
A Real-Time Vision Interface Based on Gaze
Detection — EyeKeys

John J. Magee, Mar grit Betke, Matthew R. Scott, and Benjamin N. Waber

Computer Science Department
Boston University
mageej oQcs.bu.edu
betke@cs.bu.edu
mrscott@cs.bu.edu
bwabesQcs.bu.edu

There are cases of paralysis so severe the ability to control movement is lim­
ited to the muscles around the eyes. In these cases, eye movements or blinks
are the only way to communicate. Current computer interface systems are
often intrusive, require special hardware, or use active infrared illumination.
An interface system called EyeKeys is presented. EyeKeys runs on a consumer
grade computer with video input from an inexpensive USB camera. The face
is tracked using multi-scale template correlation. Symmetry between left and
right eyes is exploited to detect if the computer user is looking at the cam­
era, or to the left or right side. The detected eye direction can then be used
to work with applications that can be controlled with only two inputs. The
game "BlockEscape" was developed to gather quantitative results to evaluate
EyeKeys with test subjects.

1 Introduction

Some people may be so severely paralyzed that their voluntary movements
are limited to movements of the eyes. To communicate with family, friends,
and care givers, they look in a certain direction or blink for "yes" and "no" re­
sponses. Innovative assistive technologies are needed to enable them to access
the computer for communication, education, and entertainment. As progress
toward that goal, we present an interface called EyeKeys that simulates com­
puter keyboard input and is based on gaze detection that exploits the sym­
metry between left and right eyes.

There has been much previous work in computer assistive technologies,
e.g., [2, 3, 6, 16, 17, 23, 29]. Most of these methods, though successful and
useful, also have drawbacks. Many currently available or early systems are
often intrusive, or use specialized hardware [29]. For example, the EagleEyes

142 J. J. Magee, M. Betke, M. R. Scott, B. N. Waber

system [6] uses electrodes placed on the face to detect the movements of
the eyes and has been used by disabled adults and children to navigate a
computer mouse. Another approach [2] uses head mounted cameras to look
at eye movements. It takes advantage of the fact that the face will always
be in the same location in the video image if the head moves around. Large
headgear is not suited for all users, especially small children. One of our goals
is to design a non-intrusive system that does not need attachments.

Another successful system is the Camera Mouse [3]. People with disabili­
ties can control a mouse pointer by moving their head, finger, or other limbs,
while the system uses video to track the motion. This is successful for those
who can move their heads or limbs; however, people who can only move their
eyes are unable to use it. These are the people for whom we aim to pro­
vide a communication device. A goal of our system is therefore to use only
information from the eyes.

Many systems that analyze eye information use specialized hardware. The
use of active infrared illumination is one example [8, 12, 13, 14, 18, 28]. The
infrared light reflects off the back of the eye to create a distinct "bright eye"
effect in the image. If switching the infrared light on and off is synchronized
with the camera, the pupils can be located by differencing the bright eye
image obtained with infrared illumination from the subsequent image without
infrared illumination. The illumination also creates a "glint," a reflection off
the surface of the eye. One technique to find the gaze direction is to analyze the
difference vector between pupil center and glint. There are concerns about the
safety of prolonged exposure to infrared lighting. Another issue is that some
of these systems require a complicated calibration procedure that is difficult
for small children to follow.

Avoiding specialized hardware is another important goal of our system.
This means that our system must run on a consumer grade computer. In
addition to avoiding infrared light sources and cameras, we decided to build
the system around an inexpensive USB camera. The system can therefore
be run on any computer without the need for an expensive frame grabber
or pan/tilt/zoom cameras as required in some previous work [5], Our system
must be able to work with images that have a lower resolution than the images
used in previous approaches [15, 22, 25].

To be a useful human-computer interface, the system must run in real-time.
This excludes existing approaches that do not run in real-time. In addition,
the system can not use all of the processing power of the computer because
the same computer will have to run both the vision based interface as well as
user programs such as web browsers or games.

EyeKeys tracks the face using multi-scale template correlation. The left
and right eyes are compared to determine if the user is looking center, or to the
left or right side. This is accomplished by exploiting the symmetry between
the left and the right eyes. If one eye image is mirrored and subtracted from
the other, the large differences will be due to the difference in pupil location.

EyeKeys 143

The output of our system can be used to control applications such as spelling
programs or games.

We tested EyeKeys on the BlockEscape game. This game was developed
specifically as an engaging way to test our interface system while reporting
quantitative results. This is important because it motivates users and test
subjects to try the system. We can use the game to gather statistics on how
well the interface works for various situations that we create.

This chapter is organized in the following manner: Section 2 discusses the
methods employed in the EyeKeys system itself, including a thorough descrip­
tion of the EyeKeys' modules and the BlockEscape game. Section 3 details
our experiments and results, while Sect. 4 presents an in-depth discussion of
our results, comparisons to other HCI systems, and plans for future extensions
to our system.

2 Method

The EyeKeys system performs two main tasks: (1) face detection and tracking,
and (2) eye analysis. Throughout the system, efficient processing techniques
are used to enable real-time performance. Major components of the system
are presented in Fig. 1.

Video Input

Face Tracker

Color and motion
analysis

Template correlation
over image pyramid

—*•

Eye Analysis
Motion stabilization

Projection of
difference between
left and right
eye images

Comparison of min and
max to thresholds

Output:
Left, Right event
or Center (Default)

Fig. 1. System Diagram for EyeKeys

In order to facilitate working with the eyes, we developed a fast two-
dimensional (2D) face tracker. From the scale and location of the face located
by this tracker, regions of interest for the eye analysis are obtained. The eye
analysis algorithm then determines if the eyes are looking toward the center,
or have moved to the left, or to the right of the camera.

The output from the eye module can be the input to a computer control
interface. Usually, looking center means "do nothing." The interface system
can then map the left and right outputs to events such as mouse movements,
left and right arrow keys, or other key combinations. This allows the system
to be configured for a variety of applications such as playing games, entering
text, or navigating a web site.

144 J. J. Magee, M. Betke, M. R. Scott, B. N. Waber

2.1 Face Detection and Tracking

The face detection and tracking method consists of various parts, some of
which were used in previous face tracking approaches, e.g., [11, 27]. Color and
motion information is combined to create a mask to exclude areas of the search
space for the correlation-based matching of a 12 x 16-pixel face template. To
enable detection of faces that differ in size (for example, a user may have
a large head or sit close to the camera), the system uses image pyramids [1]
along each step of the face detection. To avoid the large size difference between
traditional pyramid levels, where the image at each successive level is half the
size of the previous image, the pyramid structure has been modified to include
images with intermediate resolutions. This allows the system to find face scales
at smaller discrete steps. The resolutions of the images of the pyramids are
listed in Table 1.

Table 1. Resolutions used by the image pyramids. Coordinates in any level can
be transformed into coordinates in the 640x480 input frame by multiplying by the
scale factor. Levels 2 through 7 are used to find the face

Level Width Height Scale Factor
0
1
2
3
4
5
6
7

640
320
160
128
80
64
40
32

480 1
240 2
120 4
96 5
60 8
48 10
30 16
24 20

Color analysis. Skin color has been used to track faces previously,
e.g., [19]. Here, it is used as a preprocessing mask. The color input image
is converted into the YUV color space [24]. YUV was chosen because the
camera can be configured to provide images in that format, and the color in­
formation is contained within two dimensions. A binary image is created with
a 2D histogram lookup in UV space. If a pixel's lookup on the histogram for
the specified UV value is over a threshold, then the pixel is marked as skin,
otherwise not. The binary image is then decimated into the other levels using
Gaussian blurring [1]. A box filter that smoothes an image by averaging with
a support of 12x16 pixels is applied to each image in the pyramid so that
each pyramid level represents the color information for the appropriate scale
of the face to search for. Thresholding then produces a binary pyramid mask
Pcolo r (Fig. 2).

The color histogram was trained on 15 face images which were marked
by hand with a rectangle covering most of the facial regions. In cases where
the color segmentation fails to provide good results, the histogram can be

EyeKeys 145

Fig. 2. Pyramids Pinput, Pcoior, ^motion before application of box filter, Pcorreiation,
and Pmasked computed by the face detection and tracking algorithm. The cross indi­
cates the maximum correlation peak in the pyramid and after applying the appro­
priate scale factor in Table 1, yields the location and scale of the face

retrained during system operation by clicking on areas of skin in the live
video. The histogram can be saved and reloaded so that it can be used again
for the same user or lighting conditions without retraining.

There are various situations when the UV-histogram might need to be
retrained. Certain changes in lighting conditions can result in changes of the
UV values of skin. A histogram trained on one person might not work well
with a person with a different skin tone. Pixels corresponding to objects such
as wooden doors or tan carpets can often have similar pixel values as skin. The
default histogram will represent a wider range of skin tones, while a histogram
trained on one person will represent that person's skin more exclusively. Since
skin color segmentation may not yield accurate segmentation results due to
the difficulties described above, UV-based segmentation is used only as a
preprocessing mask for face localization.

Motion analysis. Frame differencing creates a motion image that is dec­
imated into a pyramid (Fig. 2). Pixels in the face with large brightness gradi­
ents also have large values in the motion image if the face is moving. The box
filter is applied again to each motion image in the pyramid to account for the
appropriate scale of the face to search for. This yields, after thresholding, a
binary pyramid mask Pmotion» The pyramid Pmotion computed from the scene
shown in Fig. 2 looks similar to the color pyramid mask PCoior-

In cases when there is little or no motion, the motion mask must be pre­
vented from excluding the previously found face location from the correlation
search. Locations near the previous face location are therefore set to one in
the binary motion image. The other motion pyramid levels are also modified
in this way to account for movements toward or away from the camera that
are not caught by the motion segmentation. The area modified is proportional
to the scale represented by the respective pyramid level.

146 J. J. Magee, M. Betke, M. R. Scott, B. N. Waber

Correlation matching. Template matching based on the normalized cor­
relation coefficient [4] is used to find the location of the face. A small, 12x16
face template is correlated over all levels of the grayscale input pyramid Pinput
(Y channel from the YUV color image), which allows for fast processing. The
resulting correlation values yield the pyramid PCorreiation (Fig. 2). The max­
imum correlation peak among all of the levels indicates the location of the
face. The scale of the face is known by the level of the pyramid at which the
maximum is found. To eliminate possible ambiguous correlation peaks in the
background, the color and motion information masks are applied to PCorreiation•
An efficient implementation of the correlation function can also use the mask
to save processing time by skipping background locations excluded by the
mask.

The face template is created by averaging the brightness values of 8 face
images. This ensures that the relevant information that it represents a face
is preserved, while specific features of a particular person are smoothed, and
thus allows the correlation method to find a "general" face in the image.

2.2 Eye Analysis

Given the estimate of face location provided by the face tracker, the approxi­
mate location and scale of the eyes can be inferred from simple anthropomor­
phic properties: The eyes must be located in a region above the center of the
face, the left eye must be on the right side of this image region and the right
eye on the left. Taking advantage of these properties, the eye analysis mod­
ule crops out two subimages containing the eyes from the highest resolution
image. The size of the subimages depends on the scale at which the face was
found. To simplify the eye analysis, the system produces eye images of a fixed
size of 60x80 pixels by linear interpolation.

Motion analysis and stabilization. Ideally, the two eyes would be cen­
tered in the respective eye images as the head moves. However, slight move­
ments of the head by a few pixels may not be accurately tracked by the face
tracker. A method must be used to "stabilize" the eye images for comparison.
The method chosen here to locate the center of the eyes is frame differencing
to create binary motion images (Fig. 3), followed by computing the first-order
moments. These "centroid" points are used to adjust the estimates of the eye
locations in the face image. Using this method, the eye images do not need to
have as high a resolution as required by many feature-based eye localization
methods, e.g., [25].

Left—right eye comparisons. The left and right eyes are compared to
determine where the user is looking. The left eye image is mirrored and sub­
tracted from the right eye image. If the user is looking straight at the camera,
the difference is small. On the other hand, if the eyes are looking left, then
the mirrored left eye image appears to be looking right as shown in Fig. 4.

The signed difference between the two images shows distinct pixel areas
where the pupils are in different locations in each image. The unsigned dif-

EyeKeys 147

Fig. 3. Motion detected by frame differencing is thresholded and used as a mask
for the differencing of left-right eye images, and for finding the centroids for motion
stabilization

ference can be seen in Fig. 5. To reduce extra information from the image
areas outside of the eyes, the images are masked by their thresholded motion
images (Fig. 3). To determine the direction of the eyes, the signed differences
are projected onto the x—axis (Fig. 6). The signed difference creates peaks in
the projection because eye sclera pixels are lighter than pupil pixels.

If the user is looking left, the signed difference operation creates large
values in the projection because the dark-gray iris and pupil pixels in the left
image are subtracted from the light-gray eye sclera pixels in the right image.
This is followed by small values in the projection because light-gray eye sclera
pixels in the left image are subtracted from dark-gray iris and pupil pixels in
the right image. Vice versa, if the user is looking right, there will be a valley
in the projection, followed by a peak (Fig. 6). If the peaks and valleys in the
projection do not exceed a certain threshold, then the eye analysis method
outputs the default value "looking center."

:f >
(a) Right eye looking left (b) Mirrored left eye looking left

Fig. 4. Eye images automatically extracted from input video by face tracker

Fig. 5. Absolute difference between right and mirrored left eyes. Left: Eyes are
looking to the left; arrows indicate large brightness differences due to pupil location.
Right: Eyes are looking straight ahead

148 J. J. Magee, M. Betke, M. R. Scott, B. N. Waber

1500
Projection during a Left Look

~r

i t

1500

20 40 60
Eye image width

Projection during a Right Look

"T

m=80

5fc
T3

20 40 60
Eye image width

m=80

Fig. 6. Results of projecting the signed difference between right and mirrored left
eyes onto the x—axis. The top graph is the result of left-looking eyes. The bottom
graph is the result of right-looking eyes

Let Ie and Ir be the m x n left and right eye images masked by motion
information. The projection of the signed difference onto vector a = a i , . . . , am

is computed by:

n

Q>i = ^2(Ir(iJ) ~ hijn - i,j)) (1)
i= i

Two thresholds Tp and Td are used to evaluate whether a motion occurred
to the right, left, or not at all. The thresholds can be adjusted to change the
sensitivity of the system. First, the maximum and minimum components of
the projection vector a and their respective indices are computed:

ttmin = min (ai)
i={l,...,ra}

and amax = max (a*)
i={l,...,7Tl}

^min = argmin (a*) and im a x
i={l,...,m}

= argmax (a*)
i={l,...,ra}

(2)

(3)

The minimum and maximum values are then compared to the projection
threshold Tp:

<-Tv and >TV (4)

This threshold assures that there is a sufficient brightness difference to indicate
a left or right motion. The second threshold Td is used to guarantee a minimal

EyeKeys 149

spatial difference between the minimum and maximum projection values when
motion is detected. The direction of motion is determined as follows:

imax - ^min > Td => 'right motion' (5)

imax - imin < -Zd =^ 'left motion' (6)

2.3 Classification

Information from both the motion and eye comparison analysis are combined
to determine if there was an intentional look to the left or right. The system
detects motion followed by eye direction to the left in order to trigger the "user
has looked left" event. The corresponding right event is similarly triggered.

A limit was set on how frequently events can be triggered in order to avoid
the system from becoming confused and triggering many events in quick suc­
cession. The limit was set experimentally at one event every 0.5 seconds. The
user must move his or her eyes back to the center position before attempting
to trigger another left or right event. In the future however, it may be prefer­
able to let the user keep looking to one side in order to trigger many events in
a row to simulate holding down a key. Audio feedback or multiple monitors
would be needed to let the user know when events are triggered.

2.4 BlockEscape Game

The game BlockEscape was developed as a tool to test the performance of
EyeKeys as an interface. It is a game that is easy to learn and provides an
interactive and engaging user experience, which is particularly important for
users with severe disabilities who have difficulty remaining physically active
for long periods of time. Providing an enjoyable game as a statistics gathering
device may encourage subjects to play for longer periods of time. Figure 7
shows a screenshot of BlockEscape.

The rules of the game are as follows. The walls, which are the black rect­
angles in Fig. 7, are fixed objects that move upward at a constant rate. The
user, who controls a white block, must lead it into the holes between these
walls, where it "falls through" to the next wall. The user is restricted to move
the white block horizontally left and right. The block movement is triggered
by issuing a 'left motion' or 'right motion' command. The command can be
issued using the EyeKeys interface, the mouse, or the left/right keys on the
keyboard. The block continues to move in that direction until it falls through
a hole or the user issues a new direction command. If the block reaches the
bottom of the screen, the user wins. If the block is pushed to the top of the
screen by the walls, the user loses.

There are numerous ways to configure game play. The significant configu­
ration variables are game speed and distance between walls. The game speed
specifies how often the game state is updated: by increasing this setting, the
game is made slower and therefore easier to play. The settings allow the game

150 J. J. Magee, M. Betke, M. R. Scott, B. N. Waber

Fig. 7. Screenshot of the BlockEscape game. The player navigates the block through
the holes by moving the mouse left or right or pressing keys as the block falls toward
the bottom of the screen

to be configured appropriately for the abilities of the user with a chosen in­
terface method.

Methods for gathering statistics. During playing, usage statistics, in
particular, the departure of the user-controlled block from an optimal path,
were computed based on the positions of the block, walls, and holes and
compiled into XML (Extensible Markup Language) documents. If the block
is on the rightmost side of the screen, and there is one hole on the leftmost
side of the screen, the user should obviously move the block left. In cases with
multiple holes on a particular wall, the user should move the block in the
direction to the closest hole. The following equations are used to determine
the player deviations:

D = f 0 if dij < dij-i or j = 0 ,g,
u 11 otherwise ^ '

where hi is the hole's position on wall i and Xij is the block's position on
wall i at time j . Distance dij is defined as the distance from the block's
current position to the hole and D^ determines whether the block is closer or
farther away from the nearest hole. We define the deviation for wall i as:

Wi

where Wi is the number of game-update cycles during which the block is on
wall i. The deviation cravg, averaged over all walls, was approximately zero in
our tests with users employing a keyboard. Therefore, we can assume that all
movement errors encountered during testing are not due to user error resulting
from difficulty of the game itself, but are instead due to the interface system
being employed.

The XML document includes a coordinate-pair listing denoting the config­
uration of each individual wall during a game play. This information may then
be used to reconstruct the exact wall sequence that was seen in a previous
game, allowing the user to play the same game multiple times. This is also
useful for playing the same sequence with multiple users.

EyeKeys 151

3 Experiments and Results

This section describes experiments to evaluate the performance of EyeKeys.

3.1 EyeKeys Performance Evaluation

Experimental setup. EyeKeys is designed to be used by a person sitting
in front of a computer display. The camera is mounted on the end of an
articulated arm, which allows the camera to be optimally positioned in front
of a computer monitor. The USB camera we used is a Logitech Quickcam Pro
4000, with a retail price of $79.99. The tests were run on an Athlon 2100.

The EyeKeys system was tested by 8 able-bodied people. Tests were cre­
ated to determine if the system can detect when a user intentionally looks to
the left or to the right. The average face template used by the face detection
and tracking method was first updated with a template representing the face
of the test subject. Testers were told to look at the computer monitor. When
asked to look left, the tester should quickly move their eyes to look at a target
point to the left of the monitor. A similar target was to the right side of the
monitor. After the "look" was completed, the user should move his or her eyes
back at the monitor.

We created a random ordered sequence of twenty "looks:" ten to the left
and ten to the right. The same sequence was used for all the test subjects.
If the system did not recognize a look, the user was asked to repeat it. The
number of tries required to recognize the look was recorded. We also recorded
when the system misinterpreted a left or right look, and the test proceeded
to the next look in the sequence.

Results. The faces of all test subjects were correctly tracked in both
location and scale while they were moving between 2 and 5 feet from the
camera. Our system correctly identified 140 out of 160 intentional looks to
the left or right. This corresponds to an 87.5% success rate. For the system to
detect and classify 160 looks, the users had to make 248 attempts. On average,
1.55 actual looks are made for each correctly identified look event. The results
are summarized in Table 2.

Table 2. Number of actual and detected left and right looks in testing the EyeKeys
system

Actual

Left
Right
Missed

Left
72
8

40

Right
12
68
48

Correct
90.0%
85.0%

EyeKeys was more successful with some of the test subjects than others.
For example, one subject had all 20 looks correctly identified while only mak-

152 J. J. Magee, M. Betke, M. R. Scott, B. N. Waber

ing 24 actual look attempts. Cases where an incorrect recognition occurred
were likely due to a problem with alignment of the right and mirrored-left
eyes. The number of extra look attempts is due to high thresholds that were
chosen to avoid false detection of looks, since it was decided that it is better
to miss a look than to misclassify a look. Other incorrect recognitions were
due to the system missing a look in one direction, but detecting eye movement
back to the center position as a move in the opposite direction.

3.2 BlockEscape Experiment

Experimental setup. Four test subjects participating in this experiment
were read the rules of BlockEscape, followed by two demonstrations of the
game using a mouse. We chose to test the Camera Mouse in this experiment
in order to measure the effectiveness of EyeKeys against a previously devel­
oped HCI system for people with disabilities. The keyboard was chosen as
a control against the HCI systems. All subjects were unfamiliar with Block-
Escape, EyeKeys, and the Camera Mouse.

In the "practice" phase, the subjects were allowed to become familiar with
the game and the interfaces. They played up to three trial games, or for up
to three minutes, on the keyboard, Camera Mouse and EyeKeys. They were
then asked to play at least one game for 30 seconds with each device.

For the "trial" phase, the test subjects played three games on each input
device, the results are shown in Table 3.

Table 3. Results of four users employing three devices to play BlockEscape, Units
are percentage of game playing area

Device

(7avg

Median
Std. Dev.
Wins

EyeKeys
2.9

2.54
4.01

% (83%)

Camera Mouse
2.27

0
2.68

% (83%)

Keyboard
0
0
0

^ (100%)

Results. The win percentage of EyeKeys compared to the Camera Mouse
was the same, although EyeKeys had a higher <7aYg) median, and standard
deviation. We also noted that a Camera Mouse failure requires manual in­
tervention to correct, while an EyeKeys user could frequently make another
look in the appropriate direction to correct a mistake. However, the median
deviation for the Camera Mouse system indicates that errors were quickly
corrected by the user in most instances. The median deviation for EyeKeys
is due to the time restriction limit between detections. The keyboard con­
trol is obviously the most accurate way to play the game for those that are
able, however, the results demonstrate that EyeKeys works well enough as an

EyeKeys 153

interface to play this game, and that it is comparable in performance to an
existing assistive-technology interface that is in current use.

Users had different levels of success playing BlockEscape with EyeKeys.
One user mastered EyeKeys quickly, winning all three games, but had trouble
with the Camera Mouse. With EyeKeys, all the other users improved their
performance on succeeding games. This did not hold true for the Camera
Mouse experiments.

3.3 Initial Experience: A Test User with Severe Disabilities

We were able to hold a preliminary test of the EyeKeys system with a user
with cerebral palsy. This user can control his eyes and has some control over
head movements. However, he also has involuntary head movements.

We asked him to use the EyeKeys system to move a window left and
right across the screen. We observed that he was frequently able to move
the window in the direction that we asked him. Sometimes, involuntary head
motion would cause the system to detect an unintentional eye event. Since
he has used the Camera Mouse on numerous occasions, he would often move
his head in a motion that would work with the Camera Mouse, but caused
problems with EyeKeys. Adjusting the thresholds in future tests may allow
the system to work better with these head motions. The system could also be
configured to ignore eye movements when head movements are detected.

3.4 Real-Time Performance of System

Our system achieves real-time performance at 15 frames per second, which is
the limit of the USB camera at 640x480 resolution. The BlockEscape game
had no problem running concurrently with the real-time vision interface sys­
tem. The performance of EyeKeys easily enables it to run concurrently with
other applications such as spelling programs and web browsers.

4 Discussion and Future Work

Real-time performance. Correlation-based face tracking is the most com­
putationally expensive procedure in our system. The face tracker employs
multi-scale techniques in order to improve real-time performance. The tem­
plate correlation over the image pyramid is more efficient than performing
multiple correlations with a scaled template. In addition to improving accu­
racy, the color and motion information could be used to reduce the search
space of the template correlation, further improving efficiency.

The eye analysis is relatively computationally inexpensive. The eye direc­
tion is computed in time proportional to the size of the eye image.

154 J. J. Magee, M. Betke, M. R. Scott, B. N. Waber

Design motivations. The approach of EyeKeys to exploit symmetry
works well with eye images of low resolution. Other approaches to gaze detec­
tion that model eye features require higher resolution eye images, e.g., [25]. If
such images cannot be obtained, and therefore eye features such as corners of
the eyes or curve of the iris cannot be used, the difference mirroring approach
allows eye direction classification to be successful.

The two thresholds that determine when the user looks right or left are
adjustable. Increasing Tp makes the system more likely to miss an intentional
look, but less likely to misclassify a look. Increasing Td has the effect of re­
quiring that the looks be faster and more deliberate. While this can decrease
false detections, it also makes the system difficult and uncomfortable to use.

The template can be updated from the current video feed by clicking on
the nose and then selecting the correct scale of the face from a slide bar. This
is useful in cases when a person's face does not correlate well with the default
template. Detection methods based on the normalized correlation coefficient
can work well with uniform changes in brightness [4], however, problems may
occur if the user becomes more brightly lit from one side. In addition, the
template-based detection method works well if the template face and the
user's face remain in the same orientation. If the default template is applied,
the user should face the camera and hold his or her head straight. An updated
template can work with specific head tilts and lighting conditions.

Testing experience and comparisons. Our test subjects had little dif­
ficulty learning the EyeKeys interface. After only a minute of practice, users
were able to play BlockEscape. In addition, most subjects improved after each
game, leading us to believe that EyeKeys users will become as proficient as
Camera Mouse users over time.

EyeKeys performed well in comparison to the Camera Mouse. When the
Camera Mouse loses track, the performance decreases dramatically. In our
system, a false detection can be rectified by a correct detection. This, however,
is specific to certain applications. For instance, if our system caused a web
browser to follow a hyperlink in error, then it would be difficult to return to
the original page without manual intervention. Since this system was designed
as an HCI application, it was expected that the user would be cooperative and
try to make it work. Future tests will determine the limitations for EyeKeys
to detect head tilts or rotations.

Future work and improvements. EyeKeys has the potential to be­
come an integral part of a complete HCI system, e.g., perceptual interface
systems described in references [20, 26]. Combining EyeKeys with other HCI
applications would give the user greater control over the computer, and if
utilized with other facial processing techniques, could prove to be part of an
all-purpose command interface. While the current research is focused on cre­
ating an interface system for people with severe disabilities, gaze detection
systems such as EyeKeys can be useful in other areas such as linguistic and
communication research, or monitoring a vehicle driver's attention.

EyeKeys 155

EyeKeys can be adapted for specific applications such as text entering.
Text can be entered in a variety of ways, for example, an on-screen keyboard
can scan to the intended letter, or letters can be selected by following a binary
search of the alphabet. Some of this type of software is already in use with
current interfaces for people with disabilities [3, 6, 7, 9, 10, 21].

Another important application for EyeKeys is navigating a web browser.
The two commands, left and right looks, could map to the Tab and Enter keys
of the keyboard. This allows the user to tab through the links on a page, and
then select a link to follow. If the user starts on a web page with a hierar­
chical structure of the web, such as Yahoo, then information can be retrieved
by following a few links. This would allow access to news, weather, sports,
entertainment, and educational material. A current issue is that following an
incorrect link by mistake results in the user on the wrong page. A possible
solution would be to detect other events, such as blinks [10], to serve as an
undo command. Alternatively, a confirmation step could be built into the in­
terface before a link was followed to add one level of protection against this
kind of problem.

The EyeKeys system could be improved with an algorithm to more pre­
cisely locate the eyes. The current method relies on eye motion for position
refinement. Our system should also work better with head motion. One solu­
tion could be to not allow eye movement detection when the head is moving.
However, that may cause a problem for disabled users that have involuntary
head movements. Another extension would be an analysis of the difference
projection by fitting a polynomial function instead of thresholding. The cur­
rent system assumes that the head is held vertically and faces toward the
camera. When the user's head tilts, the eyes are no longer symmetrical across
a vertical axis, which causes problems in detecting the gaze. Extending the
system to find the amount of head tilt would improve the detection rate.
This could be done by rotating the template, or by finding the rotated line of
symmetry of the face or between the eyes.

Future possibilities for extending this system include the addition of a blink
analysis module [10], which would give the interface three events to work with.
Unfortunately, some subjects with severe cerebral palsy cannot control their
eye blinks. Another way to extend the system is with further analysis of the
duration that the user looks left or right to allow mapping of more events to
additional commands. Eventually, it would be useful to increase the number
of gaze directions that can be detected reliably, but this is a very challenging
problem with the low-grade cameras and low-resolution eye images used here.

Acknowledgments

Funding was provided by the National Science Foundation (IIS-0308213, IIS-
039009, IIS-0093367, P200A01031, and EIA-0202067).

156 J. J. Magee, M. Betke, M. R. Scott, B. N. Waber

References

1. E H Adelson et al. Pyramid methods in image processing. RCA Engineer, pp
33-41, 1984.

2. Applied Science Laboratories, http : //www. a - s - 1 . com
3. M Betke et al. The Camera Mouse: Visual tracking of body features to provide

computer access for people with severe disabilities. IEEE Trans Neural Systems
and Rehabilitation Engineering, pp 1-10, 2002.

4. M Betke and N C Makris. Recognition, resolution, and complexity of objects
subject to affine transformation. Int J Computer Vision, pp 5-40, 2001.

5. M Betke et al. Active detection of eye scleras in real time. Proc IEEE Workshop
on Human Modeling, Analysis, and Synthesis, 2000.

6. P DiMattia et al. An Eye Control Teaching Device for Students without Lan­
guage Expressive Capacity - EagleEyes. The Edwin Mellen Press, 2001.

7. L A Prey et al. Eye-gaze word processing. IEEE Trans Systems, Man, and
Cybernetics, pp 944-950, 1990.

8. A Gee and R Cipolla. Determining the gaze of faces in images. Image and Vision
Computing, pp 639-647, 1994.

9. J Gips and J Gips. A computer program based on Rick Hoyt's spelling method
for people with profound special needs. Proc Int Conf on Computers Helping
People with Special Needs, 2000.

10. K Grauman et al. Communication via eye blinks and eyebrow raises: Video-
based human-computer interfaces. Universal Access in the Information Society,
pp 359-373, 2003.

11. E Hjelmas and B K Low. Face detection: A survey. Computer Vision and Image
Understanding, pp 236-274, 2001.

12. T Hutchinson et al. Human-computer interaction using eye-gaze input. IEEE
Trans Systems, Man, and Cybernetics, pp 1527-1533, 1989.

13. Q Ji and Z Zhu. Eye and gaze tracking for interactive graphic display. Proc Int
Symp on Smart Graphics, 2002.

14. A Kapoor and R W Picard. Real-time, fully automatic upper facial feature
tracking. Proc IEEE Int Conf on Automatic Face Gesture Recognition, 2002.

15. K-N Kim and R S Ramakrishna. Vision-based eye-gaze tracking for human
computer interface. Proc IEEE Int Conf on Systems, Man, and Cybernetics,
1999.

16. J J Magee. A real-time human-computer interface based on gaze detection from
a low-grade video camera. MS Thesis, Boston University, 2004.

17. J J Magee et al. EyeKeys: A real-time vision interface based on gaze detection
from a low-grade video camera. Proc IEEE Workshop on Real- Time Vision for
Human-Computer Interaction, 2004.

18. C H Morimoto et al. Pupil detection and tracking using multiple light sources.
Technical Report RJ-10177, IBM Almaden Research Center, 1998.

19. K Schwerdt and J L Crowley. Robust face tracking using color. Proc IEEE Int
Conf on Automatic Face and Gesture Recognition, 2000.

20. R Sharma et al. Toward multimodal human-computer interfaces. Proceedings of
the IEEE, pp 853-869, 1998.

21. R C Simpson and H H Koester. Adaptive one-switch row-column scanning.
IEEE Trans Rehabilitation Engineering, pp 464-473, 1999.

22. S Sirohey et al. A method of detecting and tracking irises and eyelids in video.
Pattern Recognition, pp 1389-1401, 2002.

EyeKeys 157

23. O Takami et al. Computer interface to use head and eyeball movement for
handicapped people. Proc IEEE Int Conf on Systems, Man, and Cybernetics,
1995.

24. J-C Terrillon and S Akamatsu. Comparative performance of different chromi­
nance spaces for color segmentation and detection of human faces in complex
scene images. Proc IEEE Int Conf on Automatic Face and Gesture Recognition,
2000.

25. Y Tian et al. Dual-state parametric eye tracking. Proc IEEE Int Conf on Au­
tomatic Face and Gesture Recognition, 2000.

26. M Turk and G Robertson. Perceptual user interfaces. Comm ACM, pp 32-34,
2000.

27. M Yang et al. Detecting faces in images: A survey. IEEE Trans PAMI, pp 34-58,
2002.

28. D H Yoo et al. Non-contact eye gaze tracking system by mapping of corneal
reflections. Proc IEEE Int Conf on Automatic Face and Gesture Recognition,
2002.

29. L Young and D Sheena. Survey of eye movement recording methods. Behavior
Research Methods and Instrumentation, pp 397-429, 1975.

