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Abstract—Disparity estimation belongs to the most important,
but difficult, problems in image processing and computer vision.
Its importance stems from a wide range of applications, while its
difficulty is related to ill-posedness. To date, numerous disparity
estimation algorithms have been developed. In this paper, we con-
sider a particular case of disparity estimation based on two views
and a known alpha channel partitioning each view into foreground
and background. The main idea is to use this partitioning in order
to enhance disparity estimation in the foreground object close to
its boundary. We propose a block-based disparity model with two
alpha-channel constraints: a photometric one, disabling invalid
intensity/color matches, and a geometric one, preventing disparity
smoothing between foreground and background. We incorporate
these constraints into a Bayesian framework using the maximum
a posteriori probability criterion. We experimentally demonstrate
improvements in the estimated disparities at foreground object
boundaries, and show examples of image relighting using these
disparities.

Index Terms—Alpha channel, blue screening, disparity estima-
tion, image compositing, stereo.

I. INTRODUCTION

THE recovery of 3-D scene structure from multiple views,
and the related problem of disparity estimation, belong

to the most important, but difficult, problems in image pro-
cessing and computer vision. Their importance stems from a
wide range of applications, from 3-D scene analysis, through
multiview video coding, to mixing of real and computer-gener-
ated 3-D imagery. The difficulties in disparity estimation stem
from its ill-posed nature, requiring suitable a priori models.
The most successful disparity estimation methods to date using
such priors are methods based on 1-D correspondences using
dynamic programming, 2-D correspondences over rectangular
blocks [1], dense vector fields (e.g., Markov random fields) [2],
[3], and graph cuts [4]. Many variants of these techniques have
been proposed, and are being constantly developed.

In this paper, we consider disparity estimation in the partic-
ular context of image compositing and mixed-reality systems.
When several images need to be combined together, informa-
tion about the background and foreground in each image is
needed first. This information, known as the alpha channel, can
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be acquired by such traditional techniques as “blue screening,”
based on color discrimination, or by more recent techniques like
“depth keying,” using depth discrimination. In standard image
compositing using the “over” method [5], pixel intensities
from two or more images are linearly combined based on their
opacities (alpha channel values). Since this approach accounts
for no object/scene structure, correct 3-D object positioning
and accurate lighting are not possible. Therefore, of interest is
stereo-based image compositing that exploits 3-D structure for
seamless object/scene integration (photometric and geometric).

In order to accurately recover structure of an object captured
against blue screen, we propose to exploit alpha channels
computed prior to image compositing. The goal is to improve
disparity estimates close to foreground object’s boundary. We
propose a block-based disparity model with two alpha-channel
constraints: a photometric one, disabling invalid intensity/color
matches, and a geometric one, preventing disparity (depth)
smoothing between foreground and background, and we incor-
porate both into a Bayesian framework under the maximum a
posteriori probability criterion. Although pixel transparency
has been considered within disparity estimation in the past [6],
only a photometric constraint was applied.

The paper is organized as follows. In Section II, we overview
image compositing and alpha channel estimation. In Section III,
we describe standard block-based disparity estimation, and in
Section IV, we extend it by incorporating alpha channel infor-
mation. We show experimental results in Section V and draw
conclusions in Section VI.

II. IMAGE COMPOSITING USING STEREO

In visual special effects and in mixed-reality systems, several
images are often combined together by means of compositing
[5]; for example, in the so-called “over” method pixel inten-
sities are linearly combined based on their opacities. Clearly,
pixel opacities (visible, partially visible, invisible), also known
as alpha channel values, must be known for all images prior
to compositing. While for computer-generated images opacities
are known, they are unknown for camera-acquired images and
need to be computed.

One technique used to separate an object from background
in life images is blue screen matte; objects are filmed in front
of a blue background, after which the blue areas are removed
assuming no blue color is present in the foreground object. The
main difficulty lies in the accuracy of extracting the matte (alpha
channel); fine details, such as hair or fur, can be accidentally cut
off from the rest of the figure. Today, with images captured digi-
tally, relatively accurate alpha-channel extraction methods exist
[7]. An alternative is depth keying [8] where depth of a 3-D scene
is captured by special camera, that simultaneously records the
photometry and depth, followed by depth processing in order to
differentiate between the foreground object (smaller depth) and
background (larger depth). This approach, however, requires
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specialized, expensive hardware, and, in some scenarios, is un-
reliable. Although the depth can be captured implicitly by two
(or more) cameras, and then recovered numerically, such tech-
niques have not yet reached performance level of blue-screen
methods.

Therefore, in this work, we rely on blue screening followed
by Bayesian matte extraction [7]. However, in order to seam-
lessly insert the captured object into an image of 3-D scene (po-
sitioning, relighting), the object’s structure (depth) is needed as
well. We propose to capture an object in front of blue screen with
two video cameras. We focus on depth extraction accounting
for object boundaries that can be implemented in real time on
today’s hardware. Note that when compositing images of a 3-D
object and 3-D scene, their illumination parameters need to be
considered. While for computer-generated images these param-
eters are known, they need to be adequately modeled and esti-
mated for camera-acquired imagery [9].

III. BLOCK-BASED MAP DISPARITY ESTIMATION

We consider a block-based disparity model due to its suc-
cess in video coding (as motion model), ease of implementa-
tion (compared to more advanced disparity models) and avail-
able hardware to perform estimation on (application-specific in-
tegrated circuits). Consider a pair of images for which we seek
disparity: left image and right image . Let denote position
of a pixel in the domain of either or . Let this domain be
partitioned into blocks , i.e., , where denotes
the set of indexes for all blocks. Let be a disparity vector as-
sociated with block ; all pixels in are assigned the same
disparity, very much like motion vectors in MPEG and H.26X
video coding standards.

The goal is to compute a disparity field , defined as a field of
vectors , that relates homologous points in the left
and right images, i.e., points that are projections of the same 3-D
point in a scene being captured. We use standard observation
model relating the images and disparity

(1)

where is a stationary, zero-mean white Gaussian noise term
with variance . This model expresses the
assumption of intensity constancy between homologous points
plus uncertainty due to sensor noise, miscalibration, etc.

The above model is commonly used in video coding with re-
spect to motion. Considered in the context of maximum likeli-
hood (ML) disparity estimation:

(2)

where is the state space of disparity field , and is
the likelihood of obtaining given both and disparity field

, this model leads to the following disparity block matching:

(3)
where is the state space for single disparity vector . Note
that, due to the implicit independence between neighboring dis-
parity vectors, each vector is computed separately.

The ML estimation framework works well in the compres-
sion context, whether vis-à-vis motion or disparities. However,
our goal is to recover a physical quantity (depth) to be used
in a physically-meaningful way (image compositing with re-
lighting). Therefore, we need to account for physical proper-
ties of depth, e.g., its local smoothness. In other words, in order
to recover smooth disparity (depth) consistent with true object
shape we need to impose an additional constraint.

We accomplish this through Bayesian framework that proved
successful in this context in the past [2], [3], [10]. We formulate
the disparity estimation as a maximum a posteriori probability
(MAP) problem

(4)

where is the a posteriori probability of disparity field
given the two images. The prior probability expresses

assumptions that we make about the disparity field . We as-
sume that is independent of , i.e., that
the knowledge of the right image tells us nothing about the dis-
parity field itself. Although this assumption does not hold ev-
erywhere in the image (the knowledge of object boundaries in
the right image may suggest the location of discontinuities in
the disparity/motion field [11]), it is nevertheless widely, and
successfully, used in practice. We model the disparities using
a vector Markov random field (MRF), so that becomes a
Gibbs distribution. For a detailed development of scalar MRF
models for images, we refer the reader to the seminal work of
Geman and Geman [12], and of vector MRF models for mo-
tion—to the works of Murray and Buxton [13], and of Konrad
and Dubois [11].

Since the likelihood and prior distributions are exponential,
the maximization (4) can be rewritten as energy minimization

(5)

where is the block-neighborhood of block number , i.e.,
means that block number is a neighbor of block number

. We use the first-order neighborhood, i.e., top, bottom, left,
and right block neighbors.

The summation over block index accumulates energy
over all blocks. The energy of block number consists of the
data matching error (summation over all pixels in ) plus the
disparity smoothness error (summation over neighboring-block
index ). Note that because of the latter term, unlike in the ML
case, the individual disparities cannot be estimated inde-
pendently, and an iterative solution algorithm is required. The
balance between intensity matching and disparity smoothness
errors is controlled by the weight which is proportional to the
noise variance from the observation model (1); the larger
this variance, the larger the , and thus the more confidence is
given to disparity smoothness.
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Fig. 1. Original (a) left and (b) right images captured against green screen. (c) Left and (d) right alpha channels computed by method of Chuang et al. [7].

We solve the ML minimization (3) by a single-pass exhaus-
tive search over with specified accuracy (e.g., quarter-pixel).
In the case of MAP minimization (5), we apply exhaustive
search iteratively until the overall energy change is sufficiently
small or the maximum number of iterations is reached.

IV. BLOCK-BASED MAP DISPARITY ESTIMATION UNDER

ALPHA-CHANNEL CONSTRAINTS

By the very nature of blue-screen object acquisition, true
depth discontinuities at the object boundary are associated with
color discontinuities (captured by the alpha channel). Standard
block-based disparity estimation methods, described in the
previous section, are not designed to handle such discontinu-
ities. We propose an extension of block-based MAP disparity
estimation to permit disparity (depth) discontinuity based on
the known alpha channels. The proposed models could equally
apply to segmentation of the foreground object itself in order
to permit in-object depth discontinuities (e.g., implicit [10]
or explicit [3]), however in this work we assume the captured
object is internally smooth (e.g., face).

In the MAP formulation (5), the disparity estimation algo-
rithm is applied uniformly to all blocks in the reference image
(left image in our case). However, because of the intended image
compositing, there is no need to estimate disparities in the con-
stant-color background (only depth of the visible parts of the ob-
ject, e.g., face, is needed). This permits us to modify the domain
of the disparity search to exclude those blocks that belong to
the background. Let be the set of block indexes such that
for , at least one pixel from belongs to the left-image
alpha plane (foreground object in the left image). This new
restricted domain results solely in speeding up the disparity es-
timation process.

The alpha channel can be also used to eliminate erroneous
matches. Since we assumed that color of the background screen
is selected so that it is absent from the object, we know that
a match between an object block and a block from the con-
stant-color background is very unlikely. Thus, we can restrict
the state space of each disparity vector by incorporating the
alpha channel of the right image. Since the new state space is
now spatially variant, its practical implementation is more com-
plex. We handle this by introducing a gain factor dependent
on the right alpha channel

for
for .

Clearly, for a pixel at within the object , the
gain is equal to 1, while for a pixel belonging to the back-

Fig. 2. Closeups from: (a) left and (b) right alpha channels from
Fig. 1(c) and (d), respectively, showing fuzzy transitions.

ground it is infinite (in practice, very large). If the matching error
in (5) were multiplied by , then a

left-image block entirely within the foreground object would
likely find a match within the right-image foreground; otherwise
the gain would lead to large energy values. Blocks
at the object boundary would also likely find a match within
the object or at its periphery, but not in the background. The in-
troduced multiplicative gain leads to a photometric constraint
on possible solutions, and is expected to result in fewer false
matches at object boundaries.

Note that the smoothness constraint has been applied so far
uniformly throughout the disparity field, also between blocks
of which one belongs to the object while the other does not.
Since such blocks are positioned across an object boundary, the
smoothness constraint should be disabled. This can be achieved
by using object boundary in the left image via the left alpha
channel . Let be an indicator function defined for the left
alpha channel as follows:

if s.t.
otherwise.

Clearly, equals 1 for blocks at least partially overlapping the
object (foreground) area of the left image. For blocks entirely
in the background, . If is the Kronecker delta (
equals 1 for , and 0 otherwise), then for blocks number

and , only when both of them belong to
either the foreground or background. Multiplying the prior term

in (5) by , leads to a geometric constraint
disabling disparity smoothness across object boundary.

With the above improvements, the new MAP disparity esti-
mation can be expressed as follows:

(6)
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Fig. 3. Disparity estimates for the test image from Fig. 1. (a) ML; (b) MAP; (c) MAP with photometric alpha-channel constraint. (d) MAP with photometric and
geometric alpha-channel constraints, all shown as vector field and as grayscale of the horizontal disparity [in (c) and (d), background disparity is not estimated and
set arbitrarily to zero/black].

Note the -induced restrictions implemented through the new
search domain , gain and indicator function

. The above minimization is accomplished again it-
eratively by exhaustive search.

V. EXPERIMENTAL RESULTS

Fig. 1 shows a typical head-and-shoulders stereo pair used
in our experiments along with corresponding alpha channels.
The stereo pair was captured by an uncalibrated, roughly par-
allel camera setup. This is a common scenario in stereo acquisi-
tion for entertainment purposes; camera calibration [14] would
help achieve more accurate results. The alpha channel was com-
puted by first thresholding the red, green and blue image compo-
nents at each pixel. Since uneven lighting, shadows, and fuzzy
areas contribute to alpha-channel errors, we refined the initial
estimate by applying a Bayesian approach proposed by Chuang
et al. [7]. That approach uses a spatial model for the alpha
channel within a maximum a posteriori probability criterion.
Note the fuzzy transition between the foreground (white) and
background (black) that permits a seamless composition of ob-
ject with another background (Fig. 2).

In order to recover disparities, we first applied the ML estima-
tion (3), which basically implements standard block matching
on disparities. Since only the intensity matching error is mini-
mized , disparity estimates should be little correlated
spatially (large spatial variability) similarly to fast [15] or mul-
tiresolution [16] block matching implementations that also in-
clude no prior vector model. This is confirmed in Fig. 3(a) that
shows ML disparity estimate as a vector plot and as a bright-
ness image of the horizontal disparity component. Note signif-
icant disparity variability in the background and at the object
boundary. Subsequently, we used the ML disparity estimate as
an initial solution for the MAP estimation (5); results are shown
in Fig. 3(b). Note that, as expected, the MAP estimate is much
less noisy (more spatially consistent) than the ML estimate, due
to the added disparity smoothness constraint. It is more consis-
tent locally and better reflects the actual scene structure (smooth

object surface, fairly constant depth in the background). How-
ever, a transition band around object boundary is formed by the
vectors, where a gradual (smooth) change of disparity vector
length and orientation takes place between the foreground and
background.

Fig. 3(c) shows a disparity estimated using the new -con-
strained algorithm but only with the photometric constraint
(gain penalizing foreground-background matches). The
background disparities were not computed, but instead were
arbitrarily set to zero (they are not needed in image com-
positing). In the foreground object, the transition-band effect
has been largely eliminated and a clear disparity discontinuity
has formed. Also, many false matches in the foreground have
been eliminated. Although the vector field has been improved
compared to the standard MAP case Fig. 3(b), one can still
notice disparity variations along object boundary (darker and
brighter blocks on the boundary) predominantly due to the
isotropic smoothness constraint. In order to correct this, the
disparity smoothness term needs to be disabled across object
boundary. Fig. 3(d) shows a disparity estimate obtained by the
proposed MAP algorithm with both alpha-channel constraints
turned on (6). Clearly, the disparity field is very consistent
along object boundary and the overall appearance of depth
is more smooth accurately depicting the face structure. This
improvement is further evidenced by the difference field of hor-
izontal disparities shown in Fig. 4(a); disparities get corrected
only at object boundary and are unchanged inside.

Since the intended application of the proposed algorithm
is stereo-based image compositing and relighting, we present
an example in this context. Note that the estimated alpha-con-
strained disparity field, although smooth, is still block-constant.
Clearly, the corresponding depth, computed from the horizontal
disparity component assuming known camera baseline and
focal length, is block-constant as well. Although dense dis-
parity field could have been computed (at high computational
cost), we found that very good results can be obtained by
smoothing block-constant disparity with Gaussian filter. A
Gaussian-smoothed depth is shown in Fig. 4(b); the result is
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Fig. 4. (a) Absolute difference of horizontal disparity for the results from
Fig. 3(c) and (d) shown as brightness image (black—no difference); and
(b) final depth field after Gaussian filtering.

Fig. 5. Examples of two different illuminations of the foreground object.

smooth but with clearly protruding nose, chin, and some hair,
and retracted eye sockets, lower hair, shoulders.

Based on the estimated depth and intensity of the original
stereo pair, we computed a textured mesh model using com-
mercial program Truespace [17]. As object surface texture, we
used intensity and color of the left image, and as its transparency
map—the left alpha channel. Once the object’s shape was re-
constructed, we applied a new illumination and rendered a new
image, again using Truespace.

Fig. 5 shows a rendering of the head from our test image
[Fig. 1(a) and (b)] with a moving light source. Note that the light
bends around the face of the person (especially around the nose),
as it would if there were an actual physical light in the scene.
Clearly, the estimated disparity (depth) helps achieve plausible
illumination effects that would have been impossible using one
image only (no stereo).

VI. SUMMARY AND CONCLUSIONS

We proposed an improved block-based MAP disparity es-
timation that accounts for alpha-channel boundaries. The re-
sulting disparities exhibit more consistent behavior along fore-
ground object boundaries, and lead to smoother depth estimates
in the foreground than standard block-based ML and MAP tech-
niques. Since the proposed algorithm performs at most 5 iter-
ations of calculations of complexity similar to those used in
block matching, a real-time hardware implementation is fore-
seeable today, especially with fast algorithms [15]. The obtained
disparity estimates were used for foreground object relighting

demonstrating feasibility of image compositing/relighting using
stereo. The current algorithm is applied independently to con-
secutive frame pairs of stereoscopic video thus likely leading to
inconsistent depth estimates in time. One possible extension of
the proposed algorithm could be to assure temporal continuity of
depth by means of an additional energy term. Also, disparity dis-
continuities are currently permitted only at discontinuities of the
alpha channel. However, foreground objects themselves may in-
clude depth discontinuities; one could use a “weak membrane”
[18] or line process [11] model to permit such depth disconti-
nuities within the foreground object.
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