focus of attention on the screen. This
is demonstrated with a video: http://www.cs.bu.edu/fac/betke/
videos/EyeControlled-BlockEscape-Game.avi. If looking away
from the screen causes a problem for some users, a possible
solution would be to use either a multimonitor configuration or
a large projected display.

B. Initial Experience: Users With Severe Disabilities

The preliminary testing of EyeKeys involving six subjects
with severe paralysis has been promising. The first subject
was a nonverbal person with severe cerebral palsy who could
control his eyes and head movements. He also had some in-
voluntary head and limb movements. His primary method of
communication was small head nods to spell out words and
sentences with an assistant. Subject 1 was also able to use
a computer by pressing a switch with his head or using the
Camera Mouse system. These observations were conducted at
the HCI laboratory at Boston University.

It was first tested if the EyeKeys system could detect and
track the subject’s head and eyes. One problem was imme-
diately apparent: The subject had difficulty holding his head
straight up. Since the face detector used a default template
of an upright face, it was not immediately able to locate the
head correctly. Manually reinitializing the face template solved
this initial problem. Since the eye analysis algorithm assumed
symmetry across a vertical face as well, repositioning the
subject’s body in the chair was needed so that the subject could
more easily hold his head vertically.

It was then tested if the EyeKeys system could detect when
subject 1 intentionally looked to the left or to the right. The
system was able to correctly identify most of the times when
the subject looked to one side without moving his head. Many
of the attempts he made were not correctly identified because
he also moved his head to the side to try to look at the target.

Subject 1 was asked to use the EyeKeys system to move a
window left and right across the screen. In most cases, it was

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on July 06,2010 at 19:46:15 UTC from IEEE Xplore. Restrictions apply.

1258 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 6, NOVEMBER 2008

observed that he was able to move the window in the direction
that he was asked. Sometimes, involuntary head motion would
cause the system to detect an unintentional eye event.

It was more difficult for subject 1 to play the BlockEscape
game when using EyeKeys than when using the Camera Mouse.
The subject had used the Camera Mouse to control a computer
in the past and was therefore accustomed to controlling the
computer with his head. At the beginning of a game, he could
not help moving his head in an attempt to play while, for the
most part, keeping his eyes fixed on the computer screen. Head
movements had been his only method of communicating, so
it might have been difficult for him to try to use only eye
movements while keeping his head still.

Five additional subjects were tested with the system to
qualitatively evaluate the performance of the system classi-
fication. These subjects were observed at The Boston Home
in Dorchester, MA. Subject 2, who is a 50-year-old woman
with MS, was able to move her eyes to both the left and
right. Initially, she was not able to hold her head in a vertical
position, which caused both the head tracking and eye analysis
to fail. After adjusting her position and the camera position, the
system was able to detect many of her eye movements correctly.
Sometimes, the system would miss a classification because the
eyes did not move quickly to the side. More than once, the
system was confused when she moved her eyes first to one
direction and then to the other direction.

Subject 3 was a 61-year-old woman with MS. The system
was able to detect her eye motion to the left most of the time.
However, she was unable to move her eyes to the right far
enough to cause a reliable detection. Because of this, her use
of the system was limited to single inputs with left looks.

Subjects 4–6 all had the ability to move their heads and
communicate verbally. Subjects 4 and 5 were able to use the
EyeKeys system to play the BlockEscape game for a short
period of time. Subject 6, however, had difficulty keeping
one eyelid open to the extent needed by EyeKeys to do gaze
analysis. Subject 4 observed that it was somewhat difficult to
play the game because EyeKeys required him to move his eyes
off the computer screen (where the game is being displayed).
Subject 5 observed that he would often try to move his head in
the direction he wanted to control the block instead of his eyes.

C. Discussion of Design Choices

The two thresholds of the gaze analysis algorithm are ad-
justable. Increasing threshold Tp on the projection values yields
a system that is more likely to miss an intentional look but
less likely to misclassify a look. Increasing threshold Td on the
distance between projection peak and valley has the effect of
requiring that the looks be faster and more deliberate. While
this can decrease false positive detections, and thus addresses
the Midas Touch problem, it also makes the system difficult
and uncomfortable to use.

The classical image pyramid consists of images that are half
the resolution of the previous pyramid level. The use of a
classical pyramid would require the face to be found at discrete
size levels that are far apart, i.e., the face appearance in the
image would need to halve in size in order to be found in a

higher pyramid level. The pyramid used in this system consists
of intermediate levels, so that the face can be found at more size
levels. The template correlation method could locate a face as it
moved close or far from the cameras at these intervals, whereas
it would have had difficulty with the levels used in a classical
image pyramid.

The default face template allowed most people to use the
system without manual initialization. There were some cases,
however, when the user’s face image differed significantly from
the average face and the default template needed to be updated.
The ability to update the face template was particularly useful
when the user’s face and the faces that produced the default face
template were illuminated differently. While a tracker based on
the normalized correlation coefficient can work with uniform
intensity changes [63], problems occur if the user becomes
more brightly lit from one side. Updating the template solves
this. It is also convenient that the template can be saved in one
session and reloaded in another, so that it does not have to be
retrained for the same user or lighting conditions.

It is important to note that the eye analysis method is inde-
pendent of the face detection and tracking method. The face
detection and tracking method could be completely replaced by
another suitable method that would be able to output the loca-
tion of the center of the face and an approximate scale. The eye
stabilization method can then adjust the location of the cropped
eye images based on the provided location and scale of the face.

The system was designed around hardware that would be
easily accessible to computer users, such as USB webcams,
versus much more expensive head-mounted optics systems
(e.g., [5]). While these optic systems focus on gaze tracking, our
system focuses on detecting rapid left and right eye movements
to serve as a command input for HCI. Higher resolution images
may be needed to allow detections of horizontal gaze angles
smaller than the extreme left and right. Our method does
not easily extend to the analysis of vertical eye movements:
The left and right eyes are not symmetrical if mirrored ver-
tically, and eyelids may cover part of the eye when a user
looks down.

Other possibilities for extending the EyeKeys system to
serve people with severe disabilities include the analysis of the
duration that the user looks left or right and the addition of
a blink analysis module [29], which would give the interface
additional events that can be mapped to commands. The number
of available commands could also be increased by trying to
detect more than three gaze directions as described earlier.
Higher resolution eye images would allow a feature detector
to find the corners of the eyes, the irises, and the pupils. The
analysis of the difference projection could be done by fitting a
function to the projection curve. The parameters of the function
could then be used as a measure for the degree that the eyes are
looking away from center.

D. Additional Applications of a Gaze-Detection System

Perceptual User Interfaces: Perceptual user interfaces have
been studied to find new ways for people to control electronic
devices in their homes (e.g., [69] and [70]). EyeKeys has the
potential to become an integral part of such an interface that,

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on July 06,2010 at 19:46:15 UTC from IEEE Xplore. Restrictions apply.

MAGEE et al.: HUMAN–COMPUTER INTERFACE USING SYMMETRY BETWEEN EYES TO DETECT GAZE DIRECTION 1259

for example, can turn on the television by detecting eye gaze
and turn it off when the user falls asleep.

Linguistic Communications Research: EyeKeys may be use-
ful in linguistic and communication research, for example, to
study facial feature movements during sign language conversa-
tions. EyeKeys could aid in the annotation of video sequences
of such conversation, which are currently analyzed manually
with the SignStream system [71], as part of the American Sign
Language Linguistic Research Project at Boston University.

Store Attention Monitoring: A store might want to gather
information on what products and displays are interesting or
eye catching to potential customers. A computer vision system
that detects a customer’s gaze direction would be able to gather
statistics that could be used in marketing research.

Vehicle Driver Monitoring: There have been significant ef-
forts in industry and academia to explore methods for automatic
monitoring of drivers for accident avoidance systems (e.g.,
[72]–[74]). This involves the analysis of eye blinks and eyelid
positions to determine if the driver is falling asleep. The face
detection and gaze analysis techniques developed for EyeKeys
may be useful here.

E. Summary and Conclusion

Assistive technology enables people with severe paralysis to
communicate their thoughts and emotions. It also allows them
to exhibit their intellectual potential—sometimes disproving
a previous diagnosis of a mental disability. To provide such
communication technology, we have created the camera-based
human–computer interface EyeKeys, which is a new tool to
use gaze direction to control the computer. The EyeKeys’ face
tracker combines existing techniques in a new way that allows
the face to be tracked quickly as a means to locate the eyes.
The method of mirroring and projecting the difference be-
tween the eyes is a novel approach to detecting to which side
the eyes look. Experiments with EyeKeys have shown that it
is an easily used computer input and control device for able-
bodied people and has the potential to become a practical tool
for people with severe paralysis.

ACKNOWLEDGMENT

The authors would like to thank the subjects for their enthusi-
asm and patience in testing EyeKeys, G. Kollios and S. Sclaroff
for helpful discussions, and P. Carey and D. Young-Hong for
assistance.

REFERENCES

[1] J.-D. Bauby, The Diving Bell and the Butterfly. New York: Vintage
Books, 1997.

[2] The Diving Bell and the Butterfly, 2007, France: Pathé Renn Productions.
Film, Directed by Julian Schnabel.

[3] National Multiple Sclerosis Society. [Online]. Available:http://www.
nationalmssociety.org/

[4] ALS Association. [Online]. Available: http://www.alsa.org/
[5] Bedford, MA: Appl. Sci. Lab. [Online]. Available: http://www.a-s-l.com
[6] Y. L. Chen, F. T. Tang, W. H. Chang, M. K. Wong, Y. Y. Shih, and

T. S. Kuo, “The new design of an infrared-controlled human–computer
interface for the disabled,” IEEE Trans. Rehabil. Eng., vol. 7, no. 4,
pp. 474–481, Dec. 1999.

[7] Don Johnston, Inc., Infrared head-mounted mouse alternative. Penny &
Giles HeadWay. [Online]. Avialable: http://www.donjohnston.com

[8] D. G. Evans, R. Drew, and P. Blenkhorn, “Controlling mouse pointer
position using an infrared head-operated joystick,” IEEE Trans. Rehabil.
Eng., vol. 8, no. 1, pp. 107–117, Mar. 2000.

[9] LC Technologies, Eyegaze system. [Online]. Available: http://www.
lctinc.com

[10] Madentec. [Online]. Available: http://www.madentec.com
[11] Tash solutions. [Online]. Available: http://www.tashinc.com
[12] R. Vaidyanathan, B. Chung, L. Gupta, H. Kook, S. Kota, and J. D. West,

“Tongue-movement communication and control concept for hands-free
human–machine interfaces,” IEEE Trans. Syst., Man, Cybern. A, Syst.,
Humans, vol. 37, no. 4, pp. 533–546, Jul. 2007.

[13] L. Young and D. Sheena, “Survey of eye movement recording methods,”
Behav. Res. Meth. Instrum., vol. 7, no. 5, pp. 397–429, 1975.

[14] R. Barea, L. Boquete, M. Mazo, and E. López, “System for assisted
mobility using eye movements based on electrooculography,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 10, no. 4, pp. 209–218, Dec. 2002.

[15] P. DiMattia, F. X. Curran, and J. Gips, An Eye Control Teaching De-
vice for Students Without Language Expressive Capacity: EagleEyes.
Lewiston, NY: Edwin Mellen Press, 2001. [Online]. Available: http://
www.bc.edu/eagleeyes

[16] Y. Ebisawa, “Improved video-based eye-gaze detection method,” IEEE
Trans. Instrum. Meas., vol. 47, no. 4, pp. 948–955, Aug. 1998.

[17] A. Gee and R. Cipolla, “Determining the gaze of faces in images,” Image
Vis. Comput., vol. 12, no. 18, pp. 639–647, Dec. 1994.

[18] T. E. Hutchinson, K. P. White, Jr., W. N. Martin, K. C. Reichert,
and L. A. Frey, “Human–computer interaction using eye-gaze input,”
IEEE Trans. Syst., Man, Cybern., vol. 19, no. 6, pp. 1527–1533,
Nov./Dec. 1989.

[19] Q. Ji and Z. Zhu, “Eye and gaze tracking for interactive graphic display,”
Mach. Vis. Appl., vol. 15, no. 3, pp. 139–148, Jul. 2004.

[20] A. Kapoor and R. W. Picard, “Real-time, fully automatic upper facial fea-
ture tracking,” in Proc. 5th IEEE Int. Conf. Autom. Face Gesture Recog.,
Washington, DC, May 2002, pp. 10–15.

[21] C. H. Morimoto, D. Koons, A. Amir, and M. Flickner, “Pupil detection
and tracking using multiple light sources,” Image Vis. Comput., vol. 18,
no. 4, pp. 331–335, Mar. 2000.

[22] G. A. Myers, K. R. Sherman, and L. Stark, “Eye monitor: Microcomputer-
based instrument uses an internal mode to track the eye,” Computer,
vol. 24, no. 3, pp. 14–21, Mar. 1991.

[23] B. Noureddin, P. D. Lawrence, and C. F. Man, “A non-contact device
for tracking gaze in a human computer interface,” Comput. Vis. Image
Underst., vol. 98, no. 1, pp. 52–82, Apr. 2005.

[24] K. R. Park, “A real-time gaze position estimation method based on a 3-D
eye model,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 37, no. 1,
pp. 199–212, Feb. 2007.

[25] S.-W. Shih and J. Liu, “A novel approach to 3-D gaze tracking using stereo
cameras,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 1,
pp. 234–245, Feb. 2004.

[26] D. H. Yoo, J. H. Kim, B. R. Lee, and M. J. Chung, “Non-contact eye gaze
tracking system by mapping of corneal reflections,” in Proc. 5th IEEE
Int. Conf. Autom. Face Gesture Recog., Washington, DC, May 2002,
pp. 94–99.

[27] D. H. Yoo and M. J. Chung, “Non-intrusive eye gaze estimation without
knowledge of eye pose,” in Proc. 6th IEEE Int. Conf. Autom. Face Gesture
Recog., Seoul, Korea, May 2004, pp. 785–790.

[28] M. Betke, J. Gips, and P. Fleming, “The Camera Mouse: Visual tracking
of body features to provide computer access for people with severe dis-
abilities,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 10, no. 1, pp. 1–10,
Mar. 2002.

[29] K. Grauman, M. Betke, J. Lombardi, J. Gips, and G. R. Bradski, “Commu-
nication via eye blinks and eyebrow raises: Video-based human–computer
interfaces,” Univers. Access Inf. Soc., vol. 2, no. 4, pp. 359–373,
Nov. 2003.

[30] J. Gips and J. Gips, “A computer program based on Rick Hoyt’s spelling
method for people with profound special needs,” in Proc. ICCHP,
Karlsruhe, Germany, Jul. 2000, pp. 245–250.

[31] K. Schwerdt and J. L. Crowley, “Robust face tracking using color,” in
Proc. 4th IEEE Int. Conf. Autom. Face Gesture Recog., Grenoble, France,
Mar. 2000, pp. 90–95.

[32] O. Takami, K. Morimoto, T. Ochiai, and T. Ishimatsu, “Computer inter-
face to use head and eyeball movement for handicapped people,” in Proc.
IEEE Int. Conf. Syst., Man Cybern. Intell. Syst. 21st Century, 1995, vol. 2,
pp. 1119–1123.

[33] E. Hjelmas and B. K. Low, “Face detection: A survey,” Comput. Vis.
Image Underst., vol. 83, no. 3, pp. 236–274, Sep. 2001.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on July 06,2010 at 19:46:15 UTC from IEEE Xplore. Restrictions apply.

1260 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 6, NOVEMBER 2008

[34] M.-H. Yang, D. J. Kriegman, and N. Ahuja, “Detecting faces in images: A
survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 1, pp. 34–58,
Jan. 2002.

[35] R.-L. Hsu, M. Abdel-Mottaleb, and A. K. Jain, “Face detection in color
images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 696–
706, May 2002.

[36] H. A. Rowley, S. Baluja, and T. Kanade, “Neural network-based face
detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 1, pp. 23–
38, Jan. 1998.

[37] H. Wu, Q. Chen, and M. Yachida, “Face detection from color images
using a fuzzy pattern matching method,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 21, no. 6, pp. 557–563, Jun. 1999.

[38] M. LaCascia, S. Sclaroff, and V. Athitsos, “Fast, reliable head tracking
under varying illumination: An approach based on robust registration of
texture-mapped 3D models,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 22, no. 4, pp. 322–336, Apr. 2000.

[39] R. Stiefelhagen, J. Yang, and A. Waibel, “A model-based gaze tracking
system,” Int. J. Artif. Intell. Tools, vol. 6, no. 2, pp. 193–209, 1997.

[40] R. Féraud, O. J. Bernier, J.-E. Viallet, and M. Collobert, “A fast and
accurate face detector based on neural networks,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 23, no. 1, pp. 42–53, Jan. 2001.

[41] M. Betke and J. Kawai, “Gaze detection via self-organizing gray-scale
units,” in Proc. Int. Workshop Recog., Anal., Tracking Faces Gestures
Real-Time Syst., Kerkyra, Greece, Sep. 1999, pp. 70–76.

[42] M. Betke, W. J. Mullally, and J. Magee, “Active detection of eye
scleras in real time,” in Proc. IEEE Workshop Human Model., Anal.
Synth., Hilton Head Island, SC, Jun. 2000. [Online]. Available: http://
www.cs.bu.edu/faculty/betke/papers/betke-mullally-magee.pdf

[43] D. Beymer and M. Flickner, “Eye gaze tracking using an active stereo
head,” in Proc. CVPR, Madison, WI, Jun. 2003, vol. 2, pp. 451–458.

[44] J. P. Ivins and J. Porril, “A deformable model of the human iris for
measuring small three-dimensional eye movements,” Mach. Vis. Appl.,
vol. 11, no. 1, pp. 42–51, Jun. 1998.

[45] K.-N. Kim and R. S. Ramakrishna, “Vision-based eye-gaze tracking for
human computer interface,” in Proc. IEEE Int. Conf. Syst., Man, Cybern.,
Tokyo, Japan, Oct. 1999, vol. 2, pp. 324–329.

[46] S. Sirohey, A. Rosenfeld, and Z. Duric, “A method of detecting and
tracking irises and eyelids in video,” Pattern Recognit., vol. 35, no. 5,
pp. 1389–1401, Jun. 2002.

[47] Y. Tian, T. Kanade, and J. Cohn, “Dual-state parametric eye tracking,” in
Proc. 4th IEEE Int. Conf. Autom. Face Gesture Recog., Grenoble, France,
Mar. 2000, pp. 110–115.

[48] J.-G. Wang and E. Sung, “Study on eye gaze estimation,” IEEE Trans.
Syst., Man, Cybern. B, Cybern., vol. 32, no. 3, pp. 332–350, Jun. 2002.

[49] J. Zhu and J. Yang, “Subpixel eye gaze tracking,” in Proc. 5th IEEE
Int. Conf. Autom. Face Gesture Recog., Washington, DC, May 2002,
pp. 124–129.

[50] D. W. Hansen and A. E. C. Pece, “Eye tracking in the wild,” Comput. Vis.
Image Underst., vol. 98, no. 1, pp. 155–181, Apr. 2005.

[51] T. Kawaguchi and M. Rizon, “Iris detection using intensity and
edge information,” Pattern Recognit., vol. 36, no. 2, pp. 549–562,
Feb. 2003.

[52] H. Wu, Q. Chen, and T. Wada, “Visual line estimation from a single image
of two eyes,” in Proc. 17th ICPR, Cambridge, U.K., Aug. 2004, vol. 3,
pp. 290–293.

[53] X. Xie, R. Sudhakar, and H. Zhuang, “Real-time eye feature tracking from
a video image sequence using Kalman filter,” IEEE Trans. Syst., Man,
Cybern., vol. 25, no. 12, pp. 1568–1577, Dec. 1995.

[54] Z.-H. Zhou and X. Geng, “Projection functions for eye detection,” Pattern
Recognit., vol. 37, no. 5, pp. 1049–1056, May 2004.

[55] S. Kawato and N. Tetsutani, “Detection and tracking of eyes for gaze-
camera control,” Image Vis. Comput., vol. 22, no. 12, pp. 1031–1038,
Oct. 2004.

[56] T. J. Darrell, I. A. Essa, and A. P. Pentland, “Task-specific gesture analysis
in real-time using interpolated views,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 18, no. 12, pp. 1236–1242, Dec. 1996.

[57] J. J. Magee, “A real-time human–computer interface based on gaze de-
tection from a low-grade video camera,” M.S. thesis, Dept. Comput. Sci.,
Boston Univ., Boston, MA, May 2004.

[58] J. J. Magee, M. Betke, M. R. Scott, and B. N. Waber, “A real-time
vision interface based on gaze detection—EyeKeys,” in Real-Time Vi-
sion for Human–Computer Interaction, B. Kisacanin, V. Pavlovic, and
T. Huang, Eds. Berlin, Germany: Springer Verlag, Jun. 2005.

[59] J. J. Magee, M. R. Scott, B. N. Waber, and M. Betke, “EyeKeys: A
real-time vision interface based on gaze detection from a low-grade
video camera,” in Proc. IEEE Workshop RTV4HCI, Washington, DC,
Jul. 2004, p. 8.

[60] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden,
“Pyramid methods in image processing,” RCA Eng., vol. 29, no. 6, pp. 33–
41, 1984.

[61] J.-C. Terrillon and S. Akamatsu, “Comparative performance of different
chrominance spaces for color segmentation and detection of human faces
in complex scene images,” in Proc. 4th IEEE Int. Conf. Autom. Face
Gesture Recog., Grenoble, France, Mar. 2000, pp. 54–61.

[62] B. K. P. Horn, Robot Vision. Cambridge, MA: MIT Press, 1986.
[63] M. Betke and N. C. Makris, “Recognition, resolution and complexity of

objects subject to affine transformation,” Int. J. Comput. Vis., vol. 44,
no. 1, pp. 5–40, Aug. 2001.

[64] C. Liu, “A Bayesian discriminating features method for face detection,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 6, pp. 725–740,
Jun. 2003.

[65] L. A. Frey, K. P. White, Jr., and T. E. Hutchinson, “Eye-gaze word
processing,” IEEE Trans. Syst., Man, Cybern., vol. 20, no. 4, pp. 944–
950, Jul./Aug. 1990.

[66] R. C. Simpson and H. H. Koester, “Adaptive one-switch row-column
scanning,” IEEE Trans. Rehabil. Eng., vol. 7, no. 4, pp. 464–473,
Dec. 1999.

[67] H. Larson and J. Gips, “A web browser for people with quadriplegia,” in
Universal Access in HCI: Inclusive Design in the Information Society,
C. Stephanidi, Ed. Mahwah, NJ: Lawrence Erlbaum Assoc., 2003,
pp. 226–230.

[68] R. J. K. Jacob, “The use of eye movements in human–computer interaction
techniques: What you look at is what you get,” ACM Trans. Inf. Syst.,
vol. 9, no. 3, pp. 152–169, Apr. 1991.

[69] R. Sharma, V. I. Pavlovic, and T. S. Huang, “Toward multimodal
human–computer interfaces,” Proc. IEEE, vol. 86, no. 5, pp. 853–869,
May 1998.

[70] M. Turk and G. Robertson, “Perceptual user interfaces,” Commun. ACM,
vol. 43, no. 3, pp. 32–34, Mar. 2000.

[71] C. Neidle, S. Sclaroff, and V. Athitsos, “SignStream: A tool for linguistic
and computer vision research on visual–gestural language data,” Behavior
Res. Meth., Instrum., Comput., vol. 33, no. 3, pp. 311–320, 2001.

[72] M. Betke and W. J. Mullally, “Preliminary investigation of real-time mon-
itoring of a driver in city traffic,” in Proc. Int. Symp. Intell. Veh., Dearborn,
MI, Oct. 2000, pp. 563–568.

[73] Q. Ji and X. Yang, “Real-time eye, gaze, and face pose tracking for
monitoring driver vigilance,” Real-Time Imaging, vol. 8, no. 5, pp. 357–
377, Oct. 2002.

[74] D. Tock and I. Craw, “Tracking and measuring drivers’ eyes,” Image Vis.
Comput., vol. 14, no. 8, pp. 541–547, 1996.

John J. Magee received the B.A. degree from
Boston College, Chestnut Hill, MA, in 2001 and the
M.A. degree from Boston University, Boston, MA,
in 2004. He is currently working toward the Ph.D.
degree in the Computer Science Department, Boston
University.

He has previously worked for DaimlerChrysler
Research, Ulm, Germany, and for The Boston Red
Sox. His research interests include computer vision
and its applications for human–computer interfaces.

Margrit Betke received the Ph.D. degree in com-
puter science and electrical engineering from the
Massachusetts Institute of Technology, Cambridge,
in 1995.

She is an Associate Professor of computer science
with the Computer Science Department, Boston Uni-
versity, Boston, MA, where she coleads the Image
and Video Computing Research Group, and was a
Research Scientist with the Massachusetts General
Hospital, Boston, MA, and the Harvard Medical
School, Boston, MA. She conducts research in com-

puter vision and is particularly interested in real-time applications to rehabil-
itation engineering and human–computer interaction. She has published over
50 original research papers.

Dr. Betke received the National Science Foundation Faculty Early Career
Development Award in 2001 for developing “Video-based Interfaces for People
with Severe Disabilities.” She was one of two academic honorees of the “Top
10 Women to Watch in New England Award” by Mass High Tech in 2005.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on July 06,2010 at 19:46:15 UTC from IEEE Xplore. Restrictions apply.

MAGEE et al.: HUMAN–COMPUTER INTERFACE USING SYMMETRY BETWEEN EYES TO DETECT GAZE DIRECTION 1261

James Gips received the S.B. degree from the
Massachusetts Institute of Technology (MIT),
Cambridge, and the M.S. and Ph.D. degrees
in computer science from Stanford University,
Stanford, CA.

He is the John R. and Pamela Egan Professor
of Computer Science with the Information Systems
Department, Boston College, Chestnut Hill, MA. In
Spring 2004, he was a Visiting Professor at the MIT
Media Laboratory, Cambridge. His research centers
on developing new assistive technologies for people

with severe disabilities.
Dr. Gips is a 2007 winner of the da Vinci Award, “honoring exceptional

design and engineering achievements in accessibility and universal design, that
empowers people of all abilities.”

Matthew R. Scott received the B.A. degree in com-
puter science from Boston University, Boston, MA.

He is currently a Software Engineer with
Microsoft, Redmond, WA. His research interests in-
clude artificial intelligence and computer vision with
an emphasis on human–computer interaction.

Benjamin N. Waber received the B.A and M.A.
degrees in computer science from Boston University,
Boston, MA. He is currently working toward with
the Ph.D. degree in the Human Dynamics Group,
The Media Laboratory, Massachusetts Institute of
Technology, Cambridge.

He was with the Naval Research Laboratory,
Washington, DC, and the Hitachi Central Research
Laboratory, Japan. His current research interests in-
clude social and sensor networks, prediction mecha-
nisms, and information flow.

Mr. Waber won the Department’s Research Award for Undergraduate
Students, Computer Science Department, Boston University.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on July 06,2010 at 19:46:15 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

